
Hourglass: Leveraging Transient Resources for

Time-Constrained Graph Processing in the Cloud

Pedro Joaquim†, Manuel Bravo‡*, Luís Rodrigues†, Miguel Matos†

†INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
‡IMDEA Software Institute, Madrid, Spain

Abstract

This paper addresses the key problems that emerge when
one attempts to use transient resources to reduce the cost of
running time-constrained jobs in the cloud. Previous works
fail to address these problems and are either not able to of-
fer significant savings or miss termination deadlines. First,
the fact that transient resources can be evicted, requiring
the job to be re-started (even if not from scratch) may lead
provisioning policies to fall-back to expensive on-demand
configurations more often than desirable, or even to miss
deadlines. Second, when a job is restarted, the new configu-
ration can be different from the previous, which might make
eviction recovery costly, e.g., transferring the state of graph
data between the old and new configurations. We present
Hourglass, a system that addresses these issues by combin-
ing two novel techniques: a slack-aware provisioning strategy
that selects configurations considering the remaining time
before the job’s termination deadline, and a fast reload mech-
anism to quickly recover from evictions. By switching to
an on-demand configuration when (but only if) the target
deadline is at risk of not being met, we are able to obtain
significant cost savings while always meeting the deadlines.
Our results show that, unlike previous work, Hourglass is
able to significantly reduce the operating costs in the order
of 60 − 70% while guaranteeing that deadlines are met.

CCS Concepts • Information systems→Graph-based

database models; •Computer systems organization→
Cloud computing;

*Work partially done as student at Universidade de Lisboa and Université
Catholique de Louvain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00
https://doi.org/10.1145/3302424.3303964

Keywords graph processing, time-constrained, transient
resources, cloud computing
ACM Reference Format:

Pedro Joaquim, Manuel Bravo, Luís Rodrigues, Miguel Matos. 2019.
Hourglass: Leveraging Transient Resources for Time-Constrained
Graph Processing in the Cloud. In Fourteenth EuroSys Conference
2019 (EuroSys ’19), March 25–28, 2019, Dresden, Germany.ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3302424.3303964

1 Introduction

The analysis of data modeled as graphs is increasingly rele-
vant in many domains [21, 33, 47] and has driven the emer-
gence of many specialized graph processing frameworks [4,
12, 15–17, 25, 27, 30, 32, 39, 48]. A key feature of many
graph processing tasks is that they do not perform a “one-
shot” computation. Instead, the dynamic nature of the target
graphs [7, 23] often requires a recurrent analysis to keep
results up-to-date [33]. Therefore, the cost of operating a
recurring graph processing infrastructure over long periods
of time can quickly become prohibitive, due to the continued
use of a large number of resources. For example, based on
the performance numbers and experimental setup reported
by G-miner (a state-of-the-art graph mining system [11]), to
allocate resources to perform a recurrent community detec-
tion computation [40] on a billion edges graph would cost
on Amazon EC2 [1] more than 93K dollars per year.
Transient resources—resources with transient availabil-

ity offered at a discounted price—present an opportunity
to reduce such operational costs. For instance, running the
same system as above on Amazon spot-instances costs ap-
proximately 13K dollars per year, resulting in a 86% cost
reduction.1 Unfortunately, transient resources can be unex-
pectedly revoked. This makes the provisioning of recurring
graph processing tasks - that need to be executed periodically
over a snapshot - very challenging: in order to avoid violating
bounds on information staleness, and to ensure that the sys-
tem is able to keep pace with the desired analysis frequency,
it is crucial to guarantee that the analysis on a given snapshot
terminates before the next one starts being processed. Given
that evictions are not rare and that (re)starting a computation
on spot-instances incurs significant delays [28] even when
the interval between consecutive executions is not too tight,
meeting execution time constraints becomes very hard.
1https://aws.amazon.com/ec2/spot/pricing/

https://doi.org/10.1145/3302424.3303964
https://doi.org/10.1145/3302424.3303964


EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

This creates a dilemma: simple solutions that ensure termi-
nation within an execution deadline fail to provide the desired
cost savings while solutions that only attempt to reduce costs
often miss the deadlines [19, 34, 38].

In this paper, we present Hourglass, a resource provision-
ing engine for graph processing that breaks this dilemma by
offering substantial costs savings while ensuring that tasks
meet their execution deadlines. Hourglass integrates two
novel mechanisms:

1. A slack-aware provisioning strategy, that exploits the
use of transient resources to reduce operational costs.
It exploits the temporal slack available between the
next deadline and the minimum time necessary to pro-
cess the current task, to prioritize safer or riskier pro-
visioning strategies, such that termination deadlines
are met.

2. A fast reload strategy that allows to quickly re-partition
the graph when new deployment configurations are
selected: it combines an offlinemicro-partitioning tech-
nique that reduces the graph to a smaller graph by
partitioning it into many small partitions, with an on-
line micro-partition clustering policy that can quickly
cluster these small partitions into a configuration tai-
lored for the current deployment. We show that this
strategy offers results that approximate the quality of
offline partitioners, while avoiding the costs of pre-
computing a priori the partitioning for every possible
configuration that may be selected in runtime.

We have built a prototype of Hourglass that integrates
with the Amazon Web Services (AWS) ecosystem. Our pro-
totype uses a custom version of Apache Giraph [4] (§7). We
have experimented with three graph benchmarks: Graph
Coloring (GC), PageRank, and Single-Source Shortest Paths
(SSSP). Our results show that, unlike previous work, Hour-
glass is able to significantly reduce the operating costs in
the order of 60 − 70% while guaranteeing that deadlines are
met.2

2 The Practical Effect of the Dilemma

This section motivates our work. First, we illustrate our
dilemma: previous state-of-the-art provisioning approaches,
that only attempt to reduce costs with no concern for tim-
ing constraints, do miss deadlines; and naive adaptations of
these approaches to ensure timely termination come short of
providing the desired cost savings. Second, we illustrate the
benefits of combining different mechanisms in Hourglass
in order to break the dilemma.
To illustrate our point, we show results obtained when

running a GC job [31] over a Twitter dataset [22] on tran-
sient resources, using Giraph [4] as the underlying graph
processing system. The job can use multiple deployment
2Provided that our assumptions regarding the performance model used
hold. See §5 for further details.

Eager Hourglass
Naive

Hourglass
Slack-Aware

Hourglass
Slack-Aware +
Fast Reload

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 C
os

t (
w

.r.
t. 

O
n-

D
em

an
d)

79%

0%

0%

0%

Figure 1. Cost and percentage of missed deadlines for an
eager resource provisioning strategy and Hourglass.

configurations, each composed of a different number and
type of machines. If executed using the fastest configura-
tion, the job requires 4 hours to execute. In other available
configurations it can take up to 10 hours. These are the ob-
served execution times without the occurrence of evictions
which further delay the job completion. Suppose that the
computation needs to be re-executed 4 times a day, i.e, every
6 hours. This allows for a slack of 2 hours where one can use
cheaper but slower configurations and still tolerate evictions
(assuming the best configuration is selected as the last-resort
configuration).

Wemeasured, for this scenario, the costs and probability of
missing deadlines obtained using different provisioning ap-
proaches. To this end, and as in previous works [18, 19, 34, 35,
38], we use a public price trace of Amazon spot-instances [44]
to simulate the execution of this job with real observed in-
stance costs and eviction patterns (as it will be explained
later, all simulations use values that have been extracted
from real deployments). The sequence of deployments used
in response to evictions or planned reconfigurations is se-
lected by each of the provisioning strategies. We report the
average cost obtained from executing the job over different
randomly selected starting points in the trace (about 2000
simulations per strategy), while using the different provi-
sioning strategies (the values are normalized with regard to
the cost of running the job with on-demand resources). More
details about the deployment configurations, price traces,
fault-tolerance mechanisms, and partitioning strategies used,
are given in §8.
Figure 1 shows the costs (y-axis) and the percentage of

missed deadlines (numbers on top of each bar) for different
provisioning strategies. The two leftmost bars illustrate the
practical effect of our dilemma. The first bar (eager) shows
the cost reductions obtained by using an eager strategy, sim-
ilar to that of SpotOn [38], to acquire transient resources.
This strategy chooses the deployment that reduces a cost per
unit of work metric and is able to achieve an average cost re-
duction of 63%. However, this strategy missed the deadline in
79% of the runs, even with a 2 hours slack. The Hourglass



Hourglass EuroSys ’19, March 25–28, 2019, Dresden, Germany

Naive bar shows the results of a naive approach to meet
deadlines while using transient resources. This strategy uses
first SpotOn and then reverts to on-demand instances once
the time to reach the deadline becomes too short to tolerate
further evictions. This approach is able to meet all deadlines
but the cost savings drop to only 23% as, most of the times,
the system has to fall back to on-demand resources before
any substantial progress has been achieved.
The remaining bars of Figure 1 represent the following

strategies: “Hourglass Slack-Aware” shows the effect of first
applying our slack-aware provisioning strategy; and “Hour-
glass Slack-Aware + Fast Reload” shows the effect of adding
the fast reload strategy to the equation. The slack-aware strat-
egy, by itself, is able to achieve 43% cost reductions while
missing no deadlines. By adding the fast reload mechanism,
Hourglass is able to meet the timely constraints of the ap-
plication with a cost reduction of 63%, the same as the eager
strategy but without missing any deadline.

