
THUNDERSTORM: a tool to evaluate dynamic
network topologies on distributed systems

(Tool Paper)

Luca Liechti†, Paulo Gouveia∗, João Neves∗, Peter Kropf†, Miguel Matos∗, Valerio Schiavoni†
∗INESC ID & IST, University of Lisbon, Portugal. Email: miguel.marques.matos@tecnico.ulisboa.pt

†University of Neuchâtel, Switzerland. Email: valerio.schiavoni@unine.ch

Abstract—Network dynamics, such as sudden changes in la-
tency or available bandwidth, have a significant impact on the
performance of distributed systems. While such dynamics are
common, especially in WAN deployments, existing tools lack the
capabilities to systematically evaluate the impact of such changes
in real systems. We present THUNDERSTORM, a tool to evaluate
the impact of dynamic network topologies on the performance
of large-scale distributed systems. THUNDERSTORM is a fully
functional tool that integrates with Kubernetes and can be used
to evaluate off-the-shelf applications. THUNDERSTORM defines
an easy-to-use language to describe arbitrarily complex network
topologies and dynamic events used to enrich the default con-
tainer composition descriptors. Our evaluation, using micro- and
macro-benchmarks, as well as off-the-shelf unmodified systems
(e.g., Apache Cassandra, MariaDB) shows that THUNDERSTORM
is easy to use, accurate in reproducing dynamic behaviours
and that it can help researchers uncover unexpected behaviours
otherwise very costly to reproduce in real deployments typically
captured only during malfunctioning periods.

I. INTRODUCTION

Distributed systems are nowadays typically built and de-
ployed as microservices [?], [?], [?], [?], [?] leveraging the
flexibility offered by container technology such as Docker [?],
LXC [?], or KataContainer [?]. In fact, engineers can fetch
and deploy ready-to-use container images from public repos-
itories (e.g., DockerHub) or private ones, and all the ma-
jor Infrastructure-as-a-Service providers (e.g., Amazon Web
Services [?], Google [?], Azure [?]) offer native support
for containers. Once packaged as containers, these systems
typically are deployed over wide-area networks, spanning
intercontinental links (for instance when using different data-
center regions or availability zones). These links cross long
Internet backbones and, therefore are subject to unpredictable
network dynamics. Moreover, at large scale, such deployments
must be resilient to churn1 as failures become the norm rather
than the exception.

While the deployment of such systems has been greatly
streamlined by the aforementioned container technologies, un-
derstanding their behavior and performance evaluation is very
challenging, in particular in the presence of churn and network
dynamics. As a matter of fact, studying the performance of a
deployed system when subject to varying network conditions,
and the impact of these conditions on customer facing metrics

1The term churn is often used in peer-to-peer settings to indicate the
unpredictable joining and leaving of nodes.

 0

 50

 100

 150

 200

 250

26.02.19 12.03.19 26.03.19 09.04.19In
te

r-
R

e
g

io
n

 L
a

te
n

c
y
 (

m
s
) Latencies measures from us-east-1

eu-north-1 ap-northeast-2 eu-central-1 us-west-2 sa-east-1

Fig. 1: Latency variability between five different AWS regions
across the world over 45 days. Latencies vary on average between
90ms and 250ms, while spikes occur across all regions.

such as response time, is specially difficult to measure in a
systematic way, due to the large variance of the underlying
network properties. This difficulty stems mainly from two
phenomena which we discuss next.

On the one hand network properties such jitter, packet
loss, failures of middle-boxes (i.e., switches, routers) are by
definition difficult, if not impossible, to predict from the
standpoint of a system developer, who has no control over
the underlying network infrastructure. On the other hand, such
conditions are the norm rather than the exception, in particular
when considering large-scale wide-area networks that might
cross several distinct administrative domains. As a motivating
example, consider Figure 1 which shows the average latency
between six AWS [?] regions over 45 days measured by
https://www.cloudping.info. We observe that even in the in-
frastructure of a major cloud provider, there are significant
and unpredictable variations in latency.

Variability is not limited to latency. We demonstrates this
with a measurement experiment for two different cases. The
first set of measures are taken between two stable end-
points inside university networks, respectively in Portugal and
Switzerland, shown in Figure 2. The second case measures
the network conditions between a remote AWS instance in the
ap-northeast-1a zone (in Tokyo) and a server node in
Switzerland (Figure 3). As we can observe, there are important
variations both for bandwidth and latency. Such variability can
have a dramatic effect not only on a system’s performance but
also on reliability as shown by recent post-mortem analysis of
major cloud providers [?]. The challenge, therefore, is how
to equip engineers and researchers with the tools that allow
to systematically understand and evaluate how this variability

miguel.marques.matos@tecnico.ulisboa.pt
valerio.schiavoni@unine.ch
https://www.cloudping.info

 0

 32

 64

 96

 128

0 12H 24H 36H 48H
 0
 5
 10
 15
 20
 25
 30
 35
 40

client: Portugal server:Switzerland

T
h

ro
u

g
h

p
u

t
(M

b
it
/s

)

P
in

g
 (

R
T

T
)

Variability of network conditions (27.04.19-28.04.19)
bandwidth latency

Fig. 2: Dynamic network conditions between two university
campuses in Europe, in Portugal and Switzerland respectively.

