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ABSTRACT
The ordering of events is a fundamental problem of dis-
tributed computing and has been extensively studied over
several decades. From all the available orderings, total or-
dering is of particular interest as it provides a powerful
abstraction for building reliable distributed applications. Un-
fortunately, deterministic total order algorithms scale poorly
and are therefore unfit for modern large-scale applications.
The main contribution of this paper is EpTO, a total order
algorithm with probabilistic agreement that scales both in
the number of processes and events. EpTO provides de-
terministic safety and probabilistic liveness: integrity, total
order and validity are always preserved, while agreement is
achieved with arbitrarily high probability. We show that
EpTO is well-suited for large-scale dynamic distributed sys-
tems: it does not require a global clock nor synchronized
processes, and it is highly robust even when the network
suffers from large delays and significant churn and message
loss.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.4.7 [Organization and Design]: Distributed Systems

Keywords
large-scale distributed systems, data dissemination, total
order, epidemic algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Middleware ’15 December 07-11, 2015, Vancouver, BC, Canada
c© 2015 ACM. ISBN 978-1-4503-3618-5/15/12...$15.00

DOI: http://dx.doi.org/10.1145/2814576.2814804.

1. INTRODUCTION
The ordering of events is one of the most fundamental prob-

lems in distributed systems, and over the last decades a large
body of research has been dedicated to the design of ordering
abstractions with different guarantees and tradeoffs [9, 20].
Most of these abstractions focus on providing strong deter-
ministic guarantees that enable distributed applications to
solve various problems, such as synchronization, agreement
or state machine replication. Unfortunately, such strong
guarantees are expensive to obtain and the algorithms that
implement them do not scale well and perform poorly under
less than ideal network conditions. This results in a mismatch
between what is expected by distributed applications and the
achievable properties in the large-scale systems encountered
in the real world. For instance, large-scale systems are prone
to failures and partitions, and the CAP theorem [3,14] states
that one cannot simultaneously achieve consistency, avail-
ability, and partition tolerance. Many systems thus target re-
laxed forms of these properties, like deterministic algorithms
with probabilistic delivery guarantees [12]. The most stud-
ied of these properties is eventual consistency [1, 27], which
states that the system will reach a consistent state given
a sufficiently long period of time during which no changes
occur. Unfortunately, most large-scale systems deployed
today seldom exhibit the behavior that leads to eventual
consistency.

Instead of optimizing what properties can be obtained with
deterministic algorithms, we argue that in large-scale settings,
it is unrealistic to strive for the guarantees they provide since
they result in prohibitively expensive or non-scalable algo-
rithms. This is the same reason that led to the emergence
of probabilistic dissemination algorithms based on epidemic
principles as an alternative to deterministic dissemination
algorithms [2,4,10,11,13,16,18,19]. These algorithms pro-
vide probabilistic guarantees, typically achieving convergence
with high probability in finite time. Existing epidemic dis-
semination protocols are highly scalable and resilient to
adversarial network conditions, which are desirable proper-
ties in real world deployments. However they mostly focus
on the probabilistic reliability of the dissemination, often
overlooking stronger properties such as ordering. The ab-
sence of ordering properties, and in particular total order,
renders epidemic dissemination algorithms unsuitable for a



wide range of applications.
Existing Total Order algorithms, on the other hand, re-

quire some sort of agreement property1. Furthermore, Total
Order and Consensus are equivalent problems [6], and to
solve consensus in an asynchronous system, one needs to
explicitly maintain a group and have access to a 3S failure
detector2 [5, 6]. Due to faults and churn, the stability pe-
riod required by the 3S failure detector becomes prohibitive
as the network grows, hence the scalability of consensus is
intrinsically limited. Recent work strove to overcome these
and increase the scalability of consensus by relying on prob-
abilistic protocols [21]. Total Order algorithms thus share
the same scalability limitations.

1.1 Contributions
In this paper, we present and analyze EpTO, a new total

order epidemic dissemination algorithm with probabilistic
reliability guarantees. EpTO guarantees that processes even-
tually agree on the set of received events with high probability
and deliver these events in total order to the application.
This is a substantial improvement over existing optimistic
total order algorithms based on spontaneous order [23–25],
which require reliable deterministic dissemination and suffer
from the limitations mentioned above. It also improves upon
existing probabilistic algorithms, which either have no or
weak ordering guarantees [2, 4, 11,18,19], assume static and
fully synchronous networks [16] or have scalability issues
with concurrent broadcasts [13].

The main insight behind EpTO is a balls-and-bins ap-
proach to dissemination [19]. A balls-and-bins model ab-
stracts processes as bins and messages (events) as balls, and
studies how many balls need to be thrown such that each bin
receives at least a ball with arbitrarily high probability. Our
algorithm disseminates events in a small number of rounds,
and the average load on each process is uniform. The number
of messages transmitted per process per round is logarithmic
in the number of processes, and the total number of messages
transmitted in the network before an event is delivered is low
and uniform over all processes. EpTO is conceptually simple
and fully decentralized, not requiring any form of coordi-
nation among processes. It does not require sub-protocols,
acknowledgments nor retransmissions. More importantly, it
is highly robust and works even when processes rely only
on logical time and are desynchronized, as well as when the
networks suffers from large delays, churn and message loss.

The EpTO architecture allows us to guarantee total order
while making sure that every process delivers every event
with a probability arbitrarily close to one. Under challenging
but realistic churn, delays, asynchronicity and message loss
conditions, the probability of having holes in the sequence of
delivered events can be made orders of magnitude smaller
than the probability of a catastrophic hardware or network
failure. Furthermore, EpTO can always insure that the well-
behaving parts of the network work smoothly, circumscribing
rare holes in the sequence of delivered events to parts of the
network experiencing extreme adversarial conditions. To the
best of our knowledge, no existing protocol exhibits these

1With the notable exception of [20] which does not require
agreement but suffers from other limitations such as a static
membership.
2The weakest failure detector to solve consensus in an asyn-
chronous system is usually referred in the literature as 3W
which, as shown in [6], is equivalent to 3S.