3 Background and Related Work

In this section, we briefly cover related work and highlight
the main limitations of previous solutions.

3.1 Leveraging Transient Resources

A substantial number of techniques have been recently pro-
posed to allow the usage of transient resources for different
types of jobs in the cloud, such as SpotOn [38], Flint [34],
SpotCheck [35], Proteus [19], or Tributary [18]. Most of
these systems have been designed for applications that are
substantially different from graph processing, and use tech-
niques to recover from evictions that are not efficient in
our context. SpotCheck [35], for instance, proposes a de-
rivative cloud platform on the spot market that relies on
VM migration mechanisms. However, these are intended for
single machine applications as they lack coordination and
have a limited state size that can be efficiently handled [38].
Also, most of these systems use greedy cost selection poli-
cies [19, 34, 38] that select the deployment that is expected
to reduce the cost per unit of work at the provisioning mo-
ment. As we show in §8, these strategies are not a good fit
for time-constrained jobs as they do not take the application
timeliness into consideration, leading to missed deadlines
and sub-optimal provisioning choices.
Some approaches (e.g. [18, 34, 38]) rely on over-provisio-

ning (i.e., they use more transient machines than necessary)
and explore eviction correlation metrics to provide bounds
on latency SLOs. Although they succeed in mitigating the
effect of a single eviction, their increased resource usage
limits the potential cost reductions in the cases where (a few)
evictions may be tolerated. Also, these solutions may end
up spreading machines across different markets (to reduce
eviction correlation), that may be geographically distant,
a strategy that has a negative impact on graph processing

jobs, that require frequent communication and coordination
among workers [27].

3.2 Graph Processing

The relevance of graph processing has spurred the devel-
opment of frameworks that are specifically tailored to the
characteristics of these jobs. Twomain approaches have been
followed in the literature. One relies on hardware/software
architectures that allow to process large graphs in a single
machine. The other relies on distributed deployments, based
on multiple machines with standard configurations. A no-
table example of the former approach is Mosaic [26] that, us-
ing fast storage media and massively parallel co-processors,
is able to process a trillion-edge graph in a single machine.
This indicates that with a sufficient powerful machine one
can match, or outperform, distributed solutions. However,
not all users have access to specialized hardware and the
size of graphs is growing fast (for instance, the number of
Facebook users has been reported to grow from 1.39B in
2014 [13] to more than 2B in 2017), which makes distributed
solutions relevant.
A key issue that must be addressed to make distributed

solutions effective is the fact that graph processing appli-
cations are iterative and require exchange of information
among workers at the end of each iteration. Pregel [27] was
one of the first graph processing systems, followed by several
other systems such as [4, 15, 16, 30, 39]. These introduce op-
timizations such as: (i) partitioning the state of large vertices
across several partitions [30]; (ii) asynchronous execution
models [15, 16]; (iii) models centered in edges to better dis-
tribute work among workers for scale-free graphs [15]; and
(iv) subgraph abstractions to bypass message passing over-
head in local partitions [39].
Particularly relevant for the design of Hourglass is the

fact that graph partitioning and loading, a task that needs to
be executed whenever a new deployment configuration is
selected, can consume a non-negligible amount of time. Also,
in most cases, intelligent partitioning techniques [15, 20]
significantly reduce the computational time [30, 39]. Un-
fortunately, previous graph partitioning schemes, such as
METIS [20], are computationally slow and have been de-
signed to be run only once, before graph processing starts.
However, when using transient resources, the graph may
need to be (re-)partitioned often due to evictions. Hour-
glass includes a novel partitioning and loading strategy that
addresses these concerns.

4 Hourglass

We now provide an overview of Hourglass, a resource pro-
visioning engine for time-constrained graph processing jobs
that execute in Infrastructure as a Service (IaaS) platforms.
Hourglass has two primary concerns: (i) minimizing the
operational cost of executing the target graph processing



EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

Hourglass 
Partitioner 

Datastore 

(Re-)Deploy 
(if necessary) 

Fast Load 
(if necessary) 

Execute 
(Spot/On-
Demand) 

Checkpoint 

Hourglass 
Provisioner

Finish

Clustering 
Info 

Clustering 
Request 

Eviction 
Model

Performance
Model

Market 
Data 

Job 
Finished? 

Yes 

No 

Online  
Execution Flow 

Online  
Data Flow 

Offline 
Data Flow 

Figure 2. Hourglass overview.

job; and (ii) enforcing user specified temporal constraints.
Figure 2 depicts a high level view of Hourglass and of its
operational environment. The system is composed of two
main components, a Resource Provisioner and a Partitioner.
In a typical run, the execution flow is as follows:

1. The graph to be processed is first partitioned offline and
stored in a persistent datastore [6, 36].

2. Hourglass selects the deployment configuration (tran-
sient or on-demand) to be used for the processing task using
a slack-aware resource provisioning strategy (§5). This strat-
egy aims at reducing the expected cost of running the job,
while taking into consideration its temporal restrictions. The
algorithm is fed with: (i) a model for estimating the perfor-
mance of a given deployment configuration; (ii) a model
for estimating the eviction probability of a given type of
machine; and (iii) the current resource market prices.

3. When the requested machines are ready, the target graph
processing system is deployed and, in turn, loads the graph
data from the datastore. This step benefits from a novel micro-
partitioning technique (§6) that significantly reduces the
system’s booting time, which is key to achieve greater cost
reductions when leveraging transient resources, as we later
show.

4. After loading the graph, the system executes until either
an eviction occurs or it stops to checkpoint its progress. In
the former case, the provisioner selects a new deployment
to continue the job execution. In the latter case, if there is
still work to perform, the provisioner decides if it is better to
change or to keep the current deployment. Re-configuration
may be required due to changes in the transientmarket prices
or to comply with the application timely requirements. In
any case, the system cycles between step 2 and 4 until the
job completes.

5 Slack-Aware Provisioning Strategy

In this section, we describe the slack-aware provisioning
strategy used by Hourglass. The goal of this strategy is to
choose a deployment configuration that: (i) ensures that the
job can complete before the deadline, even if evictions occur
when transient resources are used; and (ii) minimizes the
expected cost of running the job through completion.
Intuitively, our approach rests on two key observations:

there is a deadline to execute each job, and there is a last-
resort configuration that is able to complete the job before
the deadline elapses (see Figure 3). The difference between
the available time (given by the deadline) and the time re-
quired to execute the rest of the job using the last-resort
configuration is denoted the slack-time. We exploit the slack-
time available to make progress in the job using transient
resources and thus reduce costs. If at any time during the
execution of the job we run out of slack, we switch to the
last-resort configuration to ensure that the job can be com-
pleted within the deadline. Note that depending on the slack
available we might never need to switch and thus run the
job to completion using exclusively transient resources.
We start by describing the system model, then we define

precisely the optimization criteria that our strategy aims at
achieving. Finally we describe a heuristic to find an approxi-
mate solution efficiently.

5.1 System Model

In this subsection, we introduce a number of concepts, ter-
minology, and definitions that will be used to describe the
Hourglass provisioning strategy. These are summarized in
Table 1 and presented with greater detail in the following
paragraphs.

On-demand and Transient Resources. We assume that
the cloud providers offer two classes of resources, namely
on-demand resources (D) and transient resources (T). On-
demand resources are typically more expensive but are as-
sumed to be reliable. Transient resources are cheaper but
can be revoked without notice.

Deployment Configurations. Cloud providers have an ex-
tensive offer of different types of machines, which have dis-
tinct hardware characteristics and sizes. A deployment con-
figuration c is a set of machines where the graph processing
job can be executed. A configuration is characterized by the
number and type of machines that are selected. We assume
the set of possible configurations, denoted C, to be known a
priori. We distinguish the set CT of configurations that in-
clude transient resources from the set CD of configurations
that use only on-demand resources (C = CT ∪ CD ).

