
PHD PROGRAMME NAME

Mumak
Efficient and blackbox detection of bugs

in Persistent Memory programs
João Gonçalves (joao.tiago.goncalves@tecnico.ulisboa.pt)
Instituto Superior Tecnico, Universidade Lisboa & INESC-ID Supervisors: Miguel Matos and Rodrigo Rodrigues

‣Persistent Memory (PM) combines durability with
performance close to that of DRAM

‣Stores are persisted asynchronously and non-
deterministically (stores can be reordered)

‣Flush and fence instructions enforce ordering
constraints. However, crashes can still lead to
inconsistencies in the post-failure state

Motivation

Goal: design a tool that detects PM bugs automatically and efficiently, while being
agnostic of application code, application semantics, and underlying libraries

 Insight

‣ Combination of fault injection and trace analysis based on
automatic and blackbox instrumentation of target binaries

 Fault Injection

‣Construction of a failure point tree, comprised of unique execution
paths that lead to relevant execution points (PM interactions)

‣Systematic fault injection, producing deterministic and
reproducible post-failure states without shadow memory

‣Use of the application’s recovery as a consistency oracle

‣Reduction of the search space by only exploring states that
respect some prefix of program-order

 Trace Analysis

‣Dynamic collection of PM access trace using complete workload

‣Bug detection based on 5 well-defined generic patterns of misuse

Mumak

‣Microbenchmarks show that Mumak is up to 10x faster than
Witcher, Agamotto, XFDetector, and PMDebugger

‣Coverage evaluation using Witcher as baseline: 90% coverage
(70%* of correctness bugs and 100% of performance bugs)

‣3 NEW bugs found: 1 in PMDK 1.12.0 (latest stable version)
and 2 in Montage (an example of a system that does not use PMDK)

Results

PMDK 1.8

PMDK 1.6

‣PM bug detection tools fall into two categories:

‣Automatic space exploration is exhaustive but slow
and cannot scale to complex applications

‣Annotation-based debugging is fast but error-
prone, since it delegates the effort to the developer

‣Additionally, all existing works leverage the
semantics of the application or PM library (PMDK)

State-of-the-art

This work was supported by national funds through FCT, Fundação para a Ciência e a Tecnologia, under projects UIDB/50021/2020 and
Ainur (PTDC/CCI-COM/4485/2021), and grant 2021.07401.BD