Integrity: For any event e, every process EpTO-
delivers e at most once, and only if e was previously
EpTO-broadcast.

Validity: If a correct process EpTO-broadcasts an
event e, then it eventually EpTO-delivers e.

Total Order: If processes p and q both EpTO-deliver
events e and e′, then p EpTO-delivers e before e′ if
and only if q EpTO-delivers e before e′.

Probabilistic Agreement: If a process EpTO-
delivers an event e, then with high probability all
correct processes eventually EpTO-deliver e.

Table 1: Total Order Specification.

properties. EpTO easily scales to networks with tens of thou-
sands of nodes. As potential applications we target very large
scale systems that can leverage stronger ordering properties.
For instance, DataFlasks [22] is a very large scale data store
maintained exclusively with epidemic algorithms which, due
to the absence of ordering, delegates important tasks such
as version control to the client. Extending DataFlasks with
EpTO would allow stronger ordering properties and hence
provide richer abstractions to clients.

The rest of the paper is organized as follows. In Section 2,
we formally state our problem and assumptions. The EpTO
algorithm is described in Section 3 and analyzed in a sim-
plistic scenario in Section 4. In Section 5, we show how to
extend EpTO for systems with churn, message loss, large
network delay, asynchronous processes and logical clocks.
The theoretical analysis is supported by several simulations
under realistic conditions in Section 6. Finally, we discuss
related work in Section 7 and conclude the paper in Section 8.

2. PROBLEM AND ASSUMPTIONS
In this paper, we are interested in data dissemination with

reliability and ordering guarantees. In particular, we want
to ensure that any broadcast event is delivered with high
probability to all correct processes and that the very same
order of events is observed at all recipients. It is assumed that
each process has a unique id. It is also assumed that processes
have access to a peer sampling service (PSS) providing a
uniform random sample of other processes [17]. A PSS is
inexpensive to maintain, and PSS inaccuracies due to churn
can be thought as messages losses and hence accommodated
and analyzed appropriately.

The intuition behind EpTO is that events are available
quickly at all nodes with high probability. Once events are
thought to be available everywhere, we deterministically
order them by timestamp, breaking ties with the id of the
broadcasters, and deliver them to the application accordingly.

Processes use primitives EpTO-broadcast and EpTO-
deliver to communicate, and the system must satisfy the
properties described in Table 1. Besides agreement, which is
probabilistic, the other properties closely follow those from
traditional total order (or atomic) broadcast algorithms [9].
The integrity property precludes spurious messages by disal-
lowing the delivery of duplicates and messages not previously
sent, whereas liveness of the protocol is ensured by the va-
lidity property requiring correct processes to always deliver
the messages they broadcast.

While the total order property is standard, its interplay
with the probabilistic agreement guarantees of the protocol is
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Figure 1: Order and agreement properties.

of particular interest. Since the protocol reliability is proba-
bilistic, holes may occur in the sequence of messages delivered
(agreed upon) at each process, hopefully with arbitrarily low
probability. While these sequences may differ for different
processes, the order in which messages are delivered must
be the same for all processes. Consider, for instance, the
two runs depicted in Figure 1 with three processes and three
events. In Figure 1a, the total order property is preserved
but agreement is violated because process r did not receive
event e. Therefore, this is a valid, although unlikely, run in
EpTO. On the other hand, in the run of Figure 1b, agree-
ment is preserved (all processes received all events), but total
order is violated because process r delivered the events in a
different order from the other two processes. Consequently,
this run is not allowed in EpTO.

3. EPTO ALGORITHM DESCRIPTION
The EpTO algorithm is composed of two parts: a dissem-

ination component responsible for satisfying the agreement
property and an ordering component responsible for fulfilling
the total order property. The validity and integrity prop-
erties are satisfied by the two components in tandem. The
dissemination component handles the reception and retrans-
mission of events. Received events are passed to the ordering
component which orders and delivers them to the application.
The two components and their interactions are depicted in
Figure 2.

For the sake of explanation, we initially assume that pro-
cesses have access to a global clock, e.g., as provided by a GPS
or an atomic clock and used by Google’s Spanner [8] (using
the stability oracle of Algorithm 3). We emphasize that we
only use this unrealistic assumption to ease the description
of the algorithm. In Section 5, we show that this assumption
is absolutely and completely unnecessary and relax it to
regular logical clocks at little cost (using the stability oracle
of Algorithm 4).

3.1 EpTO Dissemination Component
The EpTO dissemination component is depicted in Algo-

rithm 1 for an arbitrary process p. It proceeds in rounds
by periodically executing the task in lines 20 to 28. The
algorithm assumes the existence of a peer sampling service
(PSS) responsible for keeping p’s view (line 2) up-to-date
with a random stream of at least K deemed correct processes,
allowing a fanout of size K. TTL (time to live) is a constant
holding the number of rounds for which each event needs
to be relayed during its dissemination. The nextBall set
collects the events to be sent in the next round by process p.

The dissemination component consists of three procedures
executed atomically: the event broadcast primitive, the event
receive callback and the periodic relaying task. When p
broadcasts an event (lines 6–10), the event is time-stamped
with p’s current clock, its ttl is set to zero, and it is added to

the nextBall to be relayed in the next round. Upon reception
of a ball (lines 11–19), events with ttl < TTL are added
to nextBall for further relaying. When a received event is
already in nextBall, we keep the one with the largest ttl to
avoid excessive retransmissions. Finally, the process clock is
updated. The periodic relaying task is executed every δ time
units (lines 20–28), in other words rounds last δ time units.
Process p first updates the ttl of each event in nextBall
and then sends it to K processes randomly chosen from its
view. It then calls the procedure orderEvents of the ordering
component (Algorithm 2) and resets the nextBall.