Performance Model. In order to select the right deploy-
ment configuration, Hourglass makes use of a performance
model that can provide an estimate of the time tcexec required
to run the job in a given configuration c ∈ C. How the



Hourglass EuroSys ’19, March 25–28, 2019, Dresden, Germany

C Set of all deployment configurations
tcexec Estimated time configuration c takes to execute the target job
tboot Estimated time for the cloud provider to boot the requested machines
tcload Estimated time configuration c takes to load the target graph dataset
tcsave Estimated time configuration c takes to checkpoint the current job state

tcf ixed
Estimated time configuration c takes to boot, load the target graph and checkpoint the
current job state

lrc The last-resort configuration, which is the fastest on-demand configuration
tdeadline The temporal deadline to finish a given job

slack(t)
Time between the deadline and the time necessary to complete the job in the fastest on-demand
configuration started at time t

ωc The normalized capacity of configuration c
tcckpt Optimal checkpoint frequency of configuration c
useful(c, t) Computation time left at time t for configuration c to execute
expected_progress(c, t) Expected job progress if configuration c is selected to execute at time t and no eviction happens
EC(t ,w)|c Expected cost of running the remaining workw at time t when c is selected

Table 1. Notation.

model is constructed is orthogonal to the contributions of
this paper. There is currently extensive research on methods
for efficiently building performance models for the cloud
(e.g. [8, 43]). In Hourglass we make the following approxi-
mation to make the problem of finding the best deployment
tractable: we assume that the work progresses at uniform
pace during the job execution. Say tcexec is the time required
to execute the job on configuration c ; our assumption is that
by time tcexec/2 half of the work has been done. The per-
formance model must also provide an estimate of the time
it takes to load the graph to memory (denoted tcload ) and
of the time to checkpoint the progress (denoted tcsave , see
discussion on checkpointing below).

Last-Resort Configuration. We denote as the Last-Resort
Configuration (lrc ∈ CD ) the on-demand configuration that
can complete the graph processing job in the smallest amount
of time, t lrcexec . Whenever possible, the provisioning strategy
avoids using the last-resort configuration and, instead, at-
tempts to use transient resources.

Deadline and Slack. We assume an existing temporal dead-
line to finish the graph processing job (denoted tdeadline ).
Naturally, we must have tboot + t lrcload + t lrcexec + t lrcsave ≤

tdeadline , where tboot is the time necessary to boot machines,
measured as the elapsed time since a resource request is is-
sued and the time the resource is ready to use. We denote the
fixed costs of booting the lrc machines, loading the graph,
and storing it to safe storage as t lrcf ixed = tboot + t

lrc
load + t

lrc
save .

The available slack is therefore the difference between the
deadline and the time necessary to complete the job in the
last-resort configuration, which is given by the sum of the
fixed time and the variable time to finish the current job.
More formally, at time t , withw(t) ∈ [0, 1] representing the

percentage of the work left to be completed, and horizon(t) =
tdeadline − t the time left to the deadline, the available slack
at that time t (depicted in Figure 3) is given by:

slack(t) = horizon(t) − t lrcf ixed −w(t) ∗ t lrcexec

NormalizedCapacity. To assess the performance of a given
configuration c , we often compare its performance with
the performance of the last-resort configuration. We de-
note ωc the normalized capacity of configuration c , i.e. ωc =

t lrcexec/t
c
exec .

Eviction Model. Hourglass also needs to estimate how
likely are transient resources to be revoked. This is provided
by an eviction model. Although most cloud providers do not
disclose information regarding the probability of eviction of
a given resource, an eviction model can be constructed based
on empirical evidence by studying the behavior of different
resources, in different time periods and availability zones.
A number of eviction models have been constructed in this
way [18, 19, 28, 34, 38, 45]. Without loss of generality, we
assume that the eviction model provides a cumulative dis-
tribution function (CDF) of the probability of being revoked
before reaching a certain uptime. This offers a good tradeoff
between complexity [18] and tractability [19, 34, 38].

Cost. The cost per unit of time of a configuration c (costc )
is simply the price charged by the service provider at the
provisioning moment.

Checkpoint Interval. Given that transient resources can be
evicted, we require a mechanism to avoid losing all progress
done upon an eviction. Most graph processing systems [4, 11,
15, 16, 25, 27, 30, 39] rely on checkpointing to achieve fault
tolerance and, therefore, we leverage this mechanism. The



EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

Figure 3. Available slack at time t and respective useful
compute interval available for a configuration c .

optimal checkpointing interval, denoted tcckpt , is dependent
on the configuration c selected, because different configura-
tions make progress at different pace and there is a minimum
amount of progress that is worth being checkpointed. Like
previous work [34], we rely on the result presented in [14]
to select the checkpointing interval: it computes the opti-
mal checkpointing frequency using the time necessary to
checkpoint (tcsave ) and the mean time to fail (MTTF). For
configuration c , the optimal checkpoint frequency is:

tcckpt =
√
2 ∗ tcsave ∗MTTFc

Useful Interval. Wedefine useful(c, t) as the time left (count-
ing from instant t ) before the computation on c is stopped
either because: the job finishes, the slack is over, or a check-
point of the application state needs to be performed. Please
note that when a new configuration is selected to replace
an existing one, the maximum execution time available be-
comes slack(t) − tcf ixed instead of just slack(t) − tcsave . To
avoid cluttering the notation, we do not further distinguish
these two cases (the implementation accurately considers
both cases). The useful interval for deployment c at time t
(also depicted in Figure 3) is therefore given by:

useful(c, t) = min(w(t) ∗ tcexec , slack(t) − tcf ixed , t
c
ckpt )

Progress. When the job runs uninterrupted for a period in
a given configuration, it makes some progress. We define
expected_progress(c, t) as the work that will be performed
during the next useful interval if no evictions occur, i.e.:

expected_progress(c, t) =
ωc ∗ useful(c, t)

t lrcexec

Thus, if at a given time t i the work that remains to be per-
formed is w(t i ), at time t i+1 = t i + useful(c, t i ) + tcsave we
expectw(t i+1) to be:

w(t i+1) =

{
w(t i ) − expected_progress(c, t i ), if no evictions
w(t i ), otherwise

5.2 Provisioning Criteria

With the definitions above, we can now define precisely the
optimization criteria that our provision strategy should sat-
isfy. When the strategy is invoked, it is fed with the current
time (t ) and the amount of work that remains to be done (w).
The deployment strategy attempts to make progress using
transient resources if this strategy is viable; otherwise, it
terminates the job using on-demand resources. The choice
of a configuration c to be used depends on the Expected Cost
of executing the remainder of the job starting from that con-
figuration, denoted EC(t ,w)|c . Therefore, the expected cost
of finishing the current job at time t , denoted EC(t ,w), is the
expected cost of cbest that satisfies:

EC(t ,w)|cbest ≤ EC(t ,w)|ci : ∀ci ∈ C

The expected cost of running workw at time t when c is
selected to execute next is provided by:

EC(t ,w)|c =


0, ifw = 0
∞, if fails deadline
costc · (w · tcexec + t

c
save ), if c ∈ CD

costT (c, t ,w), if c ∈ CT

The first and second cases correspond to the stop condi-
tions, i.e., when the work has finished and when the current
deployment is no longer able to be selected without compro-
mising the job deadlines, respectively. By construction, the
last-resort configuration never falls in the second branch and
we always have at least one deployment able to be selected.
The third and fourth cases are used when the selected config-
urations are either on-demand or transient and do not match
any of the above cases. For configurations with transient
resources, the expected cost is computed recursively. Let
Pec (t) be the probability of any of the transient resources of
configuration c being evicted at time t , Fec (t) the respective
CDF function and tcint = useful(c, t) + tcsave the total time
configuration c will be executing until it is able to checkpoint
progress, the expected cost of c is:

costT (c, t ,w) = Fec (t + tcint ) ∗ cost
T
f ail (c, t ,w)+

(1 − Fec (t + tcint )) ∗ cost
T
success (c, t ,w)

In this formula, the cost is calculated as the sum between
the follow-up cost in case of failing before checkpointing
(costTf ail ) and in case of succeeding to do so (costTsuccess ),
weighted by the probability of each event occurring. In both
cases, we compute the follow-up cost recursively with the
respective time and work left to be finished. In particular,
the follow-up cost in case of failure is calculated as:



Hourglass EuroSys ’19, March 25–28, 2019, Dresden, Germany

costTf ail (c, t ,w) =∫ t+t cint

t

Pec (x)
Fec (t + tcint ) − Fec (t)

· (costc · x + EC(t + x ,w)) dx

This cost is given by the integral of the follow-up costs
in case of failing in each possible moment before complet-
ing the useful computation time, therefore no progress is
achieved, weighted by its probability. In case of succeeding to
checkpoint, the follow-up cost is also computed recursively
as:

costTsuccess (c, t ,w) =

costc · tcint + EC(t + t
c
int ,w − expected_progress(c, t))

5.3 Approximating EC Efficiently

As explained before, Hourglass takes provisioning decisions
in key moments of the job execution. One relevant aspect is
the time necessary to reach a decision. The system should be
able to reach good decisions at keymoments of execution (for
instance, after evictions occur) without requiring the entire
system to stop for a significant amount of time. One could
consider computing the provisioning decisions ahead of time
in an offline manner. However, the provisioning policy takes
into consideration parameters that are only known to the
system at run time (e.g. current market prices, exact moment
in which evictions occur, etc.).

