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ABSTRACT
Systems such as social networks, search engines or trading
platforms operate geographically distant sites that continu-
ously generate streams of events at high-rate. Such events
can be access logs to web servers, feeds of messages from
participants of a social network, or financial data, among
others. The ability to timely detect trends and popularity
variations is of paramount importance in such systems. In
particular, determining what are the most popular events
across all sites allows to capture the most relevant informa-
tion in near real-time and quickly adapt the system to the
load. This paper presents TOPiCo, a protocol that com-
putes the most popular events across geo-distributed sites in
a low cost, bandwidth-e�cient and timely manner. TOPiCo
starts by building the set of most popular events locally at
each site. Then, it disseminates only events that have a
chance to be among the most popular ones across all sites,
significantly reducing the required bandwidth. We give a
correctness proof of our algorithm and evaluate TOPiCo us-
ing a real-world trace of more than 240 million events spread
across 32 sites. Our empirical results shows that (i) TOPiCo
is timely and cost-e�cient for detecting popular events in
a large-scale setting, (ii) it adapts dynamically to the dis-
tribution of the events, and (iii) our protocol is particularly
e�cient for skewed distributions.
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1. INTRODUCTION
The collection of aggregates and statistical metrics over

online data streams has attracted considerable attention from
both academia and industry over the past decade. Mining
the properties of such data streams can be used in various
contexts, ranging from targeted advertisement [6], network
analysis [7, 25], or automated virus detection [20]. Of the
various statistical information that can be computed over
a stream, identifying the distribution of the events is of
practical interest. This information might help a content
delivery network infrastructure to dimension its caches using
the stream of web access logs. It can also detect sudden
changes in popularity, e.g., flash crowds phenomena or denial
of service attacks.

Practical streaming systems exhibit heavy-tailed distribu-
tions. Moreover, in a vast majority of use cases, only the
most frequent items are required. As a consequence, col-
lecting and storing the frequency of all events to compute
only the k most frequent ones is a waste of resources. This
observation is particularly acute in a geo-distributed setting,
where distinct sites might receive distinct stream of events.
Detecting the k most frequent items is a form of top-k query
processing, where the query is simply the sum of occurrences
grouped by item. As a consequence, we shall use the term
top-k frequent items in the remainder of this paper.1

We are interested in the construction of the top-k frequent
items from the union of multiple streams. These di↵erent
streams are generated at multiple geographically distant
locations. We consider the following motivating scenario. A
set of geo-distributed servers located in di↵erent regions of
the world support the information needed for a large-scale
event, e.g., the Olympics or the FIFA World Cup. Servers
receive and emit messages, similarly to the Twitter service,
for the local area. Participants and spectators can comment
and react while the events occur, online. Messages are tagged
with keywords regarding the event, e.g., the names or moods
of the participants. Each site maintains the top-k frequent
keywords over a sliding window, allowing to observe the
trends for a particular region. We are also interested in
computing the most frequent keywords at the scale of the
geo-distributed infrastructure. Such information is used

1As pointed out by [26], our problem di↵ers from the simple
top-k problem where unique items with the highest values
for a given attribute are returned, which is merely a selection
problem [2]. A top-k query problem on the opposite, e.g., top-
k counting and top-k frequent items, requires to aggregate
multiple instances of the same item from di↵erent sites.
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locally, for instance, to see in near real-time the di↵erences
between local and global trends. A naive solution for such
a scenario consists in redirecting all the streams towards
all the sites. Obviously, this solution does not scale with
the number of sites, nor with the geo-distribution. Besides,
although solutions exist for speeding up data streams over
multiple data centers [22], they have huge bandwidth costs,
as well as higher-than-required computational power.

We are thus interested in maintaining the global top-k
frequent items in a multi-site information system. The global
top-k frequent items set is referred as G in the remainder of
this paper. We assume that each site maintains, using an
existing single-site algorithm, the local top-k frequent items
for its own stream. This local top-k frequent items set for
site i is denoted as Li. Our goal is to construct, at each site
i, a version of the global top-k frequent items, denoted as
Gi. The construction of Gi is based on a combination of Li

and of information received from the other sites. The global
top-k frequent items set G is never materialized as there is
no centralized entity receiving all the streams without trans-
mission delays. The objectives for the construction of Gi at
each site are twofold. First, we want to minimize the amount
of information that is exchanged between sites. Second, we
want to minimize the deviation between Gi maintained at
one site, and the hypothetical and ideal content of G, as con-
structed by an omniscient observer collecting all the streams
in real time.