Algorithm 1: Dissemination component (process p)

1 initially
2 view ← . . . // system parameter: set of uniformly random

correct peers
3 K ← . . . // system parameter: fanout
4 TTL← . . . // system parameter: nb times events need to

be relayed
5 nextBall← ∅ // set of events to be relayed in the next

round

6 procedure EpTO-broadcast(event)
7 event.ts← getClock()
8 event.ttl← 0
9 event.sourceId← p.id

10 nextBall← nextBall ∪ (event.id, event)

11 upon receive BALL(ball)

12 foreach event ∈ ball do
13 if event.ttl < TTL then
14 if event.id ∈ nextBall then
15 if nextBall[event.id].ttl < event.ttl then
16 nextBall[event.id].ttl← event.ttl

// update TTL

17 else
18 nextBall← nextBall ∪ (event.id, event)

19 updateClock(event.ts) // only needed with logical
time

20 task every δ time units
21 foreach event ∈ nextBall do
22 event.ttl← event.ttl + 1

23 if nextBall 6= ∅ then
24 peers ← Random (view,K)
25 foreach q ∈ peers do
26 send BALL(nextBall) to q

27 orderEvents(nextBall)
28 nextBall← ∅

3.2 EpTO Ordering Component
The EpTO ordering component is depicted in Algorithm 2.

Procedure orderEvents is called every round (line 27 of Al-
gorithm 1) and its goal is to deliver events to the application
(Algorithm 2, line 30). To do so, each process p maintains
a received map of (id, event) pairs with all known but not
yet delivered events and a delivered set with all the events
already delivered to the application.
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Algorithm 2: Ordering component (process p)

1 initially
2 received← ∅ // map of received but not delivered events
3 delivered← ∅ // set of delivered events
4 lastDeliveredTs← 0 // maximum timestamp of delivered

events

5 procedure orderEvents(ball)
// update TTL of received events

6 foreach event ∈ received do
7 received[event.id].ttl← received[event.id].ttl + 1

// update set of received events with events in the ball
8 foreach event ∈ ball do
9 if event.id /∈ delivered ∧ event.ts ≥ lastDeliveredTs

then
10 if event.id ∈ received then
11 if received[event.id].ttl < event.ttl then
12 received[event.id].ttl← event.ttl

13 else
14 received← received+ (event.id, event)

// collect deliverable events and determine smallest
timestamp of non deliverable events

15 minQueuedTs←∞
16 deliverableEvents← ∅
17 foreach event ∈ received do
18 if isDeliverable(event) then
19 deliverableEvents← deliverableEvents ∪ event
20 else if minQueuedTs > event.ts then
21 minQueuedTs← event.ts

22 foreach event ∈ deliverableEvents do
23 if event.ts > minQueuedTs then

// ignore deliverable events with timestamp
greater than all non-deliverable events

24 deliverableEvents← deliverableEvents \ event
25 else

// event can be delivered, remove from received
events

26 received← received− (event.id, event)

27 foreach event ∈ deliverableEvents sorted by (ts, srcId)
do

28 delivered ← delivered ∪ event
29 lastDeliveredTs ← event.ts
30 deliver(event) // deliver event to the application

The main task of this procedure is to move events from
the received set to the delivered set, preserving the total
order of the events. This is done in several steps as follows.
We start by incrementing the ttl of all events previously
received (lines 6–7) to indicate the start of a new round.
Then, in lines 8 to 14, all the events received in ball are
processed. An event already delivered or whose timestamp
is smaller than the timestamp of the last event delivered
(lastDeliveredTs) is discarded (line 9). Delivering such an
event in the former case would violate integrity due to the
delivery of a duplicate, and in the latter case would violate
total order. Otherwise, the event is added to received or,
if already there, its ttl value is set to the largest of both
occurrences. Note that the event’s ttl is no longer used for
dissemination but only for deliverability detection purposes.
The next step (lines 15–26) is to build the set of events to be
delivered in the current round (deliverableEvents): an event
e becomes deliverable if it is deemed so by the isDeliverable
oracle shown in Algorithm 3 and if its timestamp is smaller
than any non deliverable event in the received set. Lines 15 to
21 collect the deliverable events in the deliverableEvents set
and calculate the minimum timestamp (minQueuedTs) of all
the events that cannot yet be delivered. Next, lines 22 to 26
purge from deliverableEvents all the events whose timestamp
is greater thanminQueuedTs, as they cannot yet be delivered
without violating total order. The remaining events are ready
to be delivered and thus are removed from the received set.
Finally, in lines 27 to 30, the events in deliverableEvents are
delivered to the application in timestamp order.

Algorithm 3: Stability oracle — Global clock

1 initially
2 globalClock ← . . .

3 procedure isDeliverable(m)
// with TTL given by Lemma 3

4 return m.ttl > TTL

5 procedure getClock()
6 return globalClock.getTime()

7 procedure updateClock(ts)
// nothing to do



4. EPTO ALGORITHM ANALYSIS
In this section, we prove that EpTO satisfies the Total

Order specification described in Table 1: integrity, validity,
total order and probabilistic agreement. To simplify the
analysis, we first assume that processes have access to a
global clock and that rounds are synchronous. We also
assume that there is no churn, no message loss, and that
the network latency is smaller than the round duration. We
mention again that all these assumptions are unnecessary
and we remove them in Section 5.

Lemma 1. Synchronous EpTO satisfies the Integrity, Va-
lidity and Total Order properties.

Proof.
Integrity property: From the ordering component (Al-

gorithm 2), only events in received can be added to delivered
and delivered to the application, and events can be added
to received only if they are contained in a ball. From the
dissemination component (Algorithm 1), events can only be
included in a ball in two ways: either they are broadcasted
locally (lines 6–10) or they are received in a ball from an
other process (lines 11–19). It follows that only broadcasted
events can be delivered.