Since EC needs to be computed online, it needs to be com-
puted fast. However, computing EC by solving the integral of
costTf ail , which requires an approximation by a finite sum, is
prohibitively slow for any reasonable discretization of time
(we illustrate this in §8). Therefore, we now propose the
following simplifications to approximate costT efficiently.
We assume that, if a configuration is not evicted, it remains
in use for consecutive checkpointing intervals, assumption
supported by empirical evidence that deployment reconfigu-
rations not due to evictions are rare. Under this assumption,
the expected follow-up cost in case of success (costTsuccess )
is only computed recursively for the current configuration
rather than for all possible configurations. Additionally, the
follow-up cost in case of failure (costTf ail ) is only computed at
theMTTF of a given configuration rather than for all instants
between the beginning and end of the computation.

6 Fast Reload

Distributed graph processing systems are characterized by an
initial phase in which the target graph is first partitioned and
then loaded by the workers (machines) before starting the
execution phase. Typically, the partitioning is based on the
number of machines that will be available during execution
phase. This step may be costly when chasing high-quality
partitionings but its cost is amortized as it is only executed
once. Nevertheless, when using transient resources, one may

have to re-deploy the system frequently due to evictions.
Given that the number of machines across deployments may
vary, the systemmay be forced to re-partition the graph such
that a new partitioning—more suitable for a newly selected
configuration—is computed.
Next, we describe why the current graph partitioning

and loading approaches are not suitable for Hourglass.
Then, we describe a novel strategy, which combines a micro-
partitioning (aka over-sharding) and a clustering technique,
that circumvents the limitations of previous work.

6.1 Limitations of Current Strategies

Previous work can be grouped into three main classes: strate-
gies that assign vertices to partitions based on hashing [27];
strategies that create graph partitions offline using some
optimization criteria that improves the execution phase on-
line (for example, METIS [20]); and strategies that perform
the graph partitioning during loading time using stream-
based approaches [37, 41], which usually also follow some
intelligent partitioning strategy. All these approaches offer
a trade-off between partitioning time and partition quality,
which makes themwell suited for graph processing jobs with
different characteristics. Nevertheless, all strategies have lim-
itations whose impact is more significant when applied to
our dynamic context and that we must address in order to
efficiently leverage the available slack time.

Partitioning Phase. All approaches partition the graph
based on the number of worker machines that are available
in the execution phase. In our dynamic setting, this translates
into possibly having to re-partition the target graph every
time the system changes to a new configuration. When using
hashing, this has no impact because there is no partitioning
phase. The partitioning step is implicitly hidden behind the
hash function that translates vertices into partitions (usually
the modulus of an integer vertex id and the target number
of partitions). On the other hand, when using offline and
stream-based partitioners, which seek partitionings of better
quality,3 this is specially problematic because they require
increased partitioning times. If we increase the partitioning
time (by executing it multiple times for different deployment
configurations) we are not only increasing the overall job
cost but also further reducing the situations in which it is
worth using one of these approaches instead of hashing,
therefore also reducing potential cost benefits.

Loading Phase. When hash and offline partitioners are used,
the loading of the graph can be parallelized by assigning dif-
ferent graph chunks to all machines available [4]. These
machines read and parse the data into in-memory entities
(vertices or edges) that are then forwarded over the network
3Good-quality partitionings are those that minimize the number of edges
between vertices belonging to different partitions, as this implies com-
munication among machines during the execution phase, which affects
performance negatively.



EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

1

Offline Online

3

41

2

2

4

3

1 11

3 1
2

4 1

2

Figure 4. Micro partition generation process and subsequent partitioning steps. First the original graph is partitioned into the
desired number of micro partitions (step 1) and reduced (step 2) offline. The reduced graph is then partitioned online (step 3)
instead of the original graph. Finally, the vertices of the reduced graph are then mapped to the micro-partitions of the original
graph (step 4).

to the workers to which they were assigned in the parti-
tioning phase. As we will show in §8, the exchange of data
over the network during the loading phase has a significant
impact in the overall time needed to perform such a task. In
the best case scenario, workers only load graph entities that
are assigned to them, therefore avoiding the exchange of
data over the network. One could achieve this by storing the
graph in the same order in which it was partitioned such that
workers could be assigned chunks that only contain their
assigned data. However, if we happen to change the deploy-
ment configuration, therefore requiring a new partitioning
phase, the data of a single partition would be again scattered,
falling back to the first scenario. Regarding stream-based par-
titioners [37, 41], these often use a centralized partitioning
logic that requires a single machine to load the entire graph
dataset, thus preventing potential performance benefits that
can be achieved by allowing a parallel loading of the graph.

6.2 Hourglass Partitioner

The Hourglass partitioner avoids the limitations of pre-
vious approaches thanks to a novel hierarchical approach
that combines both offline and online steps, as illustrated
in Figure 4. Offline, Hourglass partitions the graph based
on a micro-partitioning strategy. Online, the system merges
and creates partitions that fit the target deployment con-
figuration needs. This way, the system avoids the need to
perform a new partitioning phase every time a new config-
uration is selected. Still, when clustering micro-partitions,
one must seek to preserve the partition quality obtained if
running the baseline partitioner from scratch for the target
deployment configuration. This is achieved by our cluster-
ing policy, which is used in the online phase to select which
micro-partitions to merge. The following paragraphs give
additional details regarding the offline and online steps.

Micro Partitioner. In the offline phase, the graph is parti-
tioned in micro-partitions by using any state-of-the-art par-
titioning scheme. In the current prototype, we allow the user
to decide between using METIS [20], FENNEL’s [41] one-
pass streaming algorithm, and the standard hash partitioning
algorithm [27]. The choice of the partitioning algorithm de-
pends on the size and properties of the target graph (results
for different approaches are discussed in §8). Nevertheless,

our approach does not preclude the use of other partitioners,
tailored for a specific graph. A key design issue is to decide
how many micro-partitions to create. Hourglass selects
the number of micro-partitions as the least common multiple
of the number of worker machines used by configurations
in C. This ensures that, whatever configuration is selected
in run-time, it is possible to generate equally-sized clusters,
which favours a balanced work among workers.

Clustering. One key observation is that micro-partitions
can also be represented as a graph: there is an edge between
two micro-partitions if there is one or more edges among
the vertices of these micro-partitions; the weight of the edge
between the twomicro-partitions is the number of edges that
cross the border between them. Logically, the offline step
reduces the original graph to another graph, that is orders
of magnitude smaller. By creating a micro-partitions graph,
as depicted in Figure 4, the problem of clustering can be
modelled recursively as a partitioning problem. We rely on
METIS to solve the recursive problem formulation and find
an optimal clustering of micro-partitions to macro-partitions
that are suitable for a given configuration We chose METIS
because it provides good results and, for the problem sizes
we used in our evaluation, we were able to obtain a solution
in few milliseconds. Nevertheless, Hourglass is indepen-
dent of METIS and any other partioner could be used. As
we will show in §8, our clustering policy is able to adapt
the micro-partitions (created in a single partitioning step)
to multiple partitioning solutions with very reduced qual-
ity degradation. Additionally, due to this micro-partitioning
strategy, we are also able to attain parallel recovery [42, 46],
a powerful recovery property that makes eviction recovery
more efficient by allowing Hourglass to paralellize the load-
ing step after an eviction, without worker communication.
This is possible because graph data remains partitioned in
the same way across different configurations, only micro
partitions are assigned to different workers that can load
them in parallel and independently.

