
SUBMISSION TO IEEE TPDS 1

Scaling up publish/subscribe overlays using
interest correlation for link sharing

(supplemental document)
Miguel Matos, Member, IEEE, Pascal Felber, Member, IEEE, Rui Oliveira, Member, IEEE,

José Pereira, Member, IEEE, and Etienne Rivière, Member, IEEE

Abstract—This document provides further information on StaN, a decentralized protocol that optimizes the properties of gossip-
based overlay networks for topic-based publish/subscribe by sharing a large number of physical connections without disrupting
its logical properties [1]. The design and evaluation of the dissemination protocol leveraging StaN is described in Appendix A. In
Appendix B we compare StaN with a greedy-omniscient approach and finally in Appendix C we further evaluate StaN in dynamic
scenarios with message loss and churn.

F

APPENDIX A
DISSEMINATION

StaN maps several logical links to a single physical
link to improve resource usage. This is possible due
to the non-negligible probability of having overlap
among node interests, as observed in many real sce-
narios [2]–[4]. Moreover, further studies point out that
not only node interests overlap but also the occurrence
of messages posted to multiple topics, a phenomena
known as crossposting, is non-negligible [5], [6]. For
instance, on Usenet at least 30% of the messages
are crossposted and the average crossposted message
targets 3 topics [5], [6]. Consequently, a crosspost-
aware dissemination protocol may be able to reduce
bandwidth usage by combining crossposted messages
with StaN’s link sharing.

In the remaining of this section we analyze the de-
sign of such a protocol, which we call CrosspostFlood.
For simplicity it is an infect and die flooding protocol,
i.e., the first time it receives a message it relays it to all
neighbors on the given topic(s). The only assumption
is access to the list of topics a message is posted to,
which can be easily included as metadata.

The basic idea is very simple and depends only
on local knowledge: when the topics of a crossposted
message (or a subset of it) matches a mapping of logi-
cal links to a physical one, only a single message copy
is sent through the physical link. Upon reception, it
suffices to deliver that message to the relevant topics.

As an example, suppose node n0 on the bottom
of Figure 2 in [1] receives (or creates) a message m

• M. Matos, R. Oliveira and J. O. Pereira are with INESC TEC and the
University of Minho, Braga, Portugal.
P. Felber and E. Rivière are with the Computer Science Department,
University of Neuchâtel, Switzerland.
Contact: miguelmatos@di.uminho.pt

tagged with topics A and B. Node n0 needs to relay
the message to neighbors n2 and n3 to topic A and do
the same to topic B. Instead of sending two copies of
m through each logical link to each neighbor, n0 sends
a single copy to either logical link. Upon reception of
m, n2 and n3 detect that it has been posted to topics
A and B (by observing m’s metadata) and locally
deliver m to topics A and B, effectively reducing the
number of messages in transit from four to two. It
is important to note that, although independent from
the link alignment promoted by StaN, the dissemina-
tion is most effective when combined with crosspost
detection. For instance, the exact same run on a non
optimized version of the overlays (top of Figure 2 in
[1]) would not bring any bandwidth savings.

The pseudo-code for CrosspostFlood is shown in
Algorithm 3. As previously, we assume the existence
of a network-level primitive send and that each node
p maintains one view per overlay t, denoted by
p.views[t]. The node’s topics are accessed by p.topics,
and p.receive(m) corresponds to the delivery of a
message m to topic t (see architecture in Figure 1 in
[1]).

To avoid delivery of duplicates each node
maintains a set of previously known messages,
receivedMessages, initially empty (lines 1–2).

A message m is generated with a unique identifier,
msgId, and the set of topics it belongs to, msgTopics.

Upon reception of a message (MSG), a node first
checks if the message is new by observing the set
of known message identifiers, and discarding it oth-
erwise (lines 4–5). The message is then delivered
to the node’s topics that match the message topics,
msgTopics (lines 7–8). The delivery is done by in-
voking the receive method for each matching topic t
(Figure 1 in [1]). Additionally, for each matching topic
t the node collects the identifiers of its neighbors in
each topic in a set called relayNodes (lines 9–10).



SUBMISSION TO IEEE TPDS 2

Algorithm 3: CrosspostFlood protocol (node p)
initially1

// Contains received message identifiers, to avoid duplicates
receivedMessages← ∅2

// Message reception
upon receive MSG(msgId,msgTopics,msgData)3

if msgId /∈ receivedMessages then4
receivedMessages← receivedMessages ∪ {msgId}5

// Set that will contain the nodes to forward the message to
relayNodes← ∅6

foreach topic t ∈ p.topics ∩msgTopics do7
// Deliver message to topic t
t.receive(msgId,msgData)8

// Collect the nodes subscribed to topic t
foreach node n ∈ p.views[t] do9

relayNodes← relayNodes ∪ {n}10

// Relay the message
foreach node n ∈ relayNodes do11

send MSG(msgId,msgTopics,msgData) to n12

Finally, the message is relayed to this set of neigh-
bors as usual. By first collecting the neighbors that a
message needs to be relayed to in a set, and only then
sending it effectively, we eliminate possible duplicates
(i.e. a node that is a neighbor in two topics) thus
avoiding redundant transmissions.