Since each event has a unique identifier, received and
delivered cannot contain the same event more than once.
Only events in received can be added to delivered, and events
can be added to received only if they are not in delivered
(Algorithm 2, lines 8–14). Furthermore, any event added to
delivered is removed from received (Algorithm 2, lines 23–28),
thus events are gradually moved from received to delivered.
It follows that events are added to delivered and delivered
to the application at most once.

Validity property: Consider an event e broadcasted by
a process p. By construction, e is always added to p’s received.
An event becomes stable when its ttl is greater than TTL.
From the ordering component (Algorithm 2), the ttl of each
event in received increases in every round in two possible
ways: by one unit by default (Algorithm 2, lines 6–7), or by
one unit or more if a received ball has the same event with a
larger ttl (Algorithm 2, lines 10–12). Since TTL is finite, an
event will therefore become stable after at most TTL rounds,
after which it will be moved from received to delivered and
delivered to the application. This proves that if a process
broadcasts an event e, then it eventually delivers it.

Total Order property: The broadcasted events can be
sorted by timestamp and then by broadcast process identifier.
Consider two processes p and q, both having events e and
e′ in delivered. Without loss of generality, assume that the
timestamp of event e is smaller than the timestamp of e′,
and that p delivered e′ before e whereas q delivered e before
e′. This means that process p added e to delivered after
adding e′, despite the timestamp of e′ being greater than
the timestamp of e. This is a contradiction, since an event
cannot be put in received if its timestamp is smaller than the
timestamp of the last delivered event (Algorithm 2, line 9),
and only events in received can be moved to delivered.

The remaining property is Probabilistic Agreement. If
the stability oracle was perfectly accurate (Algorithm 3 and
Algorithm 4), the sequence of events delivered at each process
would be exactly the same. However, as we use a probabilistic
dissemination algorithm, the set of events delivered (agreed
upon) by any two processes might differ. We show in the next

two subsections that the probability of processes disagreeing
on the set of delivered events can be made arbitrarily close
to zero.

4.1 Gossiping with Balls and Bins
The insight behind EpTO is the adaptation of a balls-

and-bins epidemic algorithm [19]. Processes are abstracted
as bins, and to broadcast a rumor within a system with n
processes, the following gossip protocol is used. The process
starting a rumor sends balls to K other processes chosen
uniformly at random, disseminating the rumor. For each
round that follows, the processes which received one or more
balls in the previous round send balls to K other processes
chosen uniformly at random, further disseminating the rumor.
The gossip protocol terminates after m rounds.

Theorem 2 (from [19]). If the gossip protocol uses K =
d 2e lnn
ln lnn

e balls per process and runs for m = (c + 1) log2 n
rounds, where c > 1 is a constant, then at the end of the
protocol each process has learned the rumor with high prob-
ability. More precisely, each bin contains at least one ball

with probability 1−O
(
n−(c+1)

)
.

Intuitively, the idea behind the proof of this gossip protocol
is that during the first log2 n rounds, the number of balls
disseminated doubles at each round until at least n balls are
transmitted per round. The last c log2 n rounds thus create at
least cn log2 n balls, which is sufficient to conclude that each
process has received at least one ball with high probability.
The gossip epidemic protocol has several desirable properties.
First, the fanout K grows slowly enough to be practically
useful. Second, the load is uniformly distributed across all
processes. Third, the expected number of messages received

by a process during a round is smaller than O
(

log2 n

ln lnn

)
.

4.2 EpTO Probabilistic Agreement Analysis
With no churn, access to global time, no lost messages,

synchronous rounds and network latency smaller than the
round duration, Theorem 2 can be applied in a straight
forward manner.

Lemma 3. If K ≥
⌈
2e lnn
ln lnn

⌉
and TTL ≥ d(c + 1) log2 ne

where c > 1, then synchronous EpTO satisfies the Proba-
bilistic Agreement property.

Proof. Probabilistic Agreement property: Dissem-
inating events with EpTO corresponds to aging the events
until they can be delivered without holes with high prob-
ability. To do so, processes age events they have received
but not yet delivered by incrementing their ttl (Algorithm 2,
lines 6-7). When an event ttl reaches TTL, a process locally
knows that this event has been in the system long enough to
reach all other processes with high probability and can be
delivered to the application.

With these parameters for K and TTL, Theorem 2 guar-
antees that every event broadcasted in the system will be
transmitted to processes at random at least cn log2 n times,
thus every process receives and delivers every event with
high probability.

To illustrate that the number of holes can be made ar-
bitrarily close to 0, Figure 3a shows upper bounds for the
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Figure 3: Probabilistic agreement upper bounds.

probability that a fixed process p has a hole for event e,
and Figure 3b shows the probability that event e has a
hole for at least one process. Both figures assume that an
event is disseminated at random exactly cn log2 n times for
c ∈ {1, 2, 3}. In practice, the probability of hole is much
lower than the bounds from the figures for two reasons. First,
the K processes to which each ball is sent are different. More
importantly, the bounds provided by Theorem 2 are quite
loose and as a result the number of balls in the system for
each event is much larger than cn logn.

An advantage of our approach over prior work is that each
process groups all the received events per round in the same
ball. This limits traffic network when more that one event is
broadcasted in a span of TTL rounds.

5. EXTENSIONS
So far, we described how EpTO was able to guarantee

total order while decreasing the probability of event holes
arbitrarily close to zero under optimistic assumptions: access
to global time, synchronized rounds, small network latency
and no churn or lost messages. In this section, we shed light
on the robustness of EpTO and show that it works when all
these constraints are lifted. For all these extensions, the In-
tegrity, Validity, and Total Order properties are not affected,
and the proofs of the corresponding results with global time
and synchronous rounds can be applied without modification.
However, in all cases, the Probabilistic Agreement property
needs to be revisited and analyzed more carefully.