 0

 32

 64

 96

 128

0 12H 24H 36H 48H
 0

 50

 100

 150

 200

 250

client: AWS-AP (Tokyo) server: Switzerland

T
h

ro
u

g
h

p
u

t
(M

b
it
/s

)

P
in

g
 (

R
T

T
)

Variability of network conditions (30.04.19-02.05.19)
bandwidth latency

Fig. 3: Dynamic network conditions between a university node in
Switzerland and a node in AWS ap-northeast-1a (Tokyo).

affects system’s performance and behavior.
A wide range of existing network emulation tools allow to

assess the behavior of an application in an arbitrary network
with different scalability and accuracy trade-offs [?], [?], [?],
[?], [?], [?], [?], [?], [?]. Unfortunately, support for emulating
network dynamics — which exist in practice and can severely
affect application behavior and performance — is severely
limited or completely lacking (see §II).

This paper presents THUNDERSTORM, an efficient and
accurate tool to evaluate the performance of unmodified
distributed systems under dynamic network conditions. In a
nutshell, researchers can use THUNDERSTORM to describe
in the same deployment manifest three aspects of a system:
(1) the actual services to be deployed — the business logic,
(2) the target network topology to emulate, statically defined
and (3) the dynamic network behavior to be injected into the
emulated network using an human-readable domain specific
language (DSL). The key idea behind THUNDERSTORM is
to leverage existing traffic shaping features in the Linux
kernel to build the network emulation and dynamic features.
THUNDERSTORM will be released as open-source, together
with the deployment manifests used in this paper in order to
provide full reproducibility of our experiments.2

The rest of this paper is organized as follows. In §II we
survey related work and highlight how existing tools either
completely lack the desired features or only offer a very
limited support for those. In §III we describe THUNDER-
STORM architecture, THUNDERSTORM’s topology description
language and some implementation details for its integration
in Kubernetes. We present the experimental evaluation of
the THUNDERSTORM prototype in §IV, using several micro-

2The version used in this paper is available from the PC Chairs.

benchmarks as well as real-world distributed systems. Finally,
§V concludes the paper.

II. RELATED WORK

In this section, we survey existing network emulation tools.
Due to space constraints, we focus mostly on tools that
allow to play with the dynamism of the underlying emulated
topology. We explicitly omit from our review tools such as
Trickle [?], EmuSocket [?] or NetEm [?], since they solely
support statically defined point-to-point connections without
any support to modify its features through time. Similarly,
DockEmu [?], IMUNES [?] and NCTUns [?] support multi-
node topologies but no dynamic behaviour.

Several recent works cover orthogonal aspects of network
emulation and illustrate the relevance of controlled experi-
ments. CrystalNet [?] focuses on large-scale emulation of the
control-plane, enabling network engineers to evaluate changes
to the control-plane before deploying them in production.
THUNDERSTORM is complementary to CrystalNet, as we
are focused on the data-plane instead. Pantheon [?] allows
to evaluate Internet congestion-protocols. It gathers ground-
truth data and compares it with results obtained from several
emulators for a variety of congestion control algorithms.
Pantheon provides evidence that it is possible to approximate
the behavior of a wide range of congestion algorithms by
relying only on a small number of end-to-end properties. We
rely on the same insight to provide a network emulator able to
accurately emulate large-scale topologies. Chaos Monkey [?]
is a tool used inhouse by Netflix to test the resiliency of their
distributed system. Similar to THUNDERSTORM, it allows to
terminate virtual machine instances, to inject latency between
services, or even making entire Amazon regions unavailable.
Furthermore, it sends malformed requests to endpoints and
performs other application-specific potentially harmful actions.
In contrast, THUNDERSTORM only targets the network state
and it is completely application-agnostic.

Table I gives an overview of other network emulators with
dynamic capabilities. We group these tools by virtualization
of the application running atop the emulated network: pro-
cesses §II-A, virtual machines §II-B and containers §II-C.

A. Process-based emulation

Dummynet [?] operates directly on a specific network
interface. It is a low-level tool to build full-fledged research
testbeds, such as Modelnet [?], and is available in FreeBSD
and MacOS kernels.

Modelnet [?] is a network emulation testbed that allows the
deployment of unmodified applications. Applications are de-
ployed on edge nodes and all network traffic is routed through
a set of core routers – dedicated machines that collectively
emulate the properties of the desired target network before
relaying the packets back to the destination’s edge nodes.
THUNDERSTORM relies on Linux’s Traffic Control (tc) [?]
to provide similar low-level traffic shaping features, but (1)

TABLE I: Classification of network emulation tools with support for dynamic topology features. DSL=domain-specific language to
inject the topology dynamics in the emulated network. Column unit: support for processes, virtual machines (VM) or containers.

Topology dynamics Link-level dynamic features Deployment
Name Synchronization node bridge link BW latency lossrate jitter DSL Unit

ModelNet [?] Centralized 3 7 7 3 3 3 7 7 Process
NIST Net [?] Centralized 7 7 7 3 3 3 3 7 Process

Emulab [?] Centralized 3 7 7 3 3 3 7 7 VM
Netkit [?] Centralized 7 7 7 3 3 3 7 7 VM

Dummynet [?] Centralized 7 7 7 3 3 3 7 7 Process
Mininet [?] Centralized 3 3 3 3 3 3 3 7 Process

MaxiNet [?] Centralized 3 3 3 3 3 3 3 7 Process
Mininet-HiFi [?] Centralized 3 3 3 3 3 3 3 7 Process

SliceTime [?] Centralized 3 7 7 7 7 7 7 7 VM
EvalBox [?] Centralized 3 7 3 7 7 7 7 7 Process

ContainerNet [?] Centralized 3 3 3 3 3 3 3 7 Container,VM
SPLAYNET [?] Decentralized 3 7 7 7 7 7 7 3 Process

Kathará [?] Centralized 3 3 7 7 7 7 7 7 Container
THUNDERSTORM Decentralized 3 3 3 3 3 3 3 3 Container,VM

without requiring dedicated hosts (2) while providing a com-
plete testbed integrated with large-scale container orchestration
tools.