A.1 Evaluation

As StaN maintains the desirable properties for gossip-
based dissemination (Section 3 in [1]) we now study
the behavior of the CrosspostFlood dissemination pro-
tocol. This is done by analyzing bandwidth usage, in
terms of number of messages exchanged, and latency,
in terms of hops.

Based on real observations where, on average, each
crossposted message targets 3 topics [5], [6], we de-
vised a simple workload to compare the effectiveness
of CrosspostFlood with a baseline infect and die flood-
ing protocol, which we call SimpleFlood.

The dissemination is done on all overlays as fol-
lows: for each topic T , we select T ′ and T ′′ as the most
correlated topics with T . Next, we randomly pick 10
nodes subscribed to T , T ′ and T ′′ and have each of
them inject a new message on the system tagged with
the triplet (T, T ′, T ′′). This is done for each of the 10
independent runs of StaN analyzed before. Results
presented are the average of 100 independent runs
(10 disseminations for each of the 10 runs) for both
CrosspostFlood and SimpleFlood in the L8 universe.

Figure 10(a) presents the bandwidth reduction
when using CrosspostFlood and SimpleFlood before
and after the optimizations performed by StaN. Re-
sults are obtained by calculating the ratio between
the number of messages sent by each node using
CrosspostFlood against SimpleFlood. Thus, a value of
X% means that CrosspostFlood sent less X% messages
overall than SimpleFlood.

It is important to note that on the worst case
(no crossposting or no link sharing) CrosspostFlood

 0

 20

 40

 60

 80

 100

 50  60  70  80  90  100

B
a
n
d
w

id
th

 r
e
d
u
c
ti
o
n
 

u
s
in

g
 c

ro
s
s
p
o
s
t 
fl
o
o
d
 (

%
)

Percentile

Before StaN
After StaN

(a) Bandwidth reduction distribution.

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100

N
u
m

b
e
r 

o
f 
h
o
p
s

Percentile

SimpleFlood
CrosspostFlood

(b) First delivery hops distribution.

Fig. 10: SimpleFlood vs CrosspostFlood on universe L8:
a) bandwidth reduction before and after optimizing the
overlays with StaN b) hops necessary for first delivery.

degenerates to SimpleFlood. As expected, Crosspost-
Flood reduces the number of messages sent (the ra-
tio is positive) thus saving bandwidth. This is more
evident when disseminating after the optimizations
made by StaN as there are more logical links mapped
to the same physical link thus enabling further reduc-
tions. For instance, without StaN’s optimizations the
amount of nodes able to save (reduce) more than 10%
when using CrosspostFlood is negligible. On the other
hand, when using optimized overlays, more than 20%
of the nodes are able to achieve reductions greater
than 10% when using CrosspostFlood.

At a local level, these savings are interesting as the
cost is negligible: nodes only need to check if several
logical links map to the same physical link. To assess
the cost at a global level, we need to measure the
latency, in terms of number of hops, needed to infect
all nodes. This is because reductions in bandwidth
typically tend to negatively affect latency.

Figure 10(b) shows the hop count distribution for
the reception of new messages on StaN optimized
overlays. As observed, hop-counts are almost unaf-
fected and even reduced in some situations. This is
because when a crossposted message is received on a
given topic, it is immediately delivered and relayed
to all the relevant topics which acts as a shortcut to
the normal per-topic relaying process.

A.2 Discussion
The crosspost-aware nature of CrosspostFlood when
combined with the physical link sharing obtained by
StaN enables improved resource usage in terms of
bandwidth at virtually no local or global cost. We
note that these savings are only possible due to link
sharing, otherwise it degenerates to a simple flooding



SUBMISSION TO IEEE TPDS 3

dissemination protocol. Moreover, CrosspostFlood is
not specific to StaN as it may be combined with
other protocols that promote link sharing such as
SpiderCast [7].

The results are interesting because the improve-
ments are obtained at virtual now cost. Nonetheless,
a deeper analysis of this protocol and its combina-
tion with link sharing protocols like StaN is needed,
namely by considering more complex workloads and
other phenomena, such as message re-crossposting,
i.e. when a node receives a message on a topic and
locally decides to repost it on another topic.