Contributions. We make the following contributions to
the top-k frequent items problem. We propose TOPiCo, a
novel protocol for computing an accurate view of the globally
most frequent items at the scale of multiple geo-distributed
sites. Our protocol leverages the presence of a continuously
maintained local list of the top-k frequent items at each site.
Sites exchange such lists up to a certain depth, while ensur-
ing that the global view Gi computed at each site e↵ectively
contains the appropriate elements and their respective fre-
quencies, within reasonable and practical delay. We provide
a correctness proof of the protocol, as well as an extensive ex-
perimental evaluation using a prototype and fed with traces
of 240 million events received on 32 sites, collected during
the FIFA World Cup’98 [1]. The evaluation confirms that
TOPiCo is a lightweight approach and shows that it is able
to dynamically adapt to the items distribution. The rest of
the paper is organized as follows: Section 2 discusses related
work. Section 3 precisely formulates the top-k frequent items
problem and circumscribe the conditions under which this
problem is solvable. Section 4 details our TOPiCo proto-
col and covers its correctness proof. Section 5 presents our
experimental evaluation of the TOPiCo prototype. Finally,
Section 6 concludes the paper.

2. RELATED WORK
The problem of e�ciently computing the results of top-

k frequent items from a stream has been considered both
in centralized and distributed settings. Our focus is on the
construction of the global top-k frequent items sets Gi at each
sites of a distributed system rather than the construction of
the local top-k frequent items sets Li for each individual sites.
The construction of Li employs a centralized algorithm, which
can be implemented using a stream processing engine [3, 12].
As this construction is not the focus in this paper, we use
a simple counting-based approach and concentrate on the
distributed aspects. We provide nonetheless a review of

centralized solutions and alternatives that can be used to
build Li at each site, as well as similar and related problems
that could benefit from our distributed algorithm. Then,
we review distributed algorithms and protocols allowing to
compute G, by collecting information from multiple sites.
Note that the problem of top-k frequent items is sometimes
called the heavy hitters problem in the literature.

2.1 Centralized top-k frequent items
Ilyas et al. [13] present a survey of top-k query algorithms

for centralized single site relational database systems. The
queries that they consider include counting queries, which
themselves include frequent items queries. The survey how-
ever does not consider the data streaming model but only
instantaneous queries.

The FREQUENT algorithm of Misra and Gries [18] was
an early approach proposed for the detection of frequently
occurring items in an infinite stream. It allows outputting
the set of elements that account for more than a fraction 1

f
of

the total stream size, i.e., to return the set j : cj > c
f

where
c is the size of the stream seen so far, and cj is the number
of occurrences of element j. This is a di↵erent problem than
ours, as top-k frequent items may be less present in the
stream than c

f
even for f � k + 1. The algorithm maintains

f � 1 counters, associated with unique items. For each item
seen in the stream, the corresponding counter is incremented
if it exists (or created if there are unused counter). Otherwise,
all counters are decremented and freed when they reach zero.
The counters are eventually associated with up to f�1 items
that are present in more than a fraction 1

f
of the stream.

The Count-Min sketch of Cormode and Muthukrishnan [5]
is a data structure dedicated to the summarization of data
streams. It can allow detecting the most frequent items,
among several other operations. It would be a possible
alternative for the computation of the Li at each site.

Lahiri et al. [14] consider the problem of tracking persistent
items in a stream. This is a di↵erent, but complementary
problem to top-k frequent items. Computing both sets can
allow indicating trends over time or detect sudden changes
in popularity of items.

Wang et al. [24] propose a framework to execute top-k
pattern queries. Such queries allow recognizing the most
frequent sequences of events for which the patterns corre-
sponding to the interdependency conditions apply. This
technique uses adaptive join scheduling strategies and strati-
fied stream graphs. The output could be used as the local
top-k frequent items set Li used in our algorithm, allowing
to compute the result of a global top-k pattern query.

Wong and Fu [26] present a probabilistic solution for top-k
frequent item sets over a stream. The problem they consider
is more general than the one we consider in this paper. Their
goal is to detect the most frequent item sets, i.e., set of
l items that frequently appear together from a stream of
transactions. Note that the two problems are equivalent if
l = 1, i.e., when considering individual items. The authors
propose two algorithms that can derive the top-k frequent
item sets from a complete stream without prior knowledge of
its statistical characteristics: an algorithm based on Cherno↵
bounds and the Top-k Lossy Counting algorithm. These
algorithms could also be candidate for computing Li at each
of site. Furthermore, when combined with our contribution,
they allow to compute the global top-k frequent item sets at
each site.
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The Vitter’s reservoir [23] samples uniformly a complete
stream using a fixed-size reservoir, which is simply an array of
samples. The reservoir allows estimating the distribution of
events from the beginning of the stream. If this distribution
of events presents enough skew (e.g., the popularity follows
a power law), a large enough reservoir may allow answering
top-k frequent items. However, there is no guarantee: Items
belonging to the most frequent ones may simply be missed if
there are not sampled enough in the reservoir.