NIST Net [?] is a Linux kernel module and two user
interfaces (command-line and graphical) to interact with it
via API. When the module is loaded, all IP packets are sent
to the NIST Net core that matches it against a set of user-
provided rules. Packets may be delayed or dropped, and jitter
may be applied. These parameters are changed at runtime.
However, it is not integrated with any data-plane applications.
A topology is simply a set of rules to apply between defined
IP addresses. Hence, all topology-level dynamism has to be
provided manually by the users.

EvalBox [?] provides an interface to bridge together sim-
ulated, emulated and real networks. It includes an emulation
plugin based on Crystal [?] to support topology-level dynamics
at runtime, but not link-level ones. EvalBox further supports
OMNeT++[?] to include a wider range of link-level dynamics
similar to those supported by THUNDERSTORM. However, this
is only available in simulated EvalBox networks, not emulated
ones.

SPLAYNET [?] extends SPLAY [?] to allow emulation of
arbitrary network topologies, deployed across several physical
hosts in a fully decentralized manner. It allows deploying
several experiments simultaneously, as long as the under-
lying physical infrastructure can provide enough resources.
SPLAYNET is fully distributed and does not rely on dedicated
processes for network emulation. To emulate the network
topology, SPLAYNET relies on graph analysis and distributed
emulation algorithms, effectively collapsing the inner topology
and delivering packets directly from one emulated host to the
destination host. However, it requires developers to implement
their programs in a Domain Specific Language using the Splay
framework and the Lua programming language, precluding its
usage to evaluate real-world systems. Splay lacks support for
link-level dynamics. THUNDERSTORM adopts a similar fully
decentralized approach while completely overcoming its lim-
itations. In fact, THUNDERSTORM can be used with unmod-
ified, off-the-shelf applications and assess their performances
under different network conditions also including dynamic
topologies. Support for churn in Splay/SplayNet is limited to

nodes (joining/leaving). The Splay churn generator [?] inspired
the design of the THUNDERSTORM Description Language,
which improves it by allowing the definition of services,
static topology elements and the dynamic behaviour of all the
involved elements, while Splay’s support is only limited to the
churn behaviour.

B. VM-based emulation
Emulab [?] is a network emulation testbed that supports

the deployment of user-provided operating systems. Similar
to ModelNet and THUNDERSTORM, it relies on Linux’s tc
or BSD’s Dummynet to shape the traffic directly at the edge
nodes. Emulab can deploy large topologies across shared
clusters, maintaining the user’s requested resource allocation
and the ability to perform this scheduling optimally. It supports
only basic dynamics, e.g., starting and stopping hosts during
the experiment.

NetKit [?] runs applications within instances of the User-
Mode Linux kernel (UML kernel), a fork of the Linux kernel
that runs as a (user space) process within another instance of
Linux. The VMs are connected according to a defined topol-
ogy by means of virtual hubs. These are user-space processes
that mimic the behavior of network switches, providing the
notion of separate networks. In contrast to THUNDERSTORM,
NetKit does not scale beyond single-host deployments.

SliceTime [?] provides a synchronisation framework for a
software prototype within a simulated network. The prototype
is any application wrapped inside a virtual machine running
on top of the Xen hypervisor. Thus, it can be an application
running in any x86-compatible OS. The network simulation
runs on top of the ns-3 network simulator [?]. SliceTime
supports the dynamic addition and removal of nodes to the
experiment, but as its main focus is on time synchronisation,
it offers no dynamic changing of link properties.

C. Container-based emulation
Finally, we survey emulation systems that support

lightweight virtualization such as Docker containers or e.g.
leveraging Linux’ cgroups. Specifically, groups of processes
share the same kernel (on the host), but have an isolated view
of system resources, such as processes, network interfaces, or
the network stack.

Mininet [?] emulates network topologies on a single host.
It relies on Linux isolation mechanisms (i.e., cgroups)
to emulate separated network hosts. Similarly to Docker, it
creates virtual Ethernet pairs inside separated namespaces and
assigns processes to those. Mininet can emulate hundreds
of networked hosts (instances) on a single physical host,
with dedicated instances for switches and routers running on
their own processes. Conversely, THUNDERSTORM does not
require these additional network instances, as the state of the
emulation is maintained at each container. Mininet is limited
to single-host deployments, preventing its use for large-scale
resource-intensive systems not fitting in a single machine.

Mininet-HiFi [?] extends Mininet, adding mechanisms for
performance isolation, resource provisioning and monitoring
for performance fidelity.

Maxinet [?] allow for cluster deployments of worker hosts
with native support for Docker containers. It creates tunnels for
links that cross different workers. Maxinet natively supports
large-scale Software Defined Networks (SDN). However, it
requires all emulated hosts that connect to the same switch
to be deployed on its same worker, a limitation that does not
exist in THUNDERSTORM.

Similarly, ContainerNet [?], [?] extends Mininet to add
native support for Docker containers and dynamic topologies.
Still, it is limited to single-node deployments.

Kathará [?] leverages NetKit, but relies on Docker contain-
ers rather than virtual machines. Similarly to Emulab, Kathará
has only limited support for dynamics, such as stopping and
pausing of containers, and it lacks THUNDERSTORM’s rich set
of dynamic link manipulation primitives.