7 Implementation

Our prototype is integrated with the AWS ecosystem but
it could be easily extended to support other providers. It



Hourglass EuroSys ’19, March 25–28, 2019, Dresden, Germany

consists of 3k lines of Java code. We have selected the widely
used Apache Giraph [4] (version 1.2.0) as our graph process-
ing engine. We opted to use Giraph for several reasons. First,
it is one of the few solutions publicly available. Second, it has
been widely used and its performance has been reported in
several works. Finally, and most importantly, its source code
is also available; by using Giraph, we can illustrate our con-
tributions without risking to have the results polluted by our
own (potentially flawed) implementations of other systems.
Giraph runs on top of Hadoop [5], therefore we decided to
integrate Hourglass with the Amazon Elastic MapReduce
service [2] (release 5.11.1) that provides an AWS optimized
version of Hadoop. We have also modified the checkpointing
mechanism of Giraph such that it reads/stores checkpoints
from/to Amazon S3 [3], a highly available cloud storage ser-
vice, rather than to the underlying distributed filesystem.
This allows a recovery from a full system failure that may
occur due to evictions. Regarding spot-instance requests,
which require a bidding price representing the maximum
price one is willing to pay for a given machine (not the actual
paid price), we simply bid the on-demand price. Although
previous work has given special focus on how to place the
ideal bid [18, 19], recent changes in the spot-instances pric-
ing model4 turned the submitted bid irrelevant to determine
when spot-instances are terminated. This effect has been
confirmed empirically by recent work [28].
Regarding micro-partitions, we have modified Giraph to

perform the graph reduction step (§6) while the graph is
being first loaded, with a few seconds overhead. From the
three supported partitioning approaches, only METIS re-
quires an offline step to generate micro-partitions. When
FENNEL is used, micro-partitions are generated in the first
loading phase. For hashing, micro-partitions are also created
during the first loading phase by assigning chunks of the
graph dataset (e.g. file blocks from the target storage system)
to workers that load them and become owners of all the
vertices in the assigned file blocks. In this setting the system
benefits from a loading step that is parallelized across work-
ers and requires no communication to exchange out-of-place
data. Independently of the partitioning approach used, af-
ter micro-partitions are created, any subsequent load of the
graph is done in parallel and without coordination among
workers. Also, there is no need for an additional online par-
titioning phase, even if a different deployment configuration
is selected.

8 Evaluation

In this section, we first evaluate Hourglass as a whole,
comparing it with state-of-the-art approaches in §8.2, and
then study the impact of each individual contribution in the
subsequent sections.

4https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/

# Vertices # Edges Network Type
Human-Gene [29] 22 283 12 323 680 Biological
Hollywood [29] 1 069 126 56 306 653 Collaboration
Orkut [24] 3 072 626 117 185 083 Social
Wiki [29] 5 115 915 104 591 689 Web Pages
Twitter [22] 52 579 678 1 614 106 187 Social
RMAT-N [10] 2N 2N+4 Synthetic

Table 2. Graph datasets.

8.1 Experimental Setup

Similarly to previous works, we resort to both real deploy-
ments on Amazon EC2 and simulations [18, 19, 34, 35, 38, 45].
Simulations are used for long running experiments, that aim
at assessing cost savings over long periods of time and that
would be impractical and costly to perform in a real deploy-
ment. All the simulations are fed with parameters, such as
application execution times, extracted from real deployments.
Simulations use a price trace from the Amazon’s us-east-1
region on November 2016 [44]. Thus, when running the sim-
ulation, both the changes in prices and the evictions that
result from these changes follow exactly what would happen
if Hourglass was executed in that period of time. Using this
methodology, the experiments can be reproduced and allow
us to compare the different strategies under exactly the same
conditions. Additionally, a trace from October 2016 was used
to derive the historical statistics, such as eviction probabili-
ties and average market prices per instance type, necessary
in the provisioning decisions of the tested approaches.

Graph Datasets. Table 2 describes the graph datasets used
in the experiments. We use a mix of real world graphs from
different domains and synthetic datasets with different scale
parameters.

Graph Applications. We use the following applications in
our evaluation: SSSP, which calculates the distance from all
vertices to a single source vertex; PageRank [9], which es-
timates the relevance of each vertex based on the existing
connections (edges); and GC, that assigns the least possible
number of colors to vertices such that no two adjacent ver-
tices have the same color, following the approach proposed
in [31]. These applications are representative of typical graph
processing jobs that can go from a few minutes (SSSP) to
hours (GC).

Instance Types. We consider a total of 9 deployment con-
figurations where each uses a single type of machine from
the “memory optimized” family and either all resources are
transient or none. The use of homogeneous deployments
is justified by the fact that Giraph adopts a synchronous
execution model, therefore (i) the execution inevitably halts
if some resources are evicted, even when some resources are
still available, and (ii) no gains are achieved by having ma-
chines that make computational progress at different rates.

https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/


EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

More precisely, we use r4.2xlarge, r4.4xlarge, and r4.8xlarge
instances in deployments that have a total of 16, 8 and 4
worker machines.

Simulation Parameters. To build an accurate simulation,
we first identified the key parameters that affect the system
which include, among others, the time to boot machines,
the time to read/store data from/to the external storage, and
the execution time of each of the tested graph processing
applications across the different graph datasets and in each
of the possible deployments considered. We then performed
the actual deployment of each configuration and measured
each parameter. These measurements are used to calibrate
the simulator.

8.2 Overall Performance and Comparison with the

State-of-the-Art

We start by assessing the number of missed deadlines and the
cost reductions achieved by Hourglass. For this purpose,
we executed different graph processing jobs on Amazon
using Hourglass, and compared it to two state-of-the-art
provisioners, namely Proteus [19], and SpotOn [38], which
we integrate in our prototype.

Proteus, greedily selects the deployment expected to re-
duce the cost per unit of work produced at each moment.
SpotOn, which is also targeting batching systems, chooses
between: (i) using a single transient deployment and check-
point the state periodically to safe storage; or (ii) replicating
the system across multiple transient deployments and avoid
the checkpoint overhead. In both cases, SpotOn uses a greedy
policy similar to the one used by Proteus. None of these pro-
visioners attempts to satisfy deadlines. Therefore, we have
derived, implemented, and experimented a straightforward
extension to these systems that is able to enforce deadlines.
The extension, denoted deadline protection (DP) mechanism,
simply switches the deployment to use on-demand resources
once the slack available to tolerate further evictions is ex-
hausted. The variants augmented with the DP mechanism
are identified as Proteus+DP and SpotOn+DP.

Overview of Results. Figure 5 shows the results for 30 dif-
ferent scenarios. We use the three graph applications SSSP,
PageRank (30 iterations), and GC, which exhibit different
execution times: 3 minutes, 20 minutes and 4 hours in the
last-resort configuration, respectively. Note that these execu-
tion times for the last-resort configuration include not only
the computation time (with checkpointing disabled) but the
time to: bootstrap the system (start Hadoop and then Giraph),
download the datasets from the external storage (S3 in our
case), load the datasets into Giraph and finally write the com-
putation output back to the external storage after finishing
the computation. For each job we use 10 different deadlines,
which vary the slack available to finish the job from 10% to
100% of the execution time. The bars in the figure depict the
total average cost of running the jobs (including both offline

and online phases) normalized by the cost of running them
in the on-demand baseline configuration. The baseline cost
is calculated as a single execution of the target job in the
last-resort configuration from the moment the graph dataset
starts being retrieved from the external storage until the com-
putation output is safely stored. In the on-demand baseline
configuration, the checkpointing feature was disabled (no
overhead storing checkpoints into the external storage). The
numbers above the bars denote the percentage of runs that
missed deadlines. Therefore, lower bars represent lower costs
and smaller numbers above the bars represent less missed
deadlines (always 0 for Hourglass). The costs measured for
each strategy are the average over 2000 simulations of the
target job (with the starting moment selected at random). All
experiments have been executed using the Twitter dataset,
our largest dataset.

We first analyze the performance of the different jobs for
a given slack and later discuss the overall trend when the
slack increases. A detailed explanation of why Hourglass
achieves these results is postponed for §8.3, where we zoom
into some of these results and, with the help of additional
micro-benchmarks, provide insights on the contribution of
the different Hourglass components to the overall perfor-
mance in different conditions.

Different Jobswith the Same Slack. We start by discussing
the performance of SSSP (the shortest job) with a 20% slack.
Interestingly, Hourglass offers the best cost savings. Proteus
and SpotOn also achieve large savings (but not as expressive
as Hourglass) but miss many deadlines. With the deadline
protection mechanism enabled, both systems (Proteus+DP
and SpotOn+DP) avoid missing deadlines, but they no longer
achieve cost savings. We now look at the performance of
GC (the longest job) with the same slack. In terms of cost
savings, Hourglass is slightly worse than Proteus and Spo-
tOn. However, Hourglass avoids missing deadlines while
the latter miss the deadlines in most of the runs. In this job,
the simple DP mechanism is able to provide some savings,
but these savings are relatively modest when compared with
Hourglass. The results for PageRank (the medium duration
job) show a similar trend.