2.2 Distributed top-k frequent items
The threshold algorithm (TA) of Fagin et al. [9] computes

the top-k frequent items from a collection of items in inde-
pendent sets. The algorithm does not consider data streams
but static sets, which correspond to independent disk drives
in a relational database setting. They can be considered
as sites in our system model. A coordinator process com-
putes G through several rounds of interaction with the sites.
Each of the site maintains its list of items in decreasing
frequency order. The algorithm goes down the list at all
sites in parallel. In its TA-random variation, the algorithm
computes for each new item its aggregate value. This re-
quires being able to perform random accesses to the lists. A
variant for systems, where only sequential access is possible
(or preferred), is named the TA-sorted or NRA in [9], as well
as Stream-Combine in an independent work by Guntzer et
al. [11]. TA-sorted first computes the set of items that are
part of the top-k frequent items, without calculating their
exact aggregate count values. It requires an additional final
pass to perform these aggregations. For both TA-random and
TA-sorted, thresholds are computed to allow determining
when elements that are down the lists at each site will not be
included in the top-k frequent items, that is, their aggregate
value cannot be higher than the kth element in G. The thresh-
old can be exact in the TA-random case or approximated by
bounds of worst and best possible scores for TA-sorted. Since
lists are sorted in decreasing frequency order, the algorithm
can stop when new elements have frequency lower than the
(worst case) threshold.

Both threshold algorithms require O(N2) operations, where
N is the number of sites. The number of iterations is also
unbounded, and depends on the similarity of rankings be-
tween the di↵erent Li of the di↵erent sites . In a distributed
setting, this prevents from giving any guarantee on the delay
of calculation of G at the coordinator. While this might be
acceptable in a relational database setting, it is not adapted
in a distributed data streaming model. Such an arbitrary de-
lay may incur an important and uncontrollable drift between
the content of Gi at the coordinator and the actual G an
omniscient observer would obtain. Furthermore, the number
of iterations at a site depends on the popularity distribution
of items at that particular site. This may lead to the con-
tent of Gi being based on sliding windows for uncorrelated
time periods at the di↵erent sites. As a consequence, in
both cases, the final content of Gi might be inadequate to
e↵ectively detect trends across all sites in a timely manner.

Probabilistic versions of the threshold algorithms named
the Prob-sorted algorithms family, were proposed by Theobald
et al. [21]. They produce estimations of G based on proba-
bilistic score predictions. This allows reducing the number
of accesses to the lists at each site, in particular when the
order of elements highly di↵er from one site to another, but

does not guarantee that the exact scores for the aggregate
count values are computed.

The TPUT algorithm of Cao and Wang [4] addresses the
limitation of the threshold algorithm for static data sets. It
explicitly targets a distributed setting with a coordinator
site that computes the value G through interaction with the
other sites. Unlike the threshold algorithm, TPUT requires
3 rounds between the coordinator and the sites. In the first
round, the algorithm computes a lower bound ⌧ on the value
associated with the kth element in G. Each site sends its top-
k elements from Li to the coordinator, which uses the bottom
value computed by the aggregation of these lists as ⌧ . In the
second round, the coordinator selects the threshold T = ⌧

N
.

All sites then send back the elements not previously sent
with a frequency of at least T . At this point, the coordinator
can determine an overset S of the elements that form G. A
third round is required to collect the actual values associated
with the elements in S, in order to determine the final and
exact content of G.

TPUT operates on a static set; it does not consider the
data streaming model, nor computations on sliding windows.
Furthermore, it uses a single coordinator site, while our
problem is to compute Gi at each site. TPUT could be
instantiated with a coordinator at each site: In this case,
each site would have to perform the three phases and pull
information from all the other nodes. Our approach is the
opposite. Each site decides on its own using only local
information what it needs to send to the others. This allows a
single, one way communication to inform about the evolution
of Li, and therefore the changes to the Gi on other sites, in
comparison with the three two ways communication and the
resulting higher delays and load with TPUT. We also exploit
the evolution of Li through time whereas TPUT is essentially
a one-shot algorithm that recomputes G from scratch for each
new query.

Manjhi et al. [16] consider the top-k frequent items prob-
lem with multiple sites where sites are organized in a tree
structure. Their approach is to build an approximate version
of G. They allow nodes to define the degree of precision,
and introduce the notion of precision gradient that captures
the precision of the combination of approximate frequency
counts along the tree, with the goal of minimizing the band-
width cost as much as possible. We do not consider the use
of a rigid overlay between nodes, and we target a complete
computation of the top-k frequent items at all nodes.

Michel et. al [17] present the KLEE system which target
a range of top-k queries including counting, and thus cover
top-k frequent items. This solution works for P2P networks,
and it provides an approximate computation of G. It is
unclear how the solution can be evolved to support a data
streaming model, or a model that supports dynamic data
sets in general.