D. Dynamic Capabilities
Table I shows the topology- and link-level dynamic support

of the mentioned systems. Some do not have a notion of
’topology’ and simply apply rules to end-to-end connections
based on IP addresses. Others offer a full set of link-level
dynamics, but assume a static topology. Mininet, Mininet HiFi,
Maxinet and ContainerNet offer the best support for dynamic
topologies. While the available dynamic primitives can be used
as building blocks for more complex scenarios, these systems
do not provide a declarative specification language to drive
such experiments. Besides, their design places restrictions on
the possible deployed topologies: typically, they only support
single-host deployments, or force switches and application
nodes to be deployed in the same physical machine.

In contrast, THUNDERSTORM is agnostic of the deployment
unit, application, transport protocol or topology and can scale
to hundreds of containers by leveraging a multi-host deploy-
ment. We describe how this is achieved in the next section.

III. THUNDERSTORM

In this section, we describe the workflow and design of
THUNDERSTORM. As a tool paper, we start by describing, in
§III-A, the workflow that a user of THUNDERSTORM should
follow, and then present the architecture of the Emulation
Manager in §III-B. The THUNDERSTORM Description Lan-
guage (TDL) is detailed in §III-C.

Users

c2
Virtual

topology

Physical
nodes

c1

s1

s2c3

xml img

De
fin

e
De

pl
oy

Ex
ec

ut
e

Docker
daemon

Container
orchestrator
master

Topology, pods,
dynamics, ...

!!
!On

every
nodeContainer Orchestrator

!!
!

Results

r

r
r

k8s

k8s

Services
Routers
Dynamics

out

Fig. 4: THUNDERSTORM: workflow. Due to scheduling con-
straints, some containers (c1 and c2) can end-up being co-hosted
on the same physical node.

A. Workflow

The general workflow and architecture of THUNDERSTORM
are depicted in Figure 4. There are two main steps required
from the end-user in order to run a THUNDERSTORM exper-
iment, which we detail next.

First, the user must provide a TDL file, describing: the
network topology; its dynamics, if any; and the Docker images
of the distributed application being evaluated (Figure 4, define
step). These images can come from either private repositories
or public ones such as Docker Hub [?]. We describe in
detail the syntax and the language features available in the
THUNDERSTORM Description Language in §III-C.

With the TDL instance defined, the user invokes the de-
ployment generator, a Python library shipped with THUNDER-
STORM. This transforms the TDL into a Kubernetes Manifest
file, compatible with Kubernetes v1.14, ready to deploy.

The user can then use this file to deploy the experiment
in any Kubernetes cluster (Figure 4, deploy step). Setting up
the deployment involves a series of steps. First, we deploy
the bootstrapper component as a DaemonSet [?]. When a
container image is deployed as a DaemonSet, Kubernetes
enforces that there will be exactly one container instance per
node in the cluster. The goal of the bootstrapper is to check,
in each node, for containers belonging to this experiment.
This is achieved through the Kubernetes API, and leverages
the tags [?] attached to each container by the deployment
generator. The reason for this is to enable running multiple
independent experiments in parallel.

When such a container is found, the bootstrapper starts
a process called Emulation Manager — described in more
detail in §III-B — which will be responsible for enforc-
ing the topology constrains and dynamics of that con-
tainer. Note that even though the Emulation Manager is
started inside the bootstrapper container, it requires ac-
cess to, and control of, the network namespace of the
application container. We achieve this as follows. First,
the bootstrapper is started with the CAP_NET_ADMIN ca-
pability [?]. In Kubernetes this is natively supported via
the securityContext.capabilities Manifest ele-
ment which is injected automatically by the deployment
generator. Next, we use the nsenter syscall [?] to start
the Emulation Manager in the namespace of the application

netem htbu32 3rd oct. 4th oct. netem htbnetem htb

filter qdisc+class

Fig. 5: TCAL: THUNDERSTORM’s qdisc and filter hierarchy

10Mb/s
10ms

100Mb/s
20ms

50Mb/s
5ms

50Mb/s
5ms

c1 s1 s2

sv1

sv2

Bandwidth
Latency

Container
Router

B
L

c1

sv1 sv250Mb/s
10ms

10Mb/s
35ms

10Mb/s
35ms

Fig. 6: Example of collapsing a simple topology

container. After these steps, the experiment starts executing
(Figure 4, execute step) and the Emulation Manager takes
control of the experiment and enforces the network topology
and dynamics.

B. Emulation Manager

The Emulation Manager is a key element in the THUN-
DERSTORM architecture. It comprises two components: the
Emulation Core which maintains the emulation model during
the experiment, and the Traffic Control Abstraction Layer
(TCAL), which is responsible for enforcing the topology
constraints computed by the core.

The TCAL implements a library on top of Linux’s Traffic
Control (tc) [?]. It sets up the initial networking configuration,
retrieves bandwidth usage, and modifies the maximum avail-
able bandwidth on paths. Figure 5 shows TCAL’s architecture.
It maintains a hierarchy of queuing disciplines (qdiscs)
for enforcing the topology restrictions for each destination.
For each destination, we create a netem qdisc [?] and
a htb qdisc (hierarchical token bucket) [?]. The former
is used to apply latency, jitter, and packet loss rate, while
the latter enforces bandwidth constraints. The TCAL library
is implemented in C and leverages the low-level netlink
sockets [?] for performance reasons. It consists of ~1000
SLOC.

The Emulation Core maintains the emulation model and en-
forces the topology constraints. A key insight of our approach
is that the emulation model is maintained in a fully decen-
tralized fashion. Rather than directly emulating the network
elements such as routers and switches and their internal state
we instead emulate an equivalent topology at the end hosts.