5.1 Logical Time

Algorithm 4: Stability oracle — Logical clocks

1 initially
2 logicalClock ← 0

3 procedure isDeliverable(m)
// with TTL given by Lemma 4

4 return m.ttl > TTL

5 procedure getClock()
6 logicalClock ← logicalClock + 1
7 return logicalClock

8 procedure updateClock(ts)
9 if ts > logicalClock then

10 logicalClock ← ts

We now relax the assumption of a global clock and show
how EpTO can use logical time. We still assume that the

round duration is the same value δ for each process, al-
though this assumption is also unnecessary and lifted in
Subsection 5.2. We use a scalar logical clock implemented
in a standard way: the local clock is incremented when-
ever an event is broadcasted and received with procedures
getClock() and updateClock(ts) of Algorithm 4 (instead
of Algorithm 3). By disambiguating concurrent events us-
ing the process identifiers, we are still able to totally order
all events. However, the delivery of concurrent events with
logical clocks might leave unnecessary holes. Consider the
example depicted in Figure 4 with processes p and q. It is
further assumed for this example that TTL = 2, that the
initial logical clock of the processes is set to one, and that
p.id precedes q.id. It should be noted that rounds are labeled
just for presentation purposes since EpTO does not require
round synchronization nor labeling. Process q broadcasts
e with timestamp 1 (e, ts = 1) at round zero. Process p
receives event e in round two but just before the reception, it
broadcasts event (e′, ts = 1). Because p broadcasts e′ before
receiving e, the timestamp associated with e′ still does not
take into account the timestamp of e, and thus both events
have the timestamp set to one. Simultaneously, e is deemed
stable at q because TTL = 2 rounds have elapsed since its
broadcast. If our only criterion was event stability, q would
correctly deliver e. However, by doing so q would no longer
be able to deliver e′ as it would violate total order. This
is because p.id precedes q.id, and thus e′ precedes e, which
could well be the order in which p will deliver both events.
This results in an unnecessary hole in the sequence of deliv-
ered events at q. However, if q waits for TTL more rounds it
will be able to receive e′ with high probability. Thus, it is
necessary to double the number of rounds when using logical
time.

Lemma 4. If K ≥
⌈
2e lnn
ln lnn

⌉
and TTL ≥ 2d(c + 1) log2 ne

where c > 1, then EpTO with logical time satisfies the Prob-
abilistic Agreement property.

Proof. It is clear that doubling the number of rounds
does not affect non-concurrent events, which are delivered
to all processes with high probability.

Let TTL = 2d(c + 1) log2 ne, which is twice the bound
provided by Theorem 2. Let e and e′ be concurrent processes
with the same logical timestamp, and without loss of general-
ity assume that e was created before e′ in real time and that
e′ has precedence over e. From Theorem 2, it follows that
the number of rounds between the broadcasts of e and e′

is at most TTL
2

with high probability (otherwise they could
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Figure 4: Concurrency hole with logical time.

not be concurrent). Still from Theorem 2, TTL
2

additional
rounds are sufficient for every process to learn both e and e′

with high probability, after which they can be delivered in
the right order.

We note that the worst case described in Figure 4 and requir-
ing to double the number of rounds only applies for networks
with minimal activity, since processes update their logical
clocks every time they receive a ball. In all our simulations,
the network activity was sufficient to update the logical clocks
frequently and keep the processes tightly synchronized. We
discuss this further is Section 8.

5.2 Process Drift
It is possible that the round duration is not exactly δ time

units for every process, for instance due to contention at
processes or the imprecision of the local clocks. Consider
two degenerate cases. In the first case, a single process p is
significantly slower than the other processes in the system.
For high event publication rates, events created by p will
take a long time to be injected in the system and thus newer
events will already have been delivered by other processes,
precluding the delivery of p’s events by other processes. In
the second case, suppose that p is significantly faster than
the other processes in the system. An event e generated by p
will be broadcasted and delivered by all other processes with
high probability after TTL rounds. However, p will detect
its own events as stable too early and thus will deliver them
and preclude the delivery of concurrent events broadcasted
by other processes. Although formalizing drift patterns is
beyond the scope of this article, we mention that if some
processes have very slow rounds, then their latency will
increase (this is discussed in the next subsection). We also
tested large random drifts numerically, and EPTO performed
very well (consult Section 6). For now, we state and prove
a simple result when the speeds of all processes remain
bounded.

Lemma 5. Let assume that the round duration δ of each
process is always bounded by δmin ≤ δ ≤ δmax, that K ≥⌈
2e lnn
ln lnn

⌉
, and that c > 1. If TTL ≥ d(c+1) log2 ne· δmax

δmin
, then

synchronous EpTO with global time satisfies the Probabilistic
Agreement property. If TTL ≥ 2d(c+ 1) log2 ne · δmax

δmin
, then

EpTO with logical time satisfies the Probabilistic Agreement
property.

Proof. We first prove the result for synchronous EPTO
with global time. The dissemination of an event in the
network can be represented as a tree, where the root is the

process which broadcasted the event, nodes at depth d for
d ≥ 1 are the processes which are d balls away from the root
(a node can appear at several depths), and the leaves are the
processes that delivered the event. Since the round duration
of each process is constant and bounded by δmin and δmax, if
follows that all the leaves of the tree are at depth at least
d(c+1) log2 ne. This is equivalent to a dissemination protocol
with at least d(c+ 1) log2 ne rounds, and from Theorem 2 we
can conclude that every process learns every event with high
probability. The result for EPTO with logical time follows
from Lemma 4.

5.3 Network Latency
The analysis done so far does not consider the network

latency. However, this must be taken into account to avoid
that some processes locally stabilize and deliver events be-
fore having received concurrent events from other processes.
Intuitively, we need to approximate the aging of events with
the dissemination periods. This approximation is controlled
by the parameter δ which specifies the time between asyn-
chronous rounds of EpTO. Setting δ correctly thus requires
a good estimate of the end-to-end communication delay. Set-
ting rounds too short will add an additional number of useless
rounds and is a waste of network resources, whereas if the
rounds are too long the delivery delays will be uselessly large.

