BRISA:

Combining Efficiency and Reliability in Epidemic Data Dissemination

Miguel Matos*, Valerio Schiavoni*, Pascal Felber*
Rui Oliveira* and Etienne Rivière*

*INESC TEC & University of Minho, Portugal *Université de Neuchâtel, Switzerland

miguelmatos@di.uminho.pt

International Parallel & Distributed Processing Symposium 24 May, 2012

Motivations

- Broadcast of small or medium sized messages
- Challenging environment
 - (very) Large scale
 - Highly dynamic
- Performance criteria
 - Low delays for all
 - Distribution of first reception time
 - Low overhead (overlay construction)
 - Low message count (for disseminations)
- + Simplicity!

Using a tree?

Faults happen

Faults cumulate

Classic epidemic-based dissemination

Flooding: send message to all nodes upon first reception

=> Probabilistic Broadcast

Provides constant stream of random peers

- => Membership Management
- => Avoids Partition
- => Insert new peers, forget old ones

Epidemic-based dissemination on reactive PSS

Deterministic flooding: send message to all nodes on first reception

=> Total Broadcast

Reactive view management

Maintains **persistent** connections to peers **Bi-directional** links **Fault Detection**Replaces failed peers from PSS getPeer()

Provides constant *stream* of random peers

- => Membership Management
- => Avoids Partition
- => Insert new peers, forget old ones

Epidemic-based dissemination

Epidemic-based dissemination

BRISA in a nutshell

- Start from existing Reactive Peer Sampling Service (RPSS)
 - First dissemination = flooding over RPSS
- Emerge an embedded tree
 - Select between the links maintained by the RPSS
 - One of the receptions = parent link
 - Others deactivated
- Allow only a small number of duplicates
 - Upon join
 - Upon failure
- Quick recovery based on RPSS persistent connections and quick fault detection

Failure Detection: RPSS level

- Parent failure implies reactivating a link
 - Send activate to one peer
 - Remember that connections are persistent
- Problem:
 - Which peer to reactivate?
 - Avoid creating cycles
- Cycle detection mechanism
- Selection between eligible peers
 - Performance criteria
 - Criteria on tree structure

Avoiding cycles

Parent selection strategies

- Selection of peer to reactivate among eligible peers
- Simplest: first-come first picked
- Performance criteria
 - Delay-aware
- Criteria on tree structure
 - Heterogeneity-aware
 - Favors peer with most available bandwidth
 - Load-balancing
 - Seeks to reduce out-degree variance
 - Gerontocratic
 - Favors peers with highest uptime
 - Observations show that these peers are more stable

Extension to DAGs

- DAG = more than one parent
 - Control the number of received duplicates
 - Allows supporting higher churn levels
 - Lazy parent replacement
 - Service continuity if at least one parent remains
- Path-embedding is impossible for DAGs
 - Use node depth instead

Evaluation Setup

- Evaluation using a prototype
 - Supported by the Splay distributed system evaluation framework

- Two testbeds
 - 15 nodes cluster with Splay lightweight virtualization
 - 512 nodes
 - Uses Splay's churn replay mechanism
 - 128 nodes on PlanetLab

Evaluation Setup

- SimpleTree: statically constructed tree-based protocol
- SimpleGossip: traditional gossip-based protocol
- TAG [Liu & Zhou]
 - Closest related work
 - Another protocol that combines trees and epidemic overlays
 - Overlay used to build and repair the tree
 - No cycle detection: data is pulled from the overlay and from the tree
 - Tree repairing done by traversing the overlay

BRISA Dissemination Delay

150 PlanetLab nodes, IKB

BRISA Bandwidth usage: download 512 cluster nodes

Structure construction time

512 nodes

Dissemination Latency 512 cluster nodes, 500 x 1KB message, 5 msg / sec.

Protocol	Latency (seconds)	Overhead	
SimpleTree	100.02	-	
BRISA	106.59	+6%	
SimpleGossip	128.23	+28%	
TAG	200.48	+100%	

Churn 128 cluster nodes, 10 minutes

	Churn rate	Parents lost/min	Orphans/ min	Direct fallback on RPSS link	Tree rejoin
Tree	3% replacement per minute	2.3	2.3	87%	13%
DAG, 2 parents		4	0.2	92.5%	7.5%

(average per minute)

Parent recovery delay (tree rejoins) 128 cluster nodes; churn rate 3%

Cumulative distribution (%) Recovery time (milliseconds) **BRISA TAG**

Conclusion & perspectives

- BRISA combines advantages of tree-based dissemination with advantages of epidemic dissemination
 - Robust to faults and churn
 - Quick failure recovery
 - Low overhead
 - Low latency
- Perspectives
 - Use DAGs as base for multiple trees
 - Low latency and overhead makes BRISA suitable for video streaming

BRISA:

Combining Efficiency and Reliability in Epidemic Data Dissemination

Miguel Matos*, Valerio Schiavoni*, Pascal Felber*
Rui Oliveira* and Etienne Rivière*

*INESC TEC & University of Minho, Portugal *Université de Neuchâtel, Switzerland

miguelmatos@di.uminho.pt

International Parallel & Distributed Processing Symposium 24 May, 2012

Backup slides

Future Perspectives

- More elaborate parent selection strategies
- Use DAGs as base for multiple trees
- Low latency and overhead makes it suitable to video streaming

Failure Detection

- At the Reactive Peer Sampling Service (RPSS) level
 - Constant neighbors monitoring
 - Takes place on persistent connection
 - Also for links not used for dissemination
 - Classical failure detector
- "Informed" failure detector
 - Use hint from dissemination layer
 - Use deactivated links to send notifications of received message ids
 - Reception of a id for an (yet) unknown message
 triggers instantaneous monitoring of parent
 - Allows reducing monitoring frequency while keeping reactiveness
- Detection of failed parent triggers link reactivation

BRISA Bandwidth usage: upload

512 cluster nodes

Goals

- Efficient: management overhead is low with respect to application data; low latency
- Robust: service continuity even under faults and churn
- Scalable: able to handle system growth sublinearly