Changing the Slack. We now discuss the trends when the
available slack changes. An interesting observation is that, in
almost all scenarios, Hourglass, which never misses dead-
lines, is able to approximate, or even outperform, Proteus
and SpotOn, which miss the deadlines in a large fraction of
runs. Not surprisingly, the larger the slack (i.e., when more
time is available to recover from evictions), the easiest it is
to achieve savings without missing deadlines. Therefore, for
large slacks the simple DP mechanism also offers reasonable
results. However, Hourglass is able to achieve savings when
the slack is smaller, in scenarios where DP fails to be effective.
What is somehow surprising is that, even with very large
slacks, Proteus and SpotOn still miss the deadlines frequently,



Hourglass EuroSys ’19, March 25–28, 2019, Dresden, Germany

10 20 30 40 50 60 70 80 90 100
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 C
os

t (
w

.r.
t. 

O
D

)

0 0 0 0 0 0 0 0 0 0
27 27 27 27 27 27 3 2 2 14 3 3 2 2 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 0 0 0

SSSP (3 min)

Hourglass Proteus SpotOn Proteus+DP SpotOn+DP

10 20 30 40 50 60 70 80 90 100
0.00

0.25

0.50

0.75

1.00 0

0 0 0 0 0 0 0 0 04 4 3 2 2 2 2 2 2 214 14 14 14 14 14 14 14 14 14

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

PageRank (20 minutes)

10 20 30 40 50 60 70 80 90 100
Slack (%)

0.00

0.25

0.50

0.75

1.00

0 0 0 0 0 0 0 0 0 0
91 89 86 81 70 50 41 31 24 16
92 88 84 82 79 76 73 71 68 64

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

GraphColoring (4 hours)

Figure 5. Cost reductions achieved (bars) and percentage of deadlines missed (number above the bars) by different resource
provisioners with different temporal slacks. Lower bars, with smaller numbers above them is better.

in particular in longer jobs (such as GC). This highlights the
importance of the slack-aware provisioning strategy. It is
also interesting to notice that Hourglass is able to avoid
missing deadlines without a large cost penalty. This happens
because Hourglass is still able to make significant progress
using transient resources and, when it switches to the last-
resort configuration, only a small fraction of the job remains
to be executed. Thus, Hourglass only pays an additional
cost when it really needs to. Furthermore, as shown later,
our fast reload mechanism is very effective, which also helps
Hourglass to reduce costs.

Relaxing the Deadlines. Although we have always run
Hourglass such that it would never miss a deadline, the
reader might wonder what would be its behaviour if we
would configure Hourglass in a way that deadlines could
be missed (let us call this version relaxed-Hourglass). One
way of implementing relaxed-Hourglass is to setup the stan-
dard Hourglass with a target larger than the real deadline.
In this case, relaxed-Hourglass would operate using an inac-
curate (larger) slack and, in face of evictions, would switch to
the on-demand configuration too late, risking missing dead-
lines. Thus, the performance of relaxed-Hourglass is the
same of standard Hourglass with larger slacks. As discussed
before, under this setting the relevance of the slack-aware
provisioning strategy becomes lower and most gains come
from the use of micro-partitioning.

8.3 Micro Benchmarks

We now study in more detail the contribution of the different
Hourglassmechanisms to the results of the previous section.
To this end, we resort to both a set of micro-benchmarks and
experiments that zoom in on some of the results presented
in Figure 5.

8.3.1 Effects of Fast Reload in Short Jobs

Because SSSP and PageRank are short jobs (complete in 3
and 20 minutes), it is rare to observe evictions while they
run. In this case, provisioning decisions do not play a signifi-
cant role. Also, because jobs are short, it does not payoff to
use expensive data partitioning schemes. Therefore, the best
results with these systems are achieved with hashing: there
is no partitioning phase, this is implicitly hidden behind the
hash function, and the graph can be loaded in parallel. Still,
Hourglass outperforms Proteus and SpotOn. In these short
jobs, the key contributor to these results is the Hourglass’s
micro-partitioning and fast reload mechanisms, which bring
advantages even when hashing is used. In fact, as discussed
in §7, the hashing micro-partitioner is able to support the
effective parallelization of the loading step without requiring
communication among workers. This optimization signifi-
cantly reduces the time necessary to load the graph, with a
visible impact on the final cost of the entire run.

To give further insights on the performance of our fast-
loadingmechanism, wemeasure the loading times that differ-
ent loading strategies exhibit when using different datasets
and configurations. Figure 6 shows the results. In particular,
we measure the loading time for the fast reload approach
(Micro Loader), for the Hash Loader, and for the Stream
Loader. With the Micro Loader, workers are assigned micro
partitions that are loaded in parallel. With the Hash Loader,
workers load in parallel chunks of the target graph dataset
but are required to exchange data subsequently. With the
Stream Loader, the entire graph dataset is loaded first by the
master node and then assigned to the workers. For the latter,
we report only the time necessary for the master to load
the dataset and ignore the partitioning time. In the figure,
the size of the dataset doubles from left to right. For each



EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

2 4 8 16

10
1

10
2

10
3

Lo
ad

in
g 

Ti
m

e 
(s

)

Orkut

2 4 8 16

RMAT-24

2 4 8 16
# Machines

RMAT-25

2 4 8 16

RMAT-26

2 4 8 16

Twitter

Stream Loader Hash Loader Micro Loader

Figure 6. Loading times for different strategies. Y-axis in log scale. The size of the dataset doubles from left to right.

0 20 40 60 80 100
Slack (%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 C
os

t (
w

.r.
t. 

O
D

) SlackAware+METIS
SlackAware+μMETIS
SpotOn+DP+μMETIS

Figure 7. Zoom in the cost reductions achieved in the GC
application.

dataset, we varied the number of machines performing the
loading phase between 2 and 16 machines. Also, for each
dataset, we used a single machine type that was the small-
est machine type able to load the target dataset with the
desired number of machines. In detail, for the Orkut and
RMAT-24 dataset we used r4.xlarge machines, for the RMAT-
25 and RMAT-26 datasets we used r4.2xlarge machines and
r4.4xlarge machines for the Twitter dataset.
From the obtained results, we can draw several conclu-

sions. First, the loading time of the Stream Loader increases
with the dataset size, as expected. The Hash Loader per-
forms worse for a small number of machines, due to network
bottlenecks. The Micro Loader is on average, across all con-
figurations, 11.34×, 10.5×, 22.2×, 19.7× and 79.6× faster than
the Single Loader approach in the Orkut, RMAT-24, RMAT-
25, RMAT-26 and Twitter datasets, respectively, and 4.98×,
3.39×, 15.5×, 21.1× and 64.8× faster than the Hash Loader
in the same datasets.

8.3.2 Hourglass Gains in Long Jobs

Long duration jobs (e.g. GC) are more susceptible to suffer
evictions or price fluctuations that may require reconfigura-
tions. In these scenarios, both the fast reload mechanism, its
clustering policy, and the slack-aware provisioning approach

are important to outperform the cost reductions achieved by
previous provisioners.

To get an insight on the relative importance of each mech-
anism, we now look in detail at the performance of the GC
application. For this application, METIS is the partitioning
approach that yields the best results with Hourglass. The
cost savings achieved by Hourglass result from both the
micro-partitioning and the slack-aware provisioning strat-
egy. To illustrate this, we show in Figure 7 the performance
of Hourglass with and without micro-partitioning and also
the effect of micro-partitioning on SpotOn (that does not use
the slack-aware scheduler). Note that SlackAware+µMETIS
combines both components and corresponds to the values
previously presented in Figure 5.

The results show that the micro-partitioner is always use-
ful, independently of the slack used. The difference between
the cost reductions achieved by the slack-aware approach
with and without micro-partitioning is on average of 23%.
This is mainly due to the smaller offline costs incurred by
the micro-partitioning approach, which requires running
METIS only once, while the default strategy requires run-
ning METIS for the multiple configurations. As expected, our
slack-aware approach performs significantly better than Spo-
tOn+DP for smaller slack sizes, where the bad provisioning
decisions have a greater impact. Namely, in this experiment,
with just 10% slack time, the slack-aware approach already
achieves significant cost reductions while SpotOn+DP offers
no improvements.