The intuition behind our approach is to collapse the target
topology into a set of shortest paths starting at one host and
ending at another, leaving out all intermediaries (i.e. switches,
routers), and exposing to the application just the compounded
properties of the original links. Figure 6 gives an example of
topology collapsing. Consider the full topology in the left side
of the figure, with one client (c1) and two servers (sv1 and
sv2). The path between host c1 and server sv1 is composed
of three different links, whose properties are collapsed into a
single virtual link with properties equivalent to the end-to-end
properties of the three original links. The resulting collapsed
topology is depicted in Figure 6, right side.

More precisely, for latency, packet loss and jitter, we sum or
multiply the properties of the links (variance for the jitter case)

to compute the properties of the virtual link. The maximum
bandwidth in the path is determined by the link with the
least bandwidth. However, the bandwidth that a given link
can use at any given point in time depends not only on
the maximum bandwidth given by the physical capacity of
the path but also by all ongoing active flows on each link.
In particular, when the bandwidth required by each flow
surpasses the maximum available bandwidth, the links become
congested, and therefore we need a mechanism to ensure a fair
allocation of bandwidth among the competing flows. In a real
deployment, when there is congestion the network elements
such as routers and switches start to drop packets. In unreliable
transport protocols, such as UDP, packet loss is ignored,
however in reliable protocols such as TCP, packet loss serves
as a signal to adjust the throughput of the application, hence
allowing competing flows to get a fair bandwidth share. In
THUNDERSTORM, because we do not model network elements
such as routers or switches, we rely instead on a model to
compute a fair share of the bandwidth available for each
competing flow. Specifically, we leverage the RTT-Aware Min-
Max model [?], [?], which gives a share to each flow that is
inversely proportional to its round-trip time. This model was
inspired by TCP Reno [?], a widely adopted implementation
of the TCP.

This bandwidth sharing model gives the percentage of the
maximum bandwidth any flow is allowed to use at capacity.
However, it does not guarantee that the available bandwidth
on a link will be fully utilized, for instance when a given flow
is not consuming its whole available share. Therefore, when
the sum of shares of all active flows is less than the maximum
bandwidth on the link, we perform a maximization step that
increases the share of the other flows, proportionally to their
original shares.

The Emulation Core is implemented in Python v3.7. The
execution is split into two stages: initialization and emulation
loop. The initialization consists in building an emulation graph
that represents the collapsed topology, determining the IP of
the other containers via the Kubernetes API, and initializing
the TCAL. This emulation graph is the main data structure,
upon which the Emulation Core computes, among others,
bandwidth shares and constraints, and buffers occupancy.
The emulation loop maintains an additional data structure
with the bandwidth usage of each instance and periodically
executes the following steps: (i) clear the state of all local
active flows; (ii) obtain the bandwidth usage by querying the
TCAL; (iii) disseminate the local bandwidth usage to the other
instances; (iv) compute bandwidth usage on each path and its
constituent links using the data sent by the other instances;
(v) enforce bandwidth restrictions.

Metadata dissemination is a critical aspect of the system,
as we want it to be efficient and fast, in particular for large-
scale deployments. We disseminate metadata using Aeron [?],
an open-source, efficient and reliable UDP and IPC mes-
sage transport protocol. For containers on the same machine,
the metadata is exchanged via shared memory since it has
no impact on the network. Metadata dissemination between

physical machines is shared through unicast reliable UDP
messages provided by Aeron. Each metadata message carries
the following information: (i) number of flows, 2 bytes; (ii) list
of used bandwidth per flow, 4 bytes per flow; (iii) number
of links; (iv) list of link identifiers. For emulated networks
with <= 256 nodes, this implementation allows to pack all
metadata for links and identifiers in a single byte each (2 bytes
are used for bigger emulated topologies).

C. THUNDERSTORM Description Language

Experiments can be described using a text-based domain-
specific language, named THUNDERSTORM Description Lan-
guage (TDL). Our main goal when designing TDL was to
provide easy-to-use primitives that allow to define large and
complex topologies as well as dynamic events in a human-
readable format. Listing 1 showcases all the main features of
the language that we currently support.

The language describes the services (lines 3-6), the static
topology (lines 10-14) and the dynamics in the topology (lines
16-26). The service, bridge and link elements can get
an arbitrary number of tags. In the example, the api and db
services belong to the backend, while the server belongs to
the frontend. These three are grouped into the same application
together, expressed by the app tag. The client is not part
of the application. We use tags to group services and links
together based on real-world criteria. For example, one of the
most common causes for network "failures" is the distributed
roll-out of software upgrades [?], e.g. for routers. Tags help
to capture groups of devices sharing network status-relevant
characteristics, e.g., driver versions that could be updated at
the same time. Tags could also be used to map services to data
centers (i.e., what if one’s connection suddenly changes?) or
to logical parts of a distributed sytem (frontend, backend).
Bridges (line 8) must have unique names. Links must specify
the source, destination and the properties (e.g., latency, band-
width, jitter, etc.). The symmetric keyword allow to easily
create bidirectional links with the same specified properties.

