
Chapter 2

Background

In this chapter we introduce the concepts underlying epidemic algorithms, de-

fine our programing model and assumptions and describe the conventions used

throughout the rest of this dissertation.

2.1 Model

In general, distributed systems are classified according to the interprocess com-

munication mechanism, the timing model and the fault model (Lynch 1996).

The fault model specifies the type of faults in the system and their detectabil-

ity. For simplicity, we assume a failstop model: processes may fail by prematurely

halting their execution and such failures are eventually detected. This means that

if a process fails and later recovers and rejoins the system, for instance as a conse-

quence of churn, it does so as a new process. Moreover, in the algorithms we pro-

pose, the precision of failure detection only impacts performance not correctness.

Processes that do not fail are said to be correct. Interprocess communication

is the mechanism used by processes to exchange operations and data, and can

be implemented by shared memory, point-to-point or broadcast of messages, or

remote procedure calls. Due to its simplicity and wide availability, we focus only

on point-to-point communication over an IP network using a transport protocol,

such as TCP or UDP. By assumption, each process can be uniquely identified

and reached by its IP address and port, i.e., we do not consider processes be-

hind firewalls or NATs. Note that this limitation can be overcome by the use of

several techniques, using epidemic algorithms readily available (Kermarrec et al.
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2009; Leitão et al. 2010). The virtual link between any two pair of processes is

called a channel. We assume channels to be fair-lossy, i.e., losses might occur but

if a correct process sends a message infinitely often to another correct process,

the latter will receive that message infinitely many times. Moreover, we further

assume that channels do not corrupt, duplicate or create spurious messages. In

practice, this can be implemented by a reliable transport protocol, such as TCP,

or by the application by using message retransmissions or the stubborn channel

abstraction (Guerraoui et al. 1998).

The timing model is concerned with the assumptions done regarding relative

process speeds and communication channels timeliness. In one extreme, we have

synchronous systems which have a well-known upper bound on the time it takes

for processes to execute operations and on the time taken since a message is sent

until it is received. On the other hand, in asynchronous systems there is no such

upper-bound and both processes execution speed and message transmission time

can take indefinitely long. Despite being harder to reason about, asynchronous

systems are more generic and therefore we focus only on asynchronous systems

in this dissertation. Moreover, unless otherwise stated, there is no assumption in

the availability of a global clock.

2.2 Overlay Networks

In order for the system to function properly, each process needs to know the

identifier of other processes with which it can communicate with. This set of

process identifiers is known as the view and the size of the view is known as the

degree. When a process p has a process q in its view, q is said to be a neighbor of

p and the set of all processes in p’s view is called the neighborhood of p. The set

of all views establishes a who knows who relationship and is known as an overlay

network - a logical network imposed on top of the physical infrastructure. When

analyzing the global properties of an overlay network, it is often useful to model

it as a graph where processes are vertices connected by the links or edges induced

by the views. This graph should have some key properties that any algorithm

should strive to obtain and preserve. These properties are (Jelasity et al. 2007):

• Connectivity: indicates process reachability and is obtained when any

process is able to reach every other process in the system in a finite number
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of hops. Failure to ensure connectivity, known as a partition, severely

impairs the usefulness of algorithms as not all processes are able to receive

the desired application data.

• Average path length: measures the average number of hops separating

any two processes in the system. It is related to the overlay diameter which

is given by the greatest path length between any two processes. The average

path length should be as small as possible as it imposes a lower bound on

the time needed to disseminate data among all processes.

• Clustering coe�cient: measures the closeness of neighbor relations among

processes. It is defined as the number of links among the neighbors of a

given process divided by the number of all possible links among those pro-

cesses. This property a↵ects redundancy because the number of duplicates

received directly increases with it, and also robustness because graphs with

high clustering coe�cients are more prone to partitions.

• Degree distribution: is the distribution of the number of neighbors of

each process - the degree or size of the view - and measures processes’

reachability and their contribution to the connectivity.

In the following, we present the two main approaches to build overlay net-

works: structured and unstructured.

2.2.1 Structured Overlays

In the class of structured overlay networks, the neighboring relations among pro-

cesses are established judiciously according to some criteria, such as latency or

distance. Due to the tight control over link establishment, structured overlay

networks are e�cient in routing data and/or requests to the appropriate process,

as the location of those processes could be calculated in a deterministic fashion.