8.3.3 Effects of Fast Reload in Partition Quality

We now analyze how the micro-partition clustering pol-
icy impacts partition quality. Partition quality is given by
the percentage of edges cut between all the partitions cre-
ated [37, 41], which can be used to estimate the percentage of
communication that will be done across different machines.
Figure 8 shows how our micro-partitioning clustering

technique impacts the partition quality when clustering 64
micro-partitions into macro-partitions (from 2 to 32 parti-
tions) of five different types of graph datasets. In the first
experiment (top row of plots) we use METIS to generate the
initial micro-partitions and, in the second, we use FENNEL



Hourglass EuroSys ’19, March 25–28, 2019, Dresden, Germany

2 4 8 16 32 64
0

50

100

M
E

TI
S

 E
dg

e 
C

ut
 (%

)

Orkut

2 4 8 16 32 64

Human-Gene

2 4 8 16 32 64

Wiki

2 4 8 16 32 64

Hollywood

2 4 8 16 32 64

Twitter

2 4 8 16 32 64
0

50

100

FE
N

N
E

L
 E

dg
e 

C
ut

 (%
)

2 4 8 16 32 64 2 4 8 16 32 64
# Partitions

2 4 8 16 32 64 2 4 8 16 32 64

METIS M-MICRO Random

FENNEL F-MICRO Random

Figure 8. Partition quality analysis.

0 50 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

D
ec

is
io

n 
Ti

m
e 

(m
s)

SSSP

0 50 100

Slack (%)

PageRank

0 50 100

GraphColoring

Hourglass Estimation DFO

0

20

40

60

80

100

E
st

im
at

io
n 

D
FO

 (%
)

Optimal Decision Time
Hourglass Decision Time

Figure 9. Comparison of decision time and estimation error
of the Hourglass provisioning strategy against the optimal
cost estimator. Optimal did not finish for slacks larger than
60% for the PageRank application and for any slack size in
the GC application.

(configured with the same parameters as in [41]). We set both
partitioners to balance the total number of edges assigned to
the different partitions, similar to [30]. In each experiment,
we compare the quality of the partitions obtained with our
micro-clustering (M-Micro or F-Micro) against the quality
obtained when using the base algorithm (METIS or FENNEL).
For comparison, we also plot the partition quality obtained
when assigning vertices randomly to partitions (Random),
given by 1− 1/n. With METIS, the partition quality obtained
by our clustering policy has, on average across all the num-
ber of partitions from 2 to 32, only more 1.68%, 2.16%, 2.94%,
4.43% and 4.97% of edges cut than the baseline approach
in the Orkut, Human-Gene, Wiki, Hollywood and Twitter
datasets, respectively. With F-Micro, the number of edges
cut in our micro-partitioning approach increases, on average,
4.65%, 4.18%, 5.7%, 7.66% and 6.02% for the same datasets

as before. The practical effects of the quality degradation
were measured empirically for the Twitter dataset across all
the applications used in §8.2. The observed impact in the
application running time by using our micro-partitioning
approach rather than the baseline partitioner were mostly
negligible (at most 2 − 3% degradation) and often inside the
natural fluctuations in the execution time observed when
running the same experiment in the same exact conditions.

8.3.4 Accuracy of the EC approximation

The Hourglass provisioner requires the computation of the
expected cost (EC) of a configuration. This is computed using
the approximation introduced in §5.3, given that the precise
formulation presented in §5.2 (which requires computing
the integral) does not scale for realistic problem sizes. Here
we show that solving the integral is, in fact, not scalable but
that Hourglass approximates EC efficiently and without
significant loss of accuracy.

Figure 9 shows the time necessary to reach a provisioning
decision (depicted in log-scale on the y-axis) as a function
of the slack. Note that the higher the slack, the largest the
search space. The figure shows the time it takes to derive
the provisioning strategy when EC is computed using the
optimal formulation, and the approximation detailed in §5.3.
Both lines computed EC using a discretization of time based
on one second intervals, as this is the minimum time unit in
which we observed price changes in the price traces,[44]. The
figure also plots the approximation distance from optimum
(DFO), which is calculated as | ˆcostH− ˆcostO |

ˆcostO
∗ 100.

The obtained results clearly show that computing EC by
solving the integral is only able to provide a provisioning de-
cision in reasonable time for the SSSP (all slack times tested)
and the PageRank application (until a slack time of 40%). For
slacks larger than 60% in the PageRank application, and for
the GC application (all slacks), we are unable to get a sin-
gle provisioning decision under one hour when computing
the integral. However, when using the EC approximation



EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

described in §5.3, it is possible to derive a provisioning deci-
sion in just a few milliseconds, for all the applications tested
and all slack percentages. Interestingly, these improvements
are achieved without a significant loss of accuracy: for the
settings where we were able to reach an optimal solution,
the average error of all the approximations is only 3%, on
average.

9 Model Evolution and Future Work

We now discuss some of the extensions that we would like
to address in the future.
First, some providers issue a warning before resources

are evicted. Such warning event can be incorporated in our
model, by considering that some progress is still possible
even when there are evictions. Namely, in the current model,
when computing costTf ail (c, t ,w) in a recursive manner, it is
assumed that no progress is made if the eviction happens
before the checkpoint (see §5.2). The model can be extended
to account for the amount of work that has been performed
before the eviction, in the case the warning is given early
enough to allow a successful checkpoint [38]. This would im-
prove Hourglass results by decreasing the work lost when
evictions happen and by reducing the number of situations
where Hourglass is forced to fall back to the last-resort con-
figuration prematurely due to the conservative assumption
that all work may be lost.

More interestingly, we would like to experiment with our
slack-aware provisioning strategy on a wider range of ap-
plications. Note that our formulation of the provisioning
strategy is quite general, and it has a number of parameters
(such as the loading time, etc) that can be adjusted for differ-
ent applications. The key assumption is that the application
has some recoverymechanism, which prevents all work from
being lost when an eviction occurs. In this paper, we have
assumed that this mechanism is based on checkpointing and
that all work after the last checkpoint is lost upon an evic-
tion. In the previous paragraph, we have already discussed
how to adjust the model to have a more accurate estimate of
the work that can be lost in case of eviction for other cases
(such as an eviction warning). A similar approach can be
used to encompass other recovery mechanisms. Also, in the
current paper, we assume that the provisioner is only called
when there is a checkpoint or an eviction. However, nothing
prevents the provisioning process from executing in other
stages of the execution, when a relevant event occurs. For
example, applications that execute in multiple phases, and
where each phase requires a different amount of resources
or impacts the computational progress differently in case of
failure, may require the provisioner to be executed at the
end of each phase.

10 Conclusions

We have presented Hourglass, the first resource provision-
ing engine that, by relying on transient resources, achieves
significant savings in the deployment of time-constrained
graph processing jobs in the cloud. Hourglass combines
two novel techniques. First, a novel slack-aware provision-
ing strategy that permits it to achieve cost reductions on par
with the state-of-the-art. Unlike previous work, our strat-
egy considers the temporal slack available to select safer or
riskier provisioning strategies such that termination dead-
lines are met. Second, a fast reload mechanism that optimizes
the graph loading phase of existing graph processing sys-
tems. This mechanism is key to reduce the time necessary
to recover from evictions. Our evaluation has shown that,
when the two techniques are combined together, Hourglass
is able to reduce the operating costs in the order of 60%–70%
while guaranteeing that deadlines are met.

Acknowledgments

We thank our shepherd Ittay Eyal, and the anonymous re-
viewers for their comments and suggestions. This work was
partially supported by Fundação para a Ciência e Tecnologia
(FCT) and Feder through the projects with references PTDC/
EEI-SCR/ 1741/ 2014 (Abyss), PTDC/EEI-COM/29271/2017
(Cosmos), LISBOA-01-0145-FEDER- 031456 (Angainor) and
UID/ CEC/ 50021/ 2019.

References

[1] Amazon EC2. https://aws.amazon.com/ec2/. Last Accessed: September
2018.

[2] Amazon EMR. https://aws.amazon.com/emr/. Last Accessed: Septem-
ber 2018.

[3] Amazon S3. https://aws.amazon.com/s3/. Last Accessed: September
2018.

[4] Apache Giraph. http://giraph.apache.org. Last Accessed: September
2018.

[5] Apache Hadoop. http://hadoop.apache.org. Last Accessed: September
2018.

[6] Apache Hive. https://hive.apache.org. Last Accessed: September 2018.
[7] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph Based

Anomaly Detection and Description: A Survey. Data Min. Knowl.
Discov. (May 2015).