Some solutions are based on gossip-based protocols, where
a periodic interaction takes place between pairs of nodes in
a probabilistic manner, and with no complete membership
information maintained at each node. Lahiri and Tirtha-
pura [15] present such a gossip-based algorithm using adap-
tive sampling techniques. Their algorithm can consider abso-
lute thresholds (more than a certain quantity of items are
present in the system, regardless of its size), and relative
thresholds similar to the model used by Misra-Gries [18]. The
set of the probabilistically most frequent items is available
at all peers after convergence. Sacha and Montresor [19]
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present another gossip-based protocol that targets the same
problem but achieves a higher e�ciency. Guerrieri et al. [10]
present an evolution of the algorithm of Sacha and Montre-
sor [19] to account for the addition and deletion of items. It
is nonetheless unclear if any of these approaches could be
adapted to sets of events that evolve very rapidly over time,
and in particular to the data streaming model. Furthermore,
even the addition and removal of items may be reflected
after several rounds of gossiping as it is di�cult to track and
remove items that rapidly leave the window of interest. This
indicates that such decentralized solutions are more adapted
to static sets with complete periodic re-computation, or to
slowly evolving sets where the delay of propagation is less
an issue.

3. TOP-K FREQUENT ITEMS PROBLEM
This section defines the elements of our system model,

then introduces the problem of computing the top-k frequent
items over a distributed set of streams. Further, we state
two results regarding the space complexity of every solution.
These results serve as guidelines to our TOPiCo protocol.

3.1 System model
We consider a system composed of N distributed sites

that communicate through message-passing. For the sake
of simplicity, we assume that the communication graph is
complete, and that sites are able to send/receive messages
via a reliable communication medium. We shall precise our
synchrony assumptions in the following.

Every site i receives a continuous stream si of events at
some rate �i. Each event in the streams refers to some
uniquely identified item (e.g., a topic, a keyword). We note
Items the countable set of items, and we assume some order-
ing < over Items. Every time a site i receives an event e, i
tags e with the reception time. Based on this timestamping
mechanism, every site i continuously keeps track of the events
received within a time-based sliding window Wi of length ⌧ .

The top-k frequent items problem requires to compute at
each site a view of the most frequent items received globally,
across all sites, within the last ⌧ units of time. To model
this problem, we consider that each site i holds two data
structures Li and Gi, as described next:

- Variable Li maintains the local top-k frequent items.
This variables stores in order the items received at site
i, together with their respective number of occurrences
in the time window Wi (ties are broken according to
<). For the sake of simplicity, we shall be assuming
hereafter that Li contains in fact all the items in Wi

with their number of occurrences in a sound order.
- Variable Gi stores the global top-k frequent items as

collected by site i. This means that Gi contains the
local view at site i of the k most frequent items received
globally in the streams (�i)i during the last ⌧ units of
time.

To illustrate the above data structures, consider that site
i received items “x” at times 1 and 2, and respectively “y”
and “z” at times 3 and 4. Further consider that the sliding
window length equals 3. In such a case, at time t = 3, we
have Li,3 = {(“x”, 2), (“y”, 1)}, while at time t = 4, Li,4 =
{(“x”, 1), (“y”, 1), (“z”, 1)} holds. Then, if we consider that
k = 1 and < is the Lexicographical order, we have Gi,3 =
{(“x”, 2)} and Li,4 = {(“z”, 1)}.

The core task of any top-k frequent items protocol is
to maintain at each site i a value of Gi consistent with
the content of the streams (si)i. Intuitively, we want to
compare the local computation of Gi against an omniscient
computation of the globally most frequent items. Next, we
state such a notion in more formal terms.

3.2 Problem statement
Let us note G the top-k most frequent items in (si)i over

the last period of ⌧ units of time. In the top-k frequent items
problem, the key information is the ordering of the items.
We capture this by measuring the distance d between the
ordering of the items in G and Gi at some site i.2 For some
site i, we shall note d(Gi,t, Gt) the distance between Gi and
G at time t.

Definition 1. A top-k frequency protocol is perfect when,
for any ✏, limt!1d(Gi,t, Gt) < ✏ holds.

Clearly, constructing such a perfect algorithm is not always
possible. This might be for instance the case when the stream
rate times the message delay between sites is higher than
one. Indeed, whenever a site i received some information
about the most frequent items at site j, such an information
can be outdated by the arrival of a novel item at site j. The
two results that follow further circumscribe the conditions
under which a perfect solution is constructible for the top-k
frequency problem. With more details, Lemma 1 proves that
the problem requires a bound on the message delay between
sites. Then, we show in Lemma 2 that the existence of a
greatest element in Items for the order < is necessary.

Lemma 1. No top-k frequent items protocol is perfect in
an asynchronous distributed system.

Proof. (By contradiction.) Consider a system with two
sites, i and j, and assume that k = 1 holds. In addition,
suppose that x and y are the two sole items received re-
spectively at sites i and j at rate 1

⌧
, starting from time 0.