APPENDIX B
GREEDY-OMNISCIENT COMPARISON

 0

 150

 300

 450

 0  150  300  450  600  750  900

F
in

a
l 
P

h
y
s
ic

a
l 
V

ie
w

 S
iz

e
 (

F
P

V
S

)

Initial Physical View Size (IPVS)

Greedy-omniscient
StaN

(a) View improvement.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  20  40  60  80  100C
lu

s
te

ri
n
g
 c

o
e
ff
. 
d
is

tr
ib

u
ti
o
n

Percentile

Initial
Final StaN

Final greedy-omniscient

(b) Clustering coefficient distribution.

Fig. 11: Comparison of view improvement and clustering
coefficient distribution for StaN and a greedy-omniscient
approach for W8. Lines “Initial” and “Final StaN” overlap
in Figure 11(b).

StaN promotes link sharing by relying only on local
knowledge and without explicitly considering node
interests. We now compare StaN against a greedy-
omniscient implementation with global knowledge
that explicitly takes into account node interests to
try to maximize link sharing. Our goal is to com-
pare StaN’s performance with an approach based on
global knowledge and at the same assess the impact
on fitness of optimizing to an inherently clustered
metric, the node’s interests. The greedy-omniscient
implementation works as follows: each node sorts
all other known nodes according to the most topics
in common (by computing the cardinality of the in-
tersection of its subscriptions with the other node’s
subscriptions); and then picks the viewSize best ones,
where viewSize is computed as in Section 3.3 in [1].
Because nodes have global knowledge, the node’s

local choices are the best possible but, as in typical
greedy approaches, there is no guarantee that the
global solution is optimal. We note that this strategy is
similar to SpiderCast [7] with global knowledge and
with the random selection disabled (Kr = 0).

Figure 11(a) depicts the IPVS vs FPVS for both StaN
and the greedy-omniscient implementation. Each
point in the scatter plot represents the IPVS and FPVS
for each node. As expected, the greedy-omniscient
implementation outperforms StaN in terms of PVS
reduction. This is because the greedy-omniscient op-
timization criteria is precisely the view size whereas
StaN’s criteria is a weight metric unrelated to the
view size. Nonetheless, the absolute reduction in PVS
obtained by StaN is still considerable. For instance, for
an IPVS of 600 StaN achieves a reduction of around
400. The tradeoff is increased clustering because by
optimizing to the view size, the overlay tends to
approximate the inherent subscriptions clustering, as
observed in Figure 11(b). Note that lines Initial and
Final StaN overlap indicating that StaN’s impact on
clustering is negligible.

B.1 Discussion
The comparison with a greedy-omniscient approach
shows that optimizing to an inherently clustered
metric, the node’s interests, implies, as expected, an
increase in the clustering of the overlay because
neighbor selections are no longer random. Such high
clustering negatively affects the robustness and dis-
semination efficiency of the overlays [8] and is thus an
inherent limitation of approaches based on selecting
neighbors according to subscription overlap.

Despite the greater improvement on performance
of the greedy-omniscient implementation with respect
to StaN, we believe StaN presents an interesting com-
promise between performance and fitness introducing
thus a new point in the design space of topic-based
publish-subscribe systems.

APPENDIX C
DYNAMICS

In this section we study the behavior of StaN under
conditions likely to emerge in large-scale scenarios,
namely: message loss, node churn and growing sce-
narios where nodes continue to join after the initial
bootstrap.

C.1 Message Loss.
We analyze the behavior of StaN under message loss
by observing its convergence speed under increasing
loss rates. Results can be observed in Figure 12.
As expected, convergence speed is slowed down by
message loss but StaN is still able to converge under
moderate message loss rates. For instance, for a loss
rate of 10%, the convergence at round 9 is almost



SUBMISSION TO IEEE TPDS 4

 50

 100

 150

 200

 250

 300

 0  1  2  3  4  5  6  7  8  9

P
h
y
s
ic

a
l 
V

ie
w

 s
iz

e

Round

LVS 
0%

1%
5%

10%
15%

20%
40%

Fig. 12: View evolution under message loss for universe W8

(percentages indicate message loss rates).

indistinguishable from a loss-free environment. As a
matter of fact, only with loss rates greater than 15%,
do we observe that the convergence speed is too slow
to be useful.

C.2 Node churn.