[8] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Ana-
lytics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association.

[9] S Brin and L Page. 1998. The anatomy of a large scale hypertextual
Web search engine. Computer Networks and ISDN Systems 30 (1998).

[10] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A recursive model for graph mining.

[11] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James
Cheng. 2018. G-Miner: An Efficient Task-oriented Graph Mining
System. In Proceedings of the Thirteenth EuroSys Conference (EuroSys
’18). Porto, Portugal.

[12] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,
Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen.
2012. Kineograph: Taking the Pulse of a Fast-changing and Connected

https://aws.amazon.com/ec2/
https://aws.amazon.com/emr/
https://aws.amazon.com/s3/
http://giraph.apache.org
http://hadoop.apache.org
https://hive.apache.org


Hourglass EuroSys ’19, March 25–28, 2019, Dresden, Germany

World. In Proceedings of the 7th ACM European Conference on Computer
Systems (EuroSys ’12). ACM, Bern, Switzerland.

[13] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. 2015. One Trillion Edges: Graph Processing
at Facebook-scale. Proc. VLDB Endow. (2015).

[14] J. T. Daly. 2006. A higher order estimate of the optimum checkpoint
interval for restart dumps. Future Generation Computer Systems (2006).

[15] Je Gonzalez, Y Low, and H Gu. 2012. Powergraph: Distributed graph-
parallel computation on natural graphs. OSDI’12 Proceedings of the 10th
USENIX conference on Operating Systems Design and Implementation
(2012).

[16] Minyang Han and Khuzaima Daudjee. 2015. Giraph Unchained: Barri-
erless Asynchronous Parallel Execution in Pregel-like Graph Process-
ing Systems. Proc. VLDB Endow. (2015).

[17] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong
Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014.
Chronos: A Graph Engine for Temporal Graph Analysis. In Proceedings
of the Ninth European Conference on Computer Systems (EuroSys ’14).
ACM, Amsterdam, The Netherlands.

[18] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger,
and Phillip B. Gibbons. 2018. Tributary: spot-dancing for elastic ser-
vices with latency SLOs. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA.

[19] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger,
and Phillip B. Gibbons. 2017. Proteus: Agile ML Elasticity Through
Tiered Reliability in Dynamic Resource Markets. In Proceedings of the
Twelfth European Conference on Computer Systems (EuroSys ’17). ACM,
Belgrade, Serbia.

[20] George Karypis and Vipin Kumar. [n. d.]. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM J. Sci.
Comput. ([n. d.]).

[21] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Ra-
jagopalan, and Andrew S. Tomkins. 1999. The Web As a Graph: Mea-
surements, Models, andMethods. In Proceedings of the 5th Annual Inter-
national Conference on Computing and Combinatorics (COCOON’99).

[22] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media?. In Proceedings
of the 19th International Conference on World Wide Web (WWW ’10).
ACM, Raleigh, North Carolina, USA.

[23] Kathy Lee, Diana Palsetia, Ramanathan Narayanan, Md. Mostofa Ali
Patwary, Ankit Agrawal, and Alok Choudhary. 2011. Twitter Trending
Topic Classification. In Proceedings of the 2011 IEEE 11th International
Conference on Data Mining Workshops (ICDMW ’11). Washington, DC,
USA.

[24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[25] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. 2010. GraphLab: A New Frame-
work for Parallel Machine Learning. CoRR (2010).

[26] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang,
Mohan Kumar, and Taesoo Kim. 2017. Mosaic: Processing a Trillion-
Edge Graph on a SingleMachine. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys ’17). Belgrade, Serbia, 527–
543.

[27] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A
System for Large-scale Graph Processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’10).

[28] T. Pham, S. Ristov, and T. Fahringer. 2018. Performance and Behavior
Characterization of Amazon EC2 Spot Instances. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD).

[29] Ryan Rossi and Nesreen Ahmed. 2013. Network Repository. http:
//networkrepository.com

[30] Semih Salihoglu and Jennifer Widom. 2013. GPS: A Graph Processing
System. In Proceedings of the 25th International Conference on Scien-
tific and Statistical Database Management (SSDBM). ACM, Baltimore,
Maryland, USA.

[31] Semih Salihoglu and Jennifer Widom. 2014. Optimizing Graph Algo-
rithms on Pregel-like Systems. Proc. VLDB Endow. (2014).

[32] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L.
Willke, Jeffrey Young, Matthew Wolf, and Karsten Schwan. 2016.
GraphIn: An Online High Performance Incremental Graph Processing
Framework. In Proceedings of the 22Nd International Conference on
Euro-Par 2016: Parallel Processing - Volume 9833. Springer-Verlag New
York, Inc., New York, NY, USA.

[33] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson,
and Jimmy Lin. 2016. GraphJet: Real-time Content Recommendations
at Twitter. Proc. VLDB Endow. (2016).

[34] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy.
2016. Flint: Batch-interactive Data-intensive Processing on Transient
Servers. In Proceedings of the Eleventh European Conference on Com-
puter Systems (EuroSys ’16). ACM, London, United Kingdom.

[35] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant
Shenoy. 2015. SpotCheck: Designing a Derivative IaaS Cloud on the
Spot Market. In Proceedings of the Tenth European Conference on Com-
puter Systems (EuroSys ’15). ACM, Bordeaux, France.

[36] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. [n. d.]. The Hadoop Distributed File System. In Proceed-
ings of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST) (MSST ’10). IEEE Computer Society, Washington,
DC, USA.

[37] Isabelle Stanton and Gabriel Kliot. 2012. Streaming Graph Partitioning
for Large Distributed Graphs. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD ’12). ACM, Beijing, China.

[38] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and
Prashant Shenoy. [n. d.]. SpotOn: A Batch Computing Service for the
Spot Market. In Proceedings of the Sixth ACM Symposium on Cloud
Computing (SoCC ’15). ACM, Kohala Coast, Hawaii.

[39] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish
Tatikonda, and John McPherson. 2013. From "Think Like a Vertex" to
"Think Like a Graph". Proc. VLDB Endow. (2013).

[40] Etsuji Tomita and Tomokazu Seki. 2003. An Efficient Branch-and-
bound Algorithm for Finding a Maximum Clique. In Proceedings of the
4th International Conference on Discrete Mathematics and Theoretical
Computer Science (DMTCS’03). Springer-Verlag, Berlin, Heidelberg.

[41] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic,
and Milan Vojnovic. 2014. FENNEL: Streaming Graph Partitioning
for Massive Scale Graphs. In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining (WSDM ’14). ACM, New
York, NY, USA.

[42] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael
Armbrust, Ali Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion
Stoica. 2017. Drizzle: Fast and Adaptable Stream Processing at Scale.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). Shanghai, China, 374–389.

[43] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction
for Large-Scale Advanced Analytics. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). USENIX
Association, Santa Clara, CA.

[44] Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard. [n. d.]. Proba-
bilistic Guarantees of Execution Duration for Amazon Spot Instances.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’17). ACM, Denver,
Colorado.

http://snap.stanford.edu/data
http://networkrepository.com
http://networkrepository.com


EuroSys ’19, March 25–28, 2019, Dresden, Germany P. Joaquim et al.

[45] Youngseok Yang, Geon-Woo Kim, WonWook Song, Yunseong Lee, An-
drew Chung, Zhengping Qian, Brian Cho, and Byung-Gon Chun. 2017.
Pado: A Data Processing Engine for Harnessing Transient Resources
in Datacenters. In Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys ’17). ACM, Belgrade, Serbia.

[46] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant
Streaming Computation at Scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). Farminton,
Pennsylvania, 423–438.

[47] Song Zhang, Hu Chen, Ke Liu, and Zhirong Sun. 2009. Inferring protein
function by domain context similarities in protein-protein interaction
networks. BMC bioinformatics (2009).

[48] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. [n.
d.]. Gemini: A Computation-centric Distributed Graph Processing
System. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI’16). USENIX Association.


	Abstract
	1 Introduction
	2 The Practical Effect of the Dilemma
	3 Background and Related Work
	3.1 Leveraging Transient Resources
	3.2 Graph Processing

	4 Hourglass
	5 Slack-Aware Provisioning Strategy
	5.1 System Model
	5.2 Provisioning Criteria
	5.3 Approximating EC Efficiently

	6 Fast Reload
	6.1 Limitations of Current Strategies
	6.2 Hourglass Partitioner

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Overall Performance and Comparison with the State-of-the-Art
	8.3 Micro Benchmarks

	9 Model Evolution and Future Work
	10 Conclusions
	Acknowledgments
	References