Furthermore, consider that x > y holds for the arbitrary
order defined to break ties. It follows that at any time t, x is
the only item in Gt. Since the system is asynchronous, there
is no bound on the message delay between the two sites. In
particular, for any value of ⌧ , we might consider repeated
arbitrary asynchrony periods longer than ⌧ during which site
j does not receive the messages from site i. During such
a period, Gj cannot contain only item y as it would di↵er
from G. However, by a simple undistinguishability argument,
we might also consider the exact same run up to that point,
and consider now that site i does not received the events
associated to x during the asynchrony period. Hence, during
such a run, Gj should only contain y; a contradiction.

Lemma 2. Finding a perfect solution to the top-k frequent
items problem requires a greatest element in Items for the
order <.

Proof. (By contradiction.) Let us consider again two
sites i and j and that k = 1. Stream sj is empty, while
stream si is a continuous sequence of distinct items x0, x1, . . .,
growing for the order <, and received at the fixed rate � from

2Our problem definition does not depend on a specific dis-
tance function d. Meaningful distance functions include
Levenshtein’s or the Kendall-Tau rank distance [8]. We use
Kendall-Tau in Section 5.
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time 0. In addition, consider some non-null message delay
from site i to site j. Clearly at time t, Gt equals {(xb t

�c, 1)}.

On the other hand, observe that for any k � 1, at time
t = k ⇥ �, site j never received the item xb t

�c. Hence, the

distance between Gj,t and Gt never converges toward 0.

To accommodate with these results, we introduce two
additional properties for top-k frequent items protocols.

Definition 2. A protocol shall be ✏-good when at all time
t, for every site si, d(Gi,t, Gt) < ✏ holds.

Definition 3. A top-k frequent items protocol is eventu-
ally perfect when, (Gt)t convergent implies limt!1d(Gi,t, Gt) =
0.

Section 5 shows that the TOPiCo protocol exhibits on av-
erage a 0.24-goodness factor for the Kendall tau rank distance
during our experiments on the given dataset. Section 4.3
proves that TOPiCo is eventually perfect.

3.3 Resolvability
As pointed out previously, the goal of any top-k frequent

items protocol is to exchange the minimal amount of infor-
mation about the local top-k to ensure that d(Gi,t, Gt) is
minimal at each site. This means that a site should send
only the items in Li that are likely to enter in G. Of course,
at least the top-k items in Li have to be sent to the other
sites. However, it is also obvious that just sending only those
entries is not enough to correctly compute G. We state this
simple observation in the lemma that follows.

Lemma 3. Exchanging the top-k items from Li among all
sites is not su�cient to be eventually perfect.

Proof. To prove the above claim, we exhibit a simple
counter-example. We consider two sites i and j such that at
some point in time we have: Li = {(a, 10), (x, 6)} and Lj =
{(d, 9), (x, 5)}. In addition, let us consider that k = 1. If
site i and j only exchange their first entries, i.e., respectively
(a, 10) and (d, 9), we shall have at both sites Gi = Gj =
{(a, 10)}. However, we clearly have that G = {(x, 11)}.
Hence, the previous approach never converges toward the
correct solution.

At a consequence of the previous result, we need to deter-
mine locally a value l � k such that sending the top l items is
su�cient to converge toward G. Our next result shows that
such a l exists by proving that a full information protocol is
eventually perfect.

Lemma 4. A full information protocol is an eventually
perfect top-k frequent items protocol.

Proof. Let us first recall that a full information protocol
consists at each site in sending the local state every time this
state changes and storing all historical data. Then consider
some run of this protocol. Since Gt is convergent, limt!1Gt

exists. We note G such limit and T the time after which
Gt>T = G. Consider some tuple (x, !) in G. From the
definition of G, ! is the aggregated value of the number of
occurrences of x in (Li,t)i for every t > T . Hence after time
T , computing the top-k frequent items on (Li,t)i for any
t > T leads to G. Since we make use of a full information
protocol, once every sites i broadcasts Li after time t, we
have eventually Gi = G at all sites.

Despite a full information protocol is a correct solution,
it requires to broadcast an information every time a novel
event is received. This is not practical. On the contrary, the
goal of our TOPiCo protocol is to allow sites constructing
G e�ciently, by forwarding as few information as possible.
In the next section, we detail the internals of our approach,
and prove that TOPiCo is eventually perfect.

4. THE TOPICO PROTOCOL
In this section, we describe the TOPiCo protocol in de-

tail. We first start with an overview of our approach, while
providing key insights on the internals of our solution. The
concluding part of this section provides a formal proof that
TOPiCo is eventually perfect.