The dynamic events can be expressed in a concise yet
rich manner. In our example, we first start all application
services (3 replicas for the api and the db, and 5 replicas
for the server, lines 16-19), and after 30 seconds the clients
(line 19). After 30 minutes, we inject several faults into the
topology. The churn keyword crashes either an absolute
number of services, or a certain share of all instances of that
service. The replace keyword then specifies the probability
of such a service to immediately re-join the cluster. At line 20,
we specify that the server replicas will be subject to churn
over a 3 hour period. In particular, 40% of the servers will
crash uniformly at random over this period, and of those, 50%
will be replaced immediately. Although the language allows
to define events with a degree of randomness, such as the
churn event above, it is possible to systematically reproduce
the same order of events by setting a fixed random seed. We
can also specify the dynamic behavior for a specific container.
In the example, one server instance leaves the system at four
hours and twenty, and joins 5 minutes later (lines 21-22).

1 b o o t s t r a p p e r t h u n d e r s t o r m : 2 . 0
2
3 s e r v i c e s e r v e r img= ng inx : l a t e s t tags= f r o n t e n d ; app
4 s e r v i c e a p i img= a p i : l a t e s t tags= backend ; app
5 s e r v i c e c l i e n t img= c l i e n t : 1 . 0 command= [’ 8 0 ’]
6 s e r v i c e db img= p o s t g r e s : l a t e s t tags= backend ; app
7
8 b r i d g e s s1 s2
9

10 l i n k s e r v e r−−s1 latency=9.1 up=1Gb down=800Mb
11 l i n k ap i−−s1 latency=5.1 up=1Gb symmetric
12 l i n k s1−−s2 latency=0.11 up=1Gb symmetric
13 l i n k c l i e n t−−s1 latency=23.4 up=50Mb down=1Gb
14 l i n k db−−s2 latency=8.0 up=1Gb symmetric
15
16 a t 0 s a p i join 3
17 a t 0 s db join 3
18 a t 0 s s e r v e r join 5
19 a t 30 s c l i e n t join
20 from 30m t o 3h30m s e r v e r churn 40% replace 50%
21 a t 4h20m s e r v e r−−s1 leave
22 a t 4h25m s e r v e r−−s1 join
23 from 10h2m t o 10h6m api−−s1 flap 0 . 9 3 s
24 from 12h t o 24h tags=be leave 60%
25 from 15h t o 15 h20s s e r v e r disconnect 1
26 a t 18h20m api−−s1 set latency=10.2 jitter=1.2

Listing 1: Example of experiment descriptor using the THUN-
DERSTORM description language. Link rates are given in ’per
second’.

The language supports link flapping, where a single link
connects and disconnects in quick succession [?]. In the
experiment, the link between service api and bridge s1
flaps every 0.93s during a period of 4 minutes (line 23). The
leave action, used to define which entities should leave the
emulation, takes as a parameter an absolute number or a share
of all selected instances. At line 24, 60% of all nodes with
the backend tag, chosen uniformly at random, will leave the
experiment. Internally, when the language is translated into
the lower level format used by the THUNDERSTORM engine,
we keep track of all nodes that have joined, left, connected,
or disconnected. Thus, if a percentage rather than an absolute
number is provided, that is always relative to the amount of
legal targets in the cluster at that moment.

The TDL parser is implemented in Python, leveraging
Python Lex-Yacc (PLY) [?]. The output of the parser is a XML
file, ready to be consumed by the deployment generator and
starting the experiment workflow discussed in § III-A. Recall
that upon initialization the Emulation Core builds an emulation
graph representing the collapsed topology. The dynamic
topology elements we just introduced correspond to modifi-
cations to this graph. Rather than computing modifications
to the graph on the fly while the experiment executes, we
pre-compute at initialization time all the modifications. This
produces a sequence of graphs, whose paths’ end-to-end-
properties can be applied at runtime. We resort to this approach
because, while computing all the required metadata is fast
for small graphs (e.g., few milliseconds), for large graphs
with thousands of nodes it could take several seconds thus
precluding accurate emulation of sub-second dynamics.

0

0.1

0.2

0.3

0.4

1/48 1/96 4/48 4/96 4/192

U
p

d
a

te
 t

im
e

 (
s
)

Cluster size/Containers

Update time for different graphs

min.
med
avg

90%
95%
99%
max

Fig. 7: Update time for graph objects of different cluster and
graph sizes. We show the minimum, median, average, 90th, 95th
and 99th percentile as well as the maximum time.

IV. EVALUATION

In this section, we evaluate THUNDERSTORM through a set
of micro- and macro-benchmark, as well as real-world systems
(e.g., Cassandra, MariaDB). Our results show that THUN-
DERSTORM gives results close to real-world deployments and
allows users to dynamically manipulate a chosen topology in
many ways. Also, we show that THUNDERSTORM’s support
for background traffic is very close to bare metal deployments.

We start the evaluation with a series of micro-benchmarks
that highlighting the individual features of THUNDERSTORM
and justify the major design decisions. Next, we put THUN-
DERSTORM to the test with macro-benchmarks and real-world
systems. First, we analyze the throughput-latency curve for a
geo-replicated Cassandra experiment and obtain very similar
results to the values obtained in the real world. Next, we
observe in real time how the end-to-end latency in such a
geo-replicated cluster changes when some path properties–
i.e., latency– are subject to change. Finally, we show how
THUNDERSTORM can be used to look at the performance of
MariaDB under lossy network conditions.

A. Evaluation Settings

The evaluation cluster is composed of 4 Dell PowerEdge
R330 servers where each machine has an Intel Xeon E3-
1270 v6 CPU and 64 GB of RAM. The single node cluster
experiment shown in Figure 7 uses a Dell PowerEdge R630
with an 64-cores Intel Xeon E5-2683v4 with 128 GB of
RAM. All nodes run Ubuntu Linux 18.04.2 LTS, kernel
v4.15.0-47-generic. The tests conducted on Amazon EC2
use r4.16xlarge instances, the closest type in terms of
hardware-specs to the machines in our cluster.