Thus, structured overlay networks are popular to store and retrieve arbitrary data

and build distributed hash tables (DHT) (Plaxton et al. 1997). DHT algorithms

define a topology by assigning identifiers to each process, and a function that

determines the distance, in number of hops, between any two identifiers in the

space. Nonetheless, the inherent overlay structure can also be used to provide

data dissemination primitives to applications (Jannotti et al. 2000; Ratnasamy
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et al. 2001; Zhuang et al. 2001; Castro et al. 2002). Structured overlay networks

are typically built as spanning trees (Gallager et al. 1983) or more complex struc-

tures, such as hypercubes (Rowstron and Druschel 2001; Zhao et al. 2001; Stoica

et al. 2003) and Cartesian hyperspaces (Ratnasamy et al. 2001).

Despite the frugality in resource consumption of both processes and links,

structured overlay networks are highly sensitive to churn and failures. The fru-

gality comes from the before hand construction of the network structure that

is able to take advantage of links and processes with higher capacity. However,

upon failures the overlay must be rebuilt, precluding the dissemination of data to

all processes while this process takes place. As such, in highly dynamic environ-

ments where the churn rate is considerable, the cost of constantly rebuilding the

overlay may become unbearable. Furthermore, processes closer to the root of the

spanning tree handle most of the load of the dissemination, thus impairing the

scalability of the approach. This also applies to the aforementioned structures,

as certain processes become critical in reaching a large part of the network, and

therefore are responsible for handling the network load of large portions of the

system.

2.2.2 Unstructured Overlays

In the unstructured approach, links are established randomly among processes

without taking into account any e�ciency criteria. Therefore, to guarantee that

all processes are reachable, and thus the connectivity property ensured, links

need to be established with enough redundancy, which has a significant impact

on the overlay. The main advantage is that because there are multiple paths

available between any two pair of processes, failures and churn do not impair the

successful delivery of a given message as it will be routed by some other available

path. Furthermore, as there is no implicit structure on the overlay, the churn

e↵ect is mitigated as there is no need for global coordination or rebuilding of the

overlay. These characteristics yield strong desirable properties in distributed sys-

tems: reliability, as connectivity is preserved despite faults; and resilience, as the

e↵ect of churn is negligible when compared to structured approaches. Scalability

is obtained by requiring each process to know only a small subset of neighbors,

typically bounded by the logarithm of the size of system, thus minimizing the

load imposed on the maintenance of the overlay and in the dissemination of appli-
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cation data. However, departing from global knowledge to only a partial view of

the system has a serious impact on the algorithms as they need to address several

design questions in order to be successful, which include uniformity and adaptiv-

ity (Eugster et al. 2004). The reliability of the overlay stems from the fact that

links are established randomly among all the processes in the system. However,

when the algorithm is restricted to knowledge of only a subset of processes, this

uniform randomness can only be preserved if the partial view of the system is

itself a uniform sample from the system. Adaptivity is concerned with the size of

the partial view of the system. If the system size is known before hand then the

appropriate view size can be easily determined (Kermarrec et al. 2001). However,

when the system size is unknown and/or it varies along the time, the partial view

size maintained by each process needs to be adapted in order to ensure that the

connectivity of the overlay is preserved. Finally, the degree distribution of the

overlay should be even, i.e., the variance of the average degree should be small.

This is fundamental to ensure load balancing as the load imposed on processes -

both in management overhead and in the dissemination e↵ort - is closely related

to the degree.

The mechanism used to construct the overlay in the unstructured approach

is known as the Peer Sampling Service (PSS) (Jelasity et al. 2007). Due to its

importance as the most fundamental building block in unstructured overlays,

there is an extensive body of research on building a PSS in a fully decentralized

fashion (Lin and Marzullo 1999; Ganesh et al. 2001, 2002; Massoulié et al. 2003;

Voulgaris et al. 2005a,b; Leitão et al. 2007; Melamed and Keidar 2008). Existing

PSS proposals can be roughly classified as reactive or proactive according to the

way they update the processes’ view. In the proactive case, processes periodi-

cally exchange their views with their neighbors regardless of the actual need to

replace failed entries, resulting in each view being a continuous stream of process

samples from the network. Examples of proactive PSSs include Cyclon (Voul-

garis et al. 2005a) and Newscast (Voulgaris et al. 2005b). In the reactive case,

the view is kept unchanged unless some of its entries need to be updated, i.e.,

for replacing a failed process or for accommodating a process joining the system.

Typical examples include Scamp (Ganesh et al. 2001), Araneola (Melamed and

Keidar 2008) and HyParView (Leitão et al. 2007b). The trade-o↵ between reac-

tive versus proactive strategies is essentially one between the frugality in terms
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of bandwidth consumption of reactive approaches versus the view freshness and

diversity provided by the proactive approaches.

Random walks Many distributed algorithms over unstructured overlays often

need to sample the network to collect some application specific information. This

procedure can be modeled as a random walk, a graph traversal procedure (Gkant-

sidis et al. 2006; Massoulié et al. 2006). Briefly, a process initiates a random walk

by randomly selecting a neighbor from its view and sending it a specific message.