4.1 Overview of the protocol
Each TOPiCo site i executes the following two tasks:

(Update) Site i computes locally a list of candidates items that
it broadcasts together with their local number of occurrences
to all sites. (Disseminate) Upon receiving a list of candidates
from some distant site j, a site i updates its global view of
the most frequent items Gi. To that end, i first sums-up for
each item the contribution received in the candidate lists
from the other sites (such contribution equals 0, if the item
was not received). Then, site i sorts the global contributions
and outputs Gi. We consider that the system is synchronous,
and that the update task occurs at frequency 1/�.

TOPiCo constructs a list of candidates by determining at
each site a value l � k for which the top-l ranked items in
Li have a chance to enter in G. Such an estimation is based
on (i) the global number of occurrences of each item among
the top-k in Gi, (ii) the number of occurrences of each items
in Li, and (iii) the candidates received by remote sites. In
what follows, we cover with more details the internals of our
approach, and how this estimation is computed.

4.2 TOPiCo in detail
Our first key observation in the design of TOPiCo is the

following:

(Observation 1) Consider an item x at some position
lower than k in G. If x enters in the top-k most ranked
items in G, then there exists a site i for which the
number of occurrences of x at i times N is greater than
the number of global occurrence of the item at position
k in G. Thus, item x is at site i a candidate to enter G.

To actually transform the above observation into an al-
gorithm, we must then accommodate with the fact that no
site has access to G. First, every site i executes the above
candidacy test on the items in Li, using Gi. Then, we make
a second observation:

(Observation 2) Consider that some item x passes
the candidacy test at site i, i.e., denoting ! the number
of occurrences of x in Wj , we have ! ⇥N > Gi[k � 1].
Item x might fail the candidacy test at some other site
j, for instance if j never receives x. Hence for every
candidate it receives, site j must piggyback its local
number of occurences.

We base our TOPiCo protocol on the above two obser-
vations. Algorithm 1 presents its pseudo-code. In addition
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Algorithm 1: TOPiCo at process i

variables1

candidatesi ; // the candidates2

Li ; // local top-k3

Gi ; // global top-k4

� ; // update period5

task update6

upon receive hUPDATE, Ci from j7

candidatesi[j] C8

foreach (x, ) 2 C do9

Gi  Gi \ {(x, )}10

⌦ P
(x,!)2candidatesi

!11

Gi  Gi [ {(x,⌦)}12

Gi  {Gi[0], . . . , Gi[l � 1]} ; // keep top-k13

items

task disseminate (every � second)14

let ( ,�) = Gi[k � 1] ; // lowest score in top-k15

l k16

while l < |Li| do17

let (x, !) = Li[l]18

if ! ⇥N � � then19

l l + 1 ; // candidacy test passed20

else21

break22

C  ; n 023

while n < l do24

C  C [ Li[n]25

n n + 126

foreach (x, ) 2 candidatesi do27

if (x, ) /2 C ^ (x, !) 2 Li then28

C  C [ {(x, !)}29

broadcast hUPDATE, Ci to all sites30

to Li and Gi, the protocol uses two additional local vari-
ables: � defines the periodicity of the dissemination task, and
candidatesi is an array that contains for each site i, the last
candidates received at site i from j.

In details, TOPiCo works as follows. The update task
is in charge of maintaining the candidates at every site i.
Upon the reception of a new set of candidates C from some
site j (which might be i), the update task assigns C to
candidatesi[j] (line 8). Then, the computation of Gi takes
place. For every item x in C, site i computes the aggregated
value of x over all the candidates in candidatesi and updates
variable Gi accordingly (lines 10 to 12). Notice that at
line 11, we write for simplicity (x, !) 2 candidatesi instead
of considering (x, !) in the multiset

S
j candidatesi[j]. The

update task ends by truncating Gi to only keep the first l
entries (line 13).

The core routine of TOPiCo is the disseminate task. Its
goal is to broadcast the candidates computed at site i with
a periodicity of � units of time. The candidates are the
l � k most frequent items in Li. To determine the value
of l, the disseminate task first computes �, the number of
occurrence of the last item in Gi (line 15). Then, it traverses
Li starting from position k (lines 17 to 22). Every time an

item x successes the candidacy test, l is incremented (line 20);
otherwise the loop ends (line 22). Site i collects the number
of occurrences of items that successfully passed the candidacy
test to form the candidates list C (lines 23 to 26). Then, site
i appends to this list the candidates that were sent by other
sites. (lines 27 to 29), and broadcasts the final content of C
to all sites (line 30).

4.3 Proof of Correctness
This section is devoted to a formal proof of the correctness

of TOPiCo. We formulate this result below then detail how
to achieve it.

Theorem 1. The TOPiCo protocol is eventually perfect.

Proof. (By contradiction.) Let us consider some run
⇢ of the TOPiCo protocol. As Gt is convergent, we know
that limt!1Gt exists. Let G be that limit and T the time
after which Gt>T = G holds. At some site j, we note Lj [l].!
(respectively Gj [l].!) the number of occurrences of the item
at rank l in Lj (resp. Gj), and for some item x, !x,j the
number of occurrences of x in W . At every site j, recall that
for every item z at position l in Lj , we have Lj [l].! = !z,j .