Graph update time. We begin by studying the time re-
quired to update the emulation graph for different cluster and
graph sizes. Results are depicted in Figure 7. Updating the
graph implies switching from the old graph to the new one,
and invoking the necessary TCAL calls to adjust the emulation
model to the new topology (§III-B). This experiment executes
on a single machine with 64 cores (up to 96 containers) and
a 4-node cluster (up to 192 containers). Note that this is
very close to the 100 containers per machine limit imposed
by Kubernetes [?]. Even in that extreme scenario, the update
takes less than half a second. If the graph changes were done
at run time, the time would be an order of magnitude larger

10Mb/s
1ms

100Mb/s
1ms

100Mb/s
1ms

100Mb/s
1ms

c1

s2

sv1
s4 s5

s3

s1

100Mb/s
1ms

initial state

100Mb/s
1ms

100Mb/s
1ms

100Mb/s
1ms

c1

s2

sv1
s4

s3

s1

t=20s

100Mb/s
1ms

100Mb/s
1ms

100Mb/s
1mss2

s4

s3

s1

10Mb/s
1ms

sv1

t=30s

100Mb/s
1ms

100Mb/s
1ms

100Mb/s
1mss2

s4

s3

s1

10Mb/s
1ms

sv1

t=40s

100Mb/s
1ms

100Mb/s
1ms

100Mb/s
1ms

c1

s2

s4

s3

s1

10Mb/s
1ms

sv1

100Mb/s
1ms

t=50s

100Mb/s
1ms

100Mb/s
1ms

100Mb/s
1ms

c1

s2

s4

s3

s1

10Mb/s
1ms

sv1

Bandwidth

Service
Router

B
L

Broken link
Offline node

t=10s

Latency

c1
s5 s5

c1

s5s5

100Mb/s
1ms

10Mb/s
1ms

10Mb/s
1ms

10Mb/s
1ms

10Mb/s
1ms

10Mb/s
1ms s5

10Mb/s
1ms

10Mb/s
1ms

10Mb/s
1ms

10Mb/s
1ms

(a) Initial state: top corner left. Links disappear (at t=10s), a new
link appears (t=20s), old links re-appear (t=40s), and bridges go
offline (t=50s) and re-appear (not shown).

200

400

600

800

1000

 0 10 20 30 40 50 60 70 80 90 100

M
B

it
/s

Seconds

iPerf client - TCP throughput

860

880

900

920

940

960

21 22 23 24 25 26

Fig. 8: Measured throughput at the server for the experiment
depicted in Figure 8a.

(not shown) hence precluding our goal of having sub-second
dynamics. Moreover, and as expected, for a given number
of containers the update times decrease with the number of
machines as the load becomes evenly spread across machines.

Topology dynamics. In this experiment, we inject simple
dynamic behaviours into a small topology made of 1 client,
1 server and 5 bridges. The client opens a TCP connection
towards the server and starts streaming data as fast as possible
using iPerf [?]. The initial topology is depicted in Figure 8a
(top-left corner). Then, every 10 seconds the topology changes,
either by failing links and bridges or by adding new links.
Figure 8 shows the observed throughput. As the link between
s1 and s3 is removed, the shortest path from c1 to sv1
now goes through s4 and s5. However, that link carries a
mere 10Mbps, which significantly affects throughput. At 20s,
a new direct 1Gbps link is inserted into the topology, from
c1 to sv1 directly, and thus is the new shortest path. This
has a significant impact in throughput which quickly raises
to be close to 1Gbps. Ten seconds later that link is removed
and throughput again quickly adjusts. Between 60s and 70s,
switch s3 is temporarily removed from the topology, forcing
traffic to go through the 10Mbps link again. THUNDERSTORM
allow to observe TCP’s slow start behavior whenever available

50Mb/s
10ms

100Mb/s
5ms

100Mb/s
5ms

c1

s1 s2

sv1

sv3

Bandwidth
Latency

Container
Router

B
L

c2

c3

100Mb/s
5ms

sv2100Mb/s
5ms

100Mb/s
10ms

10Mb/s
5ms

(a) Dumbbell topology used to validate link-level dynamics and
bandwidth throttling reaction time.

 0

 10

 20

 30

 40

 50

 60

0 10 20 30 40 50 60 70 80

Cli. 2

 start Cli. 3

 start s1-s2

 bandw.

Cli. 1

 latency Cli. 3

 bandw. Cli. 1
-s1

 leave s1-s2

 leave

T
h

ro
u

g
h

p
u

t
(M

b
it
/s

)

Seconds

Client 1 Client 2 Client 3

Fig. 9: Decentralized bandwidth throttling under a) changing
flows, b) changing link properties, and c) changing topology.

bandwidth increases.
Link dynamics. This experiments has two goals: (1)

demonstrate the accuracy of the RTT-aware min-max-model in
computing bandwidth shares on a given link, and (2) evaluate
the link-level dynamic capabilities of THUNDERSTORM. We
use a 3-clients/3-server dumbbell topology, shown in Fig-
ure 9a. The link between the switches has a bandwidth of
50Mbps. The three clients (c1, c2, c3) have a bandwidth of
50Mbps, 50Mbps and 10Mbps, and an RTT of 50ms, 40ms,
and 40ms, respectively. Note that clients c1 and c2 have the
same bandwidth but different RTT.