The receiver executes some application specific logic, adds some information to

the one already carried in the message from the random walk, and forwards the

random walk to a randomly selected neighbor. Each random walk is configured

with a maximum number of hops it needs to take after which it returns to the

initiator. Upon receiving the random walk, the initiator uses the information

collected in an application specific manner.

2.2.3 Discussion

The trade-o↵ between the structured approach and the unstructured one is clear.

In the structured approach it is possible to take advantage of processes and links

with high capabilities thus improving the e�ciency of the solution. However,

those approaches are sensitive to faults and churns and thus require a stable

environment in order to operate properly. On the other hand, unstructured

approaches are able to operate under considerable amounts of faults and churn,

but the toll to pay is increased overhead when disseminating application data.

The trade-o↵ here is between a very e�cient, brittle approach or a robust, less

e�cient one.

Because we target very large scale systems where churn is the norm rather than

the exception, our design philosophy throughout this dissertation is to start with

a robust unstructured algorithm and then judiciously optimize it for performance.

To this end, all algorithms developed assume the existence of a PSS implemented

by one of the aforementioned proposals.
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2.3 Data Dissemination

The goal of constructing an overlay network, regardless of the particular approach

taken, is usually to o↵er its capabilities to other services able to disseminate ap-

plication data from one or more sources. In this section we briefly introduce

di↵erent data dissemination algorithms and highlight the trade-o↵s among them.

We consider three di↵erent approaches, namely flooding, trees and epidemic algo-

rithms. Because these approaches rely on the membership information provided

by the overlay network, there are naturally some combinations more adequate

than others while others overlap in terms of functionality. For instance, flooding

a structured overlay with the shape of a tree is similar to using a tree dissemi-

nation strategy on an unstructured overlay network. Nonetheless, because these

approaches are at di↵erent abstraction levels, we conceptually separate them.

2.3.1 Flooding

Flooding is the simplest dissemination strategy. Essentially, all application mes-

sages received are relayed to all neighbors on the overlay network. As expected,

flooding is very demanding in bandwidth and as such, several optimizations to

this naive strategy exist that take advantage of the location of processes in order

to reduce the number of duplicates received. In one of those strategies, flooding

is only done in the same ’direction’ as the received message, as processes on the

opposite direction are already expected to have received the message (Ratnasamy

et al. 2001).

2.3.2 Tree

In tree approaches, such as (Castro et al. 2002), the dissemination of applica-

tion level messages uses a reverse path forwarding mechanism to construct and

maintain the multicast group, encompassing all processes interested in the dissem-

ination. For each multicast group, the dissemination protocol creates a multicast

tree with a unique identifier and uses it to relay messages to the relevant pro-

cesses. To join the group, a process uses the overlay network to send a message

to the multicast group. As the joining request traverses the overlay, each process

checks whether it is already part of the desired multicast group, and if it is, it
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stops forwarding the message and adds the joining process as a child in the mul-

ticast tree. If not, the request is forwarded to the parent until it is adopted by

a process or it reaches the root of the tree. In the latter, the root will adopt the

joining process as a direct child. The protocol carefully balances the multicast

tree in order to ensure an evenly load distribution among the participating pro-

cesses. To further prevent bottlenecks in certain processes, the protocol provides

mechanisms to demote a process’s child to a grandchild, thus transferring some of

the dissemination e↵ort to its children. Further details of the deployment of these

protocols on top of the structured overlay construction mechanisms available, and

a detailed comparison of the trade-o↵s between each one can be found in (Castro

et al. 2003b). As the mechanism used to construct the dissemination tree ensures

loop-free paths, there are no message duplicates delivered to the application.

2.3.3 Epidemic

Epidemic or gossip dissemination approaches rely on the mathematical models

of epidemics (Bailey 1975; Demers et al. 1987; Birman et al. 1999; Eugster et al.

2003b, 2004): if each infected element spreads its infection to a number of random

elements in the universe, then all the population will be infected w.h.p. The

number of elements that need to be infected by a given element is called the

fanout and is a fundamental parameter of the model. Note that even if the

model specifies that the elements to be infected need to be selected uniformly

at random from the universe, processes usually know only a small fraction of all

processes - those in their view. This is addressed by works such as lpbcast which

ensure that the view of processes has the same properties than a uniform sample

of all processes (Eugster et al. 2003b). Thus, processes pick fanout elements

from its view and send the message to them. The choice of the value of the

fanout highly influences the fraction of the population that becomes infected. As

specified in (Eugster et al. 2004), the ideal fanout value defines a phase transition:

below that value the dissemination will reach almost no processes, and above it

the dissemination will reach almost all processes. The decision of when and

how to send the message payload to the chosen processes may follow several

approaches (Karp et al. 2000), which we describe next. In the how to send the

message decision there are two options available: push and pull. With push the

sender takes the initiative and relays the message to its neighbors as soon as it is
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received. On the other hand, with pull the receivers ask periodically the sender

for new messages, which will then relay any new message to the receiver. In the

when decision there are also two options: eager and lazy. Essentially this defines

if the message payload should be sent immediately, the eager variant, or only

an advertisement of the message, the lazy variant. When combining both design

decisions we have four options:

• Eager push: the message payload is sent as soon as it is received. This

minimizes latency, but at the expense of bandwidth as processes are likely

to receive many duplicates. It is the most common strategy and is used by

several well-known protocols, such as (Ganesh et al. 2001; Eugster et al.

2003b; Pereira et al. 2003).

• Lazy push: upon reception of the message payload the process sends an

advertisement of the message to its neighbors. Interested processes can

then ask the sender for the payload. In this approach the latency increases

considerably as three communication steps are necessary to receive the pay-

load, in a pure lazy push system duplicates are eliminated. This strategy

is used in protocols, such as (Liu and Zhou 2006; Carvalho et al. 2007).

• Eager pull: periodically processes will ask their neighbors for new mes-

sages. Upon reception of the request, processes will send all new messages

to the requester. As in the push variant, this approach minimizes latency

but at the cost of high bandwidth usage. It is used in protocols, such

as (Nguyen et al. 2010; Frey et al. 2010).

• Lazy pull: periodically processes will ask their neighbors for new messages.

Upon reception of the request, processes will send a message with the iden-

tifiers of all new known messages to the requester, who can then selectively

pull the relevant messages. This strategy is also known as two-phase pull

and allows for an optimal use of bandwidth even though its latency is con-

siderable. It is used in the Network News Transfer Protocol (Feather 2006),

which powers Usenet.

The eager versus lazy strategy is clearly a trade-o↵ between bandwidth and

latency, while the di↵erence between a push and pull scheme is more subtle.

With push processes behave reactively to message exchanges, while with pull
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processes behave in a proactive fashion by periodically asking for new messages.

Thus, in an environment where messages are sparing, a push strategy has no

communication overhead, while the pull approach presents a constant noise due

to the periodically check for new messages. Proposals such as (Pianese et al.

2007; Carvalho et al. 2007; Wang et al. 2010) try to overcome the disadvantages

of each strategy by combining them in the same protocol.

2.3.4 Discussion

Tree approaches are very e�cient in bandwidth usage as, by construction, they

avoid sending and receiving message duplicates. Furthermore, by manipulating

the depth and branching factor of the tree it is possible to obtain a wide range in

end-to-end latency at the cost of putting more load on the interior processes of the

tree. However, similarly to structured overlay networks, trees are vulnerable to

faults and churn, as the failure of an interior process will preclude the reception

of messages in its entire sub-tree. On the other hand, the flooding approach

is completely oblivious to faults and churn, as long as the overlay network is

connected, all processes will receive all messages. The cost of this resilience is

however a large amount of duplicates received, as each process will receive as many

copies of a given message as the view size - one for each neighbor. Technically,

in the tree there is also a flooding process through its branches, however this is

done only to the selected processes (the ones that define the tree according to the

propagation strategy), whereas in a pure flooding the message is sent to all the

neighbors obtained from the overlay network. Epidemic approaches present an

interesting mid-term between the two extremes. The resilience is comparable to

flooding, however, they are much less demanding in terms of bandwidth usage.

With the use of proper strategies, epidemic approaches can even o↵er a bandwidth

usage similar to the tree, where no duplicates are received.

2.4 Conventions

For readability, we use some conventions throughout this dissertation mostly

regarding presentation style.

When presenting algorithm listings we use the following keyword conventions:
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• initially: invoked when the process starts, used to initialize data structures

• every �: invoked every � time units, usually contains the main loop of the

algorithm

• procedure: invoked locally by the process

• send MSG to p: sending of a message MSG from the current process to

target process p

• upon receive MSG: invoked when a message MSG is received by the

current process

• RandomPick(lst): picks an element uniformly at random from the list

lst.

In the literature one can often find the terms peer, process, processor, node

or machine to refer to slightly di↵erent concepts. Technically, a node, machine

or processor is the physical hardware. On top of that we have processes or peers

(software) participating in a given distributed algorithm. While it is possible to

have several processes running on the same node, for simplicity we do not make

such distinction and use all the terms interchangeably.

Finally, one can also find in the literature the related terms message and event.

In this dissertation, we consider an event to be a piece of information created and

delivered by a process, while the message is the network level entity (usually an

Ethernet frame) carrying one or more events.
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