Consider a time t after T in the run ⇢. For the sake of
contradiction, assume that an item x is in G, but not in Gi

at some site i. Name y the last item in Gi. Since item y
belongs to Gi and the system is synchronous, y also appears
in every Gj at the same position lj  k. Moreover, as item x
appears in G and not y after time T . there must exist some
site j0 for which !x,j0 ⇥N > Gj0 [lj ].

From the above analysis, it follows that for every item z
higher than x (and including it) in Lj0 . we have !z,j0 ⇥N >
Gj0 [k � 1].!, Hence, x passes the candidacy test (line 20) at
site j0. From which we deduce that x is among the candidates
at that site, and is broadcast to all sites (lines 23 to 30).
Then, every site receiving (x, !x,j0), adds x to its candidates
list, if it was not the case previously (lines 27 to 29). It
follows that at the end of the computation round, x precedes
y in Gi.

5. EVALUATION
We evaluate TOPiCo using a real workload and a real

implementation. The prototype is implemented using a
combination of C and the Lua programming languages.The
experiments are run on a cluster of 29 bi-quad-core Xeon
machines, each with 8 GB of RAM and interconnected using
a switched 1 Gbps network.

The workload consists of a trace of HTTP requests to the
sites hosting the FIFA World Cup’98 website [1]. The data
was collected for more than 80 days, including during the
competition finale, and contains 240 million requests (events)
over 32 di↵erent sites spread non-uniformely across the globe.

We start by analyzing the properties of the trace. Instead
of fully characterizing the trace, which was done in detail
in [1], here we focus just on the metrics pertinent to this
paper. Next, we evaluate TOPiCo in terms of resource
e�ciency and closeness to the ideal G as computed by an
omniscient entity.

5.1 Workload
Figure 1 shows the evolution of the number of sites and

events during the competition. From the 80 days available in
the trace, in the rest of the evaluation we focus just on days
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Figure 2: Events per minute across all active 29
servers between day-67 and day-75. There are more
than 48 million events during this period.

67 to 75 which correspond to the competition finale. The
reason for this is not only to run the experiments in a more
reasonable timeframe, but also because this is where the
highest load happens, and hence where TOPiCo becomes
more interesting. During this peak period there are 29 active
sites and around 6 million events per day.

In Figure 2, we show the overall number of events per
minute across all sites for this peak period. We use a repre-
sentation based on stacked percentiles throughout this sec-
tion. The white bar at the bottom represents the minimum
value, the pale grey on top the maximal value. Intermediate
shades of grey represent the 25th, 50th -the median-, and
75th percentiles. For instance, the median number of events
per minute around day-70 (during the peak) is 3,000. Clearly,
there are peaks in load which will a↵ect not only resource
consumption but also the closeness of the computed Gi to
the ideal G.

The e�ciency of TOPiCo, and in general of any top-k
frequent items algorithm, depends on the distribution skew
of events popularity. In fact, if all events where equally pop-
ular, computing the most popular ones would be not only
impractical but also useless. Figure 3 depicts the distribu-
tion of event popularity for several days. as it is possible
to observe, the distribution is mildly skewed meaning that
the di↵erence in popularity on the most popular items is
only moderate. This implies that, sometimes, the list of
candidates to enter the top-k might grow large thus a↵ecting
the e�ciency of TOPiCo. Our experiments evaluating the
e�ciency of TOPiCo confirm this observation.

We complete the characterization of the workload by as-
sessing how the composition of the top-k evolves over time.
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Figure 3: Distribution of event popularity across
several days (the days not shown follow the same
pattern). Note that the plot is log-log.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10P
re

se
n
ce

 o
f 
ite

m
 a

t 
ra

n
k 

(%
) Top-10 Rank Stability

Figure 5: Rank stability showing the percentage of
time a position in the rank is occupied by a given
item.

For the sake of visualization, we only show results for K=10
and a sliding window of 20 seconds. A total of 311 di↵erent
items appear in the top-10 during the time period between
day-67 and day-75. Di↵erent perspectives of the same data
are shown in Figure 4 and Figure 5. Each unique item is
associated with a unique color. Figure 4 shows which items
made it to the top-10 over time. Clearly some items are close
to the topmost popular, while others stay mostly close to
the bottom. This indicates that there is some stability on
the most popular items. Figure 5 confirms this observation
by showing the distribution of the time a given position in
the top-k is occupied by a given item. For instance, we can
see that a given item is the most popular (top-1) more than
60% of the time.