The experiment proceeds as follows. Initially, only c1 has
an active flow, and hence it uses all the available bandwidth.
At 10s, c2 joins and thus it will compete for bandwidth over
the shared link. At this point, since c2 has a smaller RTT
than c1, it gets a proportionally higher share of bandwidth,
following the model described in §III. The reaction time, i.e.,
how long it takes for THUNDERSTORM to throttle down the
bandwidth available to c1 due to the competing flow from
c2, is around 0.3s. At 20s, c3 starts and quickly saturates
its outgoing link at 10Mbit/s. The bandwidth of the other
two clients gets proportionally adjusted to cope with this new
competing flow, again in 0.3s.

Note that bandwidth shares are a function of bandwidth and
RTT (i.e. 2 times the latency). To observe the dynamics behind
these bandwidth shares, we change some of the underlying
properties of the graph. At 30s, we double the bandwidth of
the link connecting the switches. Since c3 is already sending
at full capacity, the extra bandwidth is shared between c1 and
c2, again inversely proportionally to their respective RTTs. At
40s, the link between c1 and s1 is set to have latency of 5ms
instead of 10ms. Since on the server side of the topology,
every link is identical, that makes the properties of paths from
c1 and c2 to any server identical, reflected in their actual
throughput becoming equal. At 50s, the link between c3 and
s1 has its bandwidth set to 100Mbps as well. All links from
clients to s1 are now identical, resulting in three identical
flows. At 60s, we remove the link between c1 and s1 from the

 0

 50

 100

 150

 200

 250

 300

1Gbit/s 900Mbit/s 800Mbit/s

T
im

e
 (

s
)

Impact of background traffic real vs. emulated

bare metal
ThunderStorm

Fig. 10: Effect of background traffic on a 22GB secure file-
transfer with bare-metal deployment and THUNDERSTORM.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000

L
a

te
n

c
y
 (

m
s
)

Throughput (ops/sec)

Throughput/Latency real vs. emulated

EC2 Read
EC2 Update

ThunderStorm Read
ThunderStorm Update

Fig. 11: Throughput/latency of a geo-replicated Cassandra de-
ployment on Amazon EC2 and THUNDERSTORM.

topology. However, now the graph is not connected anymore,
and c1 cannot put any new data in the network. Since c2 and
c3 have identical properties, the freed up bandwidth is equally
shared between them. Finally, at 70s, the link connecting the
switches is removed, and hence no traffic is observed.

Background traffic. In real-world scenarios, applications
are rarely deployed on a dedicated network. Rather, a network
infrastructure is typically shared among several competing
systems, inducing background traffic to each other. We show
THUNDERSTORM accuracy in emulating this behaviour with
the following experiment. We start by measuring, on bare
metal, the time it takes to secure file copy (i.e. using scp)
a 22 gigabyte file over two hosts connected through a 1Gbps
link in three scenarios: no backgroung traffic (i.e. in an isolated
network), and with 100Mpbs and 200Mbps background traffic.
Background traffic is inject with iPerf at the target rates.
We then emulate the same scenario in THUNDERSTORM.
However, rather than emulating real traffic, we dynamically
adjust the available bandwidth on the link by the volume
of the emulated background traffic. Results are depicted in
Figure 10. As is it possible to observe, the resulting time are
very similar (with a maximum variation of 1%), demonstrating
the accuracy of our approach.

Cassandra. We now compare the results of benchmarking a
geo-replicated Apache Cassandra [?] deployment on Amazon
EC2 and on THUNDERSTORM. The deployment consists of 4
replicas in Frankfurt, 4 replicas in Sydney and 4 YCSB [?]
clients in Frankfurt. Cassandra is set up to active replication
with a replication factor of 2. YCSB is configured to require
a quorum on updates and only one response on reads, with
a 50/50 mix of reads and updates. This means that YCSB
will direct most requests towards replicas in Frankfurt which
are closer, however, a reply from the replicas in Sydney

 0

 100

 200

 300

 400

 500

 600

0 120 240 360 480 600 720

latency

 halved latency

 restored

E
n

d
-t

o
-e

n
d

 l
a

te
n

c
y
 (

m
s
)

Seconds

Cassandra under varying latency

Fig. 12: Latency variations measured by YCSB during a transi-
tory period: one of the replicas is moved to a far away region.

must always be present for a write quorum to succeed. In
order to model the network topology in THUNDERSTORM,
we collected the average latency and jitter between all the
Amazon EC2 instances used, prior to executing the experi-
ment. Figure 11 shows the throughput-latency curve obtained
from the benchmark on both the real deployment on Amazon
and on THUNDERSTORM. The curves for both reads and
updates are a close match, showing only slight differences
after the turning point where response latencies climb fast,
as Cassandra replicas are under high stress. Although we
found it surprising that the latencies on the update curve
decrease slightly as throughput increases (before the turning
point), this behavior occurs both on the real deployment and
with THUNDERSTORM. This experiment demonstrates how
such issues can be identified, debugged and eliminated with
THUNDERSTORM before expensive real-life deployments.

Cassandra under a (thunder)storm. In this scenario, we
show how THUNDERSTORM’s unique support for dynamic
topologies allows to easily uncover the behaviour of complex
systems, such as NoSQL databases. In this experiment, the
intercontinental link from EU to AP used for the Cassandra
experiment in Figure 11 suddenly changes its latency to half
(at 240s), and later on (at 480s) the original latency is restored.
In Figure 12 we report the update latency observed by YCSB.
Note that read operations do not use the intercontinental link
and hence are not affected (not shown). This shows that the
network dynamics imposed by THUNDERSTORM have a