
PHD PROGRAMME NAME

Mumak
Efficient and blackbox detection of bugs


in Persistent Memory programs
João Gonçalves (joao.tiago.goncalves@tecnico.ulisboa.pt)

Instituto Superior Tecnico, Universidade Lisboa & INESC-ID Supervisors: Miguel Matos and Rodrigo Rodrigues

‣Persistent Memory (PM) combines durability with 
performance close to that of DRAM


‣Stores are persisted asynchronously and non-
deterministically (stores can be reordered)


‣Flush and fence instructions enforce ordering 
constraints. However, crashes can still lead to 
inconsistencies in the post-failure state

Motivation

Goal: design a tool that detects PM bugs automatically and efficiently, while being 
agnostic of application code, application semantics, and underlying libraries


 Insight


‣ Combination of fault injection and trace analysis based on  
automatic and blackbox instrumentation of target binaries


 Fault Injection


‣Construction of a failure point tree, comprised of unique execution  
paths that lead to relevant execution points (PM interactions)


‣Systematic fault injection, producing deterministic and  
reproducible post-failure states without shadow memory


‣Use of the application’s recovery as a consistency oracle


‣Reduction of the search space by only exploring states that  
respect some prefix of program-order


 Trace Analysis


‣Dynamic collection of PM access trace using complete workload


‣Bug detection based on 5 well-defined generic patterns of misuse

Mumak

‣Microbenchmarks show that Mumak is up to 10x faster than  
Witcher, Agamotto, XFDetector, and PMDebugger


‣Coverage evaluation using Witcher as baseline: 90% coverage 
(70%* of correctness bugs and 100% of performance bugs)


‣3 NEW bugs found: 1 in PMDK 1.12.0 (latest stable version) 
and 2 in Montage (an example of a system that does not use PMDK)

Results

PMDK 1.8

PMDK 1.6

‣PM bug detection tools fall into two categories:


‣Automatic space exploration is exhaustive but slow 
and cannot scale to complex applications


‣Annotation-based debugging is fast but error-
prone, since it delegates the effort to the developer


‣Additionally, all existing works leverage the 
semantics of the application or PM library (PMDK)

State-of-the-art

This work was supported by national funds through FCT, Fundação para a Ciência e a Tecnologia, under projects UIDB/50021/2020 and  
Ainur (PTDC/CCI-COM/4485/2021), and grant 2021.07401.BD