5.2 TOPiCo
We now focus on assessing TOPiCo when subject to the

workload described above. Unless stated otherwise, presented
results are the average over all sites with the following pa-
rameters: k=20, the size of the window is 15 seconds and
the update period � is 5 seconds. We start by observing
how e↵ective TOPiCo is in reducing the number of entries
exchanged among sites. A naive approach would always
broadcast the full Li regardless of the workload. TOPiCo
on the other hand exchanges just the minimal number of
items necessary to compute correctly Gi. These results are
show in Figure 6. At Figure 6(top), we show the number
of items sent as a fraction of the total number of items in
Li. Clearly, TOPiCo is able to adapt the number of items
sent accordingly to the workload. Still, sometimes up to 80%
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Figure 6: Cost of TOPiCo in terms of entries sent
to other nodes as a function of the entries available
in Li (above) and as D entries (below).

of the items in Li need to be exchanged. Note that this is
not a limitation of TOPiCo itself, but due to the intrinsic
nature of the workload. In fact, as one can confirm in Fig-
ure 3, the di↵erence in the frequency of the most popular
items is small, implying that the number of candidates for Gi

becomes potentially large. We expect TOPiCo to be able
to significantly reduce the number of items sent when faced
with more skewed workloads. Figure 6(bottom) complements
this by showing, the number of additional items (D) that
need to be sent. Even with this workload, the largest number
of items exchanged is just 31 (k + D = 20 + 11) around day
71. Considering that for each item, we just send the item
identifier and its frequency, the size of the exchanged list is
still very small.

We confirm this by observing the download and upload
throughput of sites, as shown in Figure 7. As expected, this
is mostly a↵ected by the arrival of events depicted in Figure 2.
Both upload and download bandwidth usage remain under
10KB/sec most of the time which is quite small on modern
infrastructures. The fact that few sites upload significantly
more than the majority (notice the di↵erence between the
max and 75th percentile on Figure 7) is because the reception
of events is not uniformly spread across sites, causing some
sites to maintain larger Li and with more similar frequencies
near the top, hence requiring to transmit more data.
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Figure 7: Throughput: upload (top) and download
(bottom).

We now focus on the closeness between Gi, computed
locally at each site, and G computed by an hypothetical
omniscient observer. To this end we use the normalized
Kendall-Tau rank distance which gives the pairwise di↵er-
ences between two ranked lists. A distance of zero means
the lists are equal, while a distance of one means complete
disagreement in the rankings. Figure 8 shows the normalized
Kendall-Tau distance between G and Gi. Here we split the
servers according to their geographical location: Europe,
US-EastCoast, US-Central and US-WestCoast. The reason
for this is to observe how the geographical location, and
hence, di↵erent access patterns a↵ect the distance to G. As
shown, the distance to the omniscient G is roughly the same
across all regions meaning TOPiCo achieves good results
regardless of the composition of Li s in a particular region.

Then, we investigate how the Kendal-Tau distance distance
between G and Gi performs under peak hours. We choose
the peak hours between day-69 and day-70 (Figure 2). In
this time window, there are as many as 4,500 messages
per minute. Figure 9 reports our result. We observe how
TOPiCo performs similarly to the previous scenario, stating
the benefits of our approach even under heavy load.

Finally, we show the delay between Gi, computed locally
at each site, and the real instantaneous G. As before, we
consider sites in di↵erent geographical regions. Results are
presented at Figure 10 from day-67 to day-75. Again, the
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di↵erence across regions is negligible meaning TOPiCo is
able to dilute the local di↵erences when computing G. Half of
the time, sites experience a latency smaller than the update
period �. Naturally, by decreasing � we would observe a
reduction in the latency at the expense of bandwidth.

Overall, the evaluation conducted allows us to conclude
that TOPiCo delivers its promises: a lightweight, adaptable
algorithm for computing the top-k most frequent items across
a set of geographically distributed sites.

6. DISCUSSION AND CONCLUSION
In this paper we presented TOPiCo, a lightweight pro-

tocol for computing the top-k frequent items over several
geographically dispersed event streams. TOPiCo works by
selecting, locally at each site, the minimal amount of items

that need to be exchanged such that each site is able to
build a Gi close to the ideal G as observed by an omniscient
observer. We provide a correctness proof of the algorithm
and evaluate it in a real implementation with a real workload.
The results confirm TOPiCo as a resource e�cient approach
able to adapt to variations in the workload.

In the present work we have not considered site failures.
However, as TOPiCo relies only on local knowledge, and
does not require any form of coordination among site, it
is suited to work on an environment where sites may fail.
Assessing TOPiCo behavior and any potential adjustments
required to tolerate faults is part of our future plans.

Besides, we assume the existence of a broadcast primitive
to disseminate information to all sites. The absence of an
underlying multicast primitive results often in broadcast
being implemented as a series of unicast calls, which limits
the scalability of the system. We plan to overcome these
limitations by extending TOPiCo to disseminate information
using epidemic/gossip based protocols. Such protocols are
known to be highly scalable but also robust to failures which
aligns very well with the goals of TOPiCo we have in mind.
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