Lemma 6. Let N be the set of network processes, and let
N1 ⊆ N be a subset of the network such that the latency
within N1 is always bounded by Lmax. If δ > Lmax, then
EPTO satisfies the Probability Agreement property within N1

with the following parameters:

1. Synchronous EPTO with global time: K ≥
⌈
2e lnn
ln lnn

⌉
,

c > 1 and TTL ≥ d(c+ 1) log2 ne+ 1;

2. EpTO with logical time: K ≥
⌈
2e lnn
ln lnn

⌉
, c > 1 and

TTL ≥ 2d(c+ 1) log2 ne+ 1.

Proof. We consider only the processes in N1. Since the
latency within N1 is smaller than the round duration, it
follows that messages will always reach their destination at
most one round after they were transmitted. The proofs of
Lemmas 3 and 4 can therefore be applied directly with one
additional round.

If the entire network latency is small and bounded, then
we can guarantee that every process will deliver every event
in total order with high probability. However, in most large-
scale systems, assuming a small and bounded end-to-end
communication delay is unrealistic, and guaranteeing that



all processes deliver all events with high probability might
incur prohibitively large delays. In practice, deterministic
dissemination protocols typically use failure detectors that
ping processes and discard (consider as failed) all those whose
latency is above a certain threshold [15]. These protocols
are very sensitive to latency changes within the network.
EPTO does much better: by setting the round duration
based on the latency of the well-behaving nodes (or on the
latency under good network conditions), we can guarantee
that the well-behaving part of the network will satisfy the
Probabilistic Agreement property. The processes with large
latency can remain in the network, however they might fail
to deliver some events from other processes and to transmit
some of their events to other processes for delivery. To the
best of our knowledge no other dissemination protocol has
this property. Still, in practice, and as we show in Section 6,
even processes with latencies much larger than δ are able to
deliver all events in total order.

5.4 Churn and Message Loss
To illustrate the robustness of our algorithm against churn

and message loss, we assume for simplicity purposes that
at each round of the protocol, there are α processes leaving
the network and α new processes joining the network, thus
the number of nodes after each round remains constant.
Furthermore, we assume that the network suffers from a
message loss rate of ε.

Since we want events to be delivered by all processes with
high probability, we must send enough balls in the network
so that the total number of received balls per event is at
least cn log2 n. However, failed processes and lost messages
mean that some of the balls are eliminated before they can
be transmitted to other processes. This can be countered by
increasing the fanout, as shown next.

Lemma 7. Let α and ε define the churn and message

loss rate of the network, and let K =
⌈

2e lnn
ln lnn

· n
n−α ·

1
1−ε

⌉
If TTL ≥ d(c + 1) log2 ne, then synchronous EpTO with
global time satisfies the Probabilistic Agreement property. If
TTL ≥ 2d(c+1) log2 ne, then EpTO with logical time satisfies
the Probabilistic Agreement property.

Proof. On average, after churn and lost messages, K =⌈
2e lnn
ln lnn

⌉
balls transmitted by each process will be received.

The lemma follows from Theorem 2 and Lemmas 3 and 4.

The increased fanout is sufficient to guarantee that all the
processes that are present in the network when an event is
broadcasted will deliver it with high probability as long as
they are still in the network at delivery time. A process
entering the network should deliver all the events created
after it joined with high probability, although no such guar-
antee can be made for events already created but not yet
delivered. Another advantage of our technique is that the
fanout is still logarithmic in the number of processes for any
churn rate. EpTO is the first algorithm of practical interest
that guarantees total ordering and good performance in the
presence of significant churn and message loss for large-scale
applications.

If the amount of churn varies at each round, an upper
bound αmax can be used at little cost. The same thing can
be said if the number of network processes varies: since both
the number of rounds and the fanout are logarithmic, us-
ing a reasonable upper bound nmax has very little effect on
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the performance of EpTO. Finally, we mention that if the
churn rate is very high, then very few processes remain in
the network long enough, and any approach with a logarith-
mic fanout will fail. However, deterministic algorithms will
certainly not fare better and such extreme networks are too
unstable to be of any practical interest.

6. EVALUATION
In this section, we evaluate the performance of EpTO.

To this end, we developed a realistic discrete simulator that
models network asynchrony, process drift, churn and message
loss. The simulator uses a priority queue and a monotonically
increasing integer to represent the passage of time, i.e., a
tick. Processes execute at time now() + δ ±∆3, balls sent
are delivered at processes at time now() + networkLatency
and processes may be added/removed from the system at a
rate churnRate.

We focus our experimental analysis on the delivery delay
under different conditions. The delivery delay corresponds
to the time elapsed between an event creation and its re-
ception. The objectives of the simulations are to study how
the delivery delay evolves as the system grows, both in the
number of processes and of concurrent events, as well as
how it evolves in adverse conditions. In all the experiments,
unless otherwise stated, we use δ = 125 simulator ticks for
the process round period with a uniformly random drift of
1%. The end-to-end latency distribution used is drawn from
a sample of geographically dispersed PlanetLab nodes and
is depicted in Figure 5. The mean latency is ≈ 157, the
standard deviation is ≈ 119, and the 5th , 50th and 95th

percentiles are 15, 125 and 366 simulator ticks, respectively.
As expected, most of the processes are connected with rea-

3The process drift.
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event publication rate.

sonably low latency while some processes have a very large
latency, up to six times the round duration in the worst
case. In all the experiments that follow, we have not
observed a single hole in the sequence of delivered
events.