We now study StaN’s behavior under node dynam-
ics by reproducing a churn trace gathered from the
Overnet network [9]. For each run, we generate a
trace with 1381 nodes (W8’s universe size) and map
60 seconds of the trace time to a cycle, adding and
removing nodes as appropriate. We experiment with
higher churn rates by speeding up the trace by a given
factor, i.e., mapping a longer trace time to each cycle.
For instance, mapping 120 seconds to a cycle yields
a factor of 2X . Figure 13 presents the evolution of
the universe size (top) and PVS and LVS (bottom) for
factors 1, 4 and 16. As expected, increasing the churn
rate increases the magnitude and amplitude of the
variations in the node population (Figure 13(a)). The
same behavior is observed for the LVS and PVS which
grow and shrink as the node population variates. For
higher churn rates, we observe that a few nodes (less
than 5 in all the experiments) got isolated from the
overlay. The reason is that the view size evolves only
due to churn, decreasing when neighbors fail and
increasing as new nodes join. In some high churn
cases, failures in the vicinity of one node are enough
to depopulate the view without being compensated
by joins, disconnecting the node from the overlay.
We address this issue by triggering a random walk
(Algorithm 2 in [1], COLLECTWALK()) to add new
links, when the view size is smaller than a given
threshold (5 in our experiments). This simple modifi-
cation avoids disconnections even under high churn
rates. We note that the decision to modify the view
size and add links when necessary is typically the
responsibility of the OMP, we do this here to focus
exclusively on StaN’s behavior.

C.3 Growing universe.

Finally, we study the behavior of StaN under a con-
siderable universe growth. We start by randomly
selecting 50% of the W8 nodes and running StaN
on that sub-universe. Then, every 10 rounds we add
10% of the remaining nodes until all nodes are in

 1280

 1300

 1320

 1340

 1360

 1380

 1400

 0  10  20  30  40  50  60  70  80  90  100

N
b
 A

li
v
e
 N

o
d
e
s

Round

1X

4X

16X

(a) Universe size evolution under churn for universe W8.

 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325

 0  20  40  60  80  100

V
ie

w
 s

iz
e

Round

LVS 1X

PVS 1X

LVS 4X

PVS 4X

LVS 16X

PVS 16X

(b) LVS and PVS evolution under churn for universe W8.

Fig. 13: Universe and View evolution under churn for
universe W8. (Numbers represent the churn speedup factor.)

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60  70

V
ie

w
 s

iz
e

Round

LVS (full)
LVS (growing)

PVS (full)
PVS (growing)

Fig. 14: View evolution for growing W8 universe.

the system. Results are presented in Figure 14. When
adding nodes, the PVS grows quickly to accommodate
the new nodes which is then reduced by StaN in
a few rounds. Most interestingly, some rounds after
the universe is fully grown (round 60), both LVS and
PVS are almost indistinguishable from a universe fully
bootstrapped from scratch.

C.4 Discussion
The decentralized and gossip-based nature of StaN
allows it to perform well on adverse scenarios with
message loss, node churn and growing universes.

Although not considered in this paper, robustness
to these adverse conditions can be improved by lever-
aging messages received on the COLLECTWALK().
This would allow nodes to leverage random walks
initiated by other nodes and thus be more robust to
message loss as every message relayed enables the
discovery of new nodes which also improves con-
vergence time. The same applies to node churn and
growing universes allowing nodes to react quicker to
changes.

REFERENCES
[1] M. Matos, P. Felber, R. Oliveira, J. Pereira, and E. Rivière, “Scal-

ing up publish/subscribe overlays using interest correlation



SUBMISSION TO IEEE TPDS 5

for link sharing,” (TO BE COMPLETED FOR THE CAMERA
READY), vol. –, –.

[2] P. Fraigniaud, P. Gauron, and M. Latapy, “Combining the use
of clustering and scale-free nature of exchanges into a simple
and efficient P2P system,” in International Conference on Parallel
and Distributed Computing, 2005.

[3] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement
study of peer-to-peer file sharing systems,” in Proceedings of
Multimedia Computing and Networking, 2002.

[4] S. Handurukande, A.-M. Kermarrec, F. Le Fessant, L. Massoulié,
and S. Patarin, “Peer sharing behaviour in the eDonkey net-
work, and implications for the design of server-less file sharing
systems,” ACM Eurosys, 2006.

[5] S. Whittaker, L. Terveen, W. Hill, and L. Cherny, “The dynamics
of mass interaction,” in Conference on Computer supported coop-
erative work, 1998.

[6] M. McGlohon, “Structural analysis of large networks: Obser-
vations and applications,” Ph.D. dissertation, Carnegie Mello
University, 2010.

[7] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Spider-
cast: a scalable interest-aware overlay for topic-based pub/sub
communication,” in International Conference on Distributed Event-
Based Systems, 2007.

[8] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen, “Gossip-based peer sampling,” ACM Transactions
on Computer Systems, vol. 25, no. 3, aug 2007.

[9] R. Bhagwan, S. Savage, and G. Voelker, “Understanding avail-
ability,” in Proc. of IPTPS: international workshop on Peer-to-Peer
Systems, Feb. 2003.