We start by observing the baseline delivery delay which
corresponds to a pure balls-and-bins dissemination (i.e., Al-
gorithm 1) without order guarantees essentially showing the
time required for an event to infect all processes. Figure 6
shows the delivery delay of events in simulator ticks from
broadcast to delivery for 100 processes and a probability of
broadcast of 5%. We expect other epidemic dissemination
protocols in the literature [2, 4, 10, 11, 16, 19] to yield simi-
lar values. When using EpTO with a global clock and the
TTL given by the theoretical analysis (TTL=15), the cost of
obtaining a totally ordered delivery of events is about three
to five times that of reliable delivery. In practice however,
we observed that it is possible to reduce the TTL and still
have all processes receive all events in the same order. For
instance, with a TTL as small as 5, EpTO was still able to
deliver all events in total order to all processes, which results
in a substantial improvement of the delivery delay. This
hints that the theoretical analysis is conservative and the
TTL can be relaxed to much lower values. This is discussed
further in Section 8.

Next, we analyze how the broadcast rate and the number
of processes impact the delivery delay by respectively in-
creasing the broadcast rate from 1% to 10% (Figure 7a), and
increasing the number of processes from 100 to 10.000 (Fig-
ure 7b). As expected, the broadcast rate has little impact on
delivery delay when using either global or logical clocks (Fig-
ure 7a). EpTO scales also very well with the system size, as
the delivery delay increases logarithmically with the number
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clock and 5% broadcast rate using Cyclon [28] as PSS.

of processes (Figure 7b). For instance, growing the system
by two orders of magnitude (from 100 to 10000 processes)
less than doubles the delivery delay for global and logical
clocks. This comes from the fact that the number of rounds
increases logarithmically with the number of processes.

We also study the behavior of EpTO under churn by
observing the evolution of the delivery delay. To this end,
we subject the system to a given churn rate by removing
churnRate percent nodes uniformly at random and adding
churnRate percent nodes every δ simulator ticks. We then
analyze the ordering of events for processes that remained in
the system long enough. Results are presented in Figure 8.
As we can observe, the impact of churn on the delivery delay
is small for most processes, and we suspect that the delivery
tail is due to processes whose latency is higher than the round
duration. Note however that the churn magnitude used in
the experiments is significantly larger than what is observed
in real systems [26] so the real impact of churn in EpTO will
be much smaller. Furthermore, even at this magnitude, we
observed no hole in the sequence of delivered events.

In practical systems, churn degrades performance for two
additional reasons. First, since maintaining perfect view of
the system is unattainable at very large scales, the view made
available to EpTO by the PSS will inevitably contain refer-
ences to failed processes that have not yet been purged. This
implies that if such failed processes are selected as targets for
the balls, there will be less balls in the system. Conversely,
new processes can take a long time before appearing in the
view of other processes. To assess the impact of these, we
run an additional simulation where the view used by EpTO
is maintained by an implementation of Cyclon [28]. Results
are shown in Figure 9. As expected, there is a performance
degradation due to the above factors. This impact could be
minimized by further increasing the size of the fanout, but



 0
 20
 40
 60
 80

 100

 1700  1800  1900  2000  2100  2200  2300

C
D

F
 (

%
)

Delivery delay (simulator ticks)

Delivery delay under message loss

0 msg loss
0.01 msg loss

0.05 msg loss
0.1 msg loss

Figure 10: Delivery delay with message loss for 500 processes,
global clock and 5% broadcast rate.

more importantly by adjusting the PSS properties to favour
freshness as discussed in [17]. However such study is out of
the scope of our current work.

Finally, we study the impact of message loss on the delivery
delay. This is depicted in Figure 10. The results show that
the impact on the delivery delay is limited even at a high
loss rate of 10%. This confirms the robustness of EpTO in
yet another hostile environment.

7. RELATED WORK
There is a vast amount of work on deterministic total

order algorithms, much of which has been analyzed and cat-
egorized in [9]. Optimistic replication was surveyed in [24].
Optimistic total order algorithms rely on the real time re-
quired for an event to reach all nodes by exploiting the
spontaneous network order [23,25]. The goal is to decrease
the delivery latency of deterministic protocols and allow ap-
plications to process events optimistically. These protocols
still require a deterministic delivery of the final order and
thus are subject to the same scalability constraints of tra-
ditional deterministic protocols. Besides, they are sensitive
to network fluctuations and thus prone to mistakes in the
optimistic delivery. Unconscious eventual consistency was
studied in [1], where messages can be delivered out of order,
in which case rollbacks are performed. The algorithm tries to
create coalitions of processes with the objective of decreasing
the delivery of out of order messages and thus the number
of rollbacks.

A deterministic algorithm with probabilistic delivery guar-
antees was studied in [12]. The system periodically monitors
the delays and message losses, and based on these obser-
vations, adjusts the timing parameters and the number of
redundant transmissions to obtain acceptable delivery and
latency probabilities. The authors mention that probabilis-
tic order properties could be provided by adding a layer on
top of their system but do not provide more detail. Fur-
thermore, the system is not scalable without probabilistic
dissemination.

The first probabilistic total order algorithm, Pbcast, was
presented in [16]. It uses an epidemic dissemination protocol,
and like EpTO waits for messages to become stable before
delivering them. However, unlike EpTO, it is based on a fully
synchronous model, the network is static, and the dissemina-
tion protocol has weaker guarantees than a balls and bins
dissemination. Pbcast was extended in [2]. The improved
algorithm can run asynchronously and is composed of two
sub-protocols: an unreliable best-effort broadcast, followed
by a two-phase “anti-entropy” protocol based on epidemic

dissemination that detects and retransmits lost messages.
However, the extended algorithm no longer considers order-
ing: messages are delivered in FIFO order, and it is unclear
how to achieve total order in an asynchronous setting.

The PABCast protocol proposed in [13] proceeds in asyn-
chronous rounds during which processes can either broadcast
an event or vote for other processes’ events. Processes com-
municate through gossip and exchange the set of events
and the list of processes that voted for these events. A
round terminates when processes collect n− f votes (n be-
ing the system size and f the number of faulty processes)
and deterministically deliver all events. PABCast provides
probabilistic safety and liveness properties, whereas EpTO
provides deterministic safety (integrity and total order are
always preserved) and probabilistic liveness (validity is pre-
served and agreement is achieved w.h.p). The basic version
of PABCast only allows for processes to either broadcast
a single event or place a vote for an event of another pro-
cess. This can be overcome with several extensions, but as
the authors point out, the number of concurrent broadcasts
makes the protocol more prone to out of order deliveries. A
broadcast algorithm with causal order was presented in [18].
Like EpTO, it is based on epidemic dissemination, however
no implementation was provided. The algorithm requires
solicitations, retransmissions, and does not group multiple
processes into balls, which probably results in prohibitive
network traffic.

8. CONCLUSION AND FUTURE WORK
The ordering of events is one of the most fundamental and

studied problems in distributed systems, and until recently,
the main research focus was on the construction of primitives
with strong guarantees. However, the impressive growth of
large-scale distributed systems exposed the practical weak-
nesses of these approaches: poor scalability, unacceptable
degraded behavior under churn, and increased latency. These
practical weaknesses led to the development of alternative
formulations with weaker yet quantifiable guarantees such as
eventual consistency and epidemic dissemination protocols
themselves.

In this article, we presented EpTO, an epidemic total
order algorithm for large-scale distributed systems. EpTO
provides deterministic integrity and total order, and thus
safety is deterministic.4 Validity is also deterministic and
agreement is ensured with high probability, thus liveness is
ensured with high probability. The probabilistic nature of
agreement allows an arbitrarily small probability of hole in
the sequence of messages delivered at each process.

EpTO offers many advantages over prior work. It is concep-
tually simple, does not require any centralized coordination
and thus can scale to a large number of processes and events.
Furthermore, as agreement is ensured with high probability,
the guarantees offered by EpTO are similar to those of deter-
ministic algorithms. For instance, it is practically feasible to
configure EPTO such that the probability of hole is orders
of magnitude smaller than the probability of catastrophic
network failure. Finally, EpTO remains robust even under
hostile network conditions. We can extend and improve the
work presented in this article is various ways; the rest of this
section describes these avenues for future work.

4We consider the regular definitions of safety and liveness
proposed by [9] instead of the pure variants proposed in [7].



8.1 Theoretical Bounds
We believe EpTO can be improved and extended in several

ways. For instance, the bounds from [19] for the fanout and
number of rounds required to guarantee a sufficient number
of balls are very loose, and as a result our bounds for the
Probabilistic Agreement property are also very loose. This
resulted, as we have shown in Section 6, in way too many
balls in the system and thus a waste of network resources.
We are currently working on tighter bounds, which will be
presented in the extended version of this work.

Moreover, for logical time, we need to double the number
of rounds in the worst case, but in practice if the network
activity is more than barely minimal, there are enough trans-
mitted messages to update the logical clocks quickly. Even
though it is not shown in the article, we have confirmed this
through simulations as well. We plan to study the condi-
tions under which this worst-case constraint can be relaxed
without sacrificing the Probabilistic Agreement guarantees,
further improving the performance and resource usage of
EpTO.

8.2 Tagged Delivery
In EpTO, processes do not necessarily know when a hole

has occurred in their sequence of delivered events. This
being said, processes are allowed to drop events whenever
their delivery would result in an order violation, and in this
specific case they know that dropped events are out of order.
It is thus possible, instead of dropping them, to tag these
events as“out-of-order”and to deliver them to the application.
This could be of particular interest for perturbed processes,
which are otherwise difficult to integrate to the well-behaving
part of the network. This is a significant improvement over
existing work using failure detectors that simply discards
such perturbed processes.

8.3 Corrective Delivery
One can consider the delivery of corrective deliveries to

fix mistakes as done in optimistic protocols. Note, how-
ever, that the absence of a final order in EpTO makes these
corrective deliveries substantially different from the ones in
optimistic protocols: in the latter, a corrective delivery as
given by the final order is definitive, and thus enables the
application to proceed accordingly. On the other hand, in
EpTO the location of potential holes is unknown and as such
it is not possible to issue a corrective delivery and inform
the application that it is final. This is actually close to the
notion of unconscious eventual consistency [1], where pro-
cesses might receive corrective deliveries but are not aware
(i.e., they are unconscious) if the delivery order they possess
is definitive. Studying the suitability of EpTO to such a
programing model is an interesting research avenue, although
at this early stage, and considering the excellent performance
of EpTO, the additional complexity layer required to im-
plement corrective delivery does not appear to be a worthy
tradeoff.

8.4 Delivery Tradeoffs
In complement to the unconscious programing model dis-

cussed above, one can also consider directly sharing the
probabilistic nature of agreement to the application layer.
More precisely, from the balls-and-bins model which under-
lies the dissemination guarantees, it is possible to go a step
further and expose the notion of stability to the applica-

tion by associating each known but not yet delivered event
with the probability of being stable (and deliverable). For
some types of applications, having weaker but quantifiable
guarantees might be acceptable. For instance, knowing that
a majority of processes have delivered a message may be
sufficient. Therefore, the application could peek into the list
of received events and decide, for each event, if the associated
probability of stability and deliverability is acceptable and
process it accordingly. We plan to formalize and develop this
model in future work, potentially allowing a wide range of
tradeoffs between latency and ordering probability.

8.5 Real System Implementation
Finally, while we are confident in the accuracy of the

simulated results, a real implementation of the system would
be quite valuable both in practical terms and to further
assess EpTO’s behavior under real conditions. As a matter
of fact, implementing such protocols in a real system is far
from trivial as we have witnessed first-hand [21]. Leveraging
this experience, we plan to provide a real implementation of
EpTO and evaluate it on a real setting in future work.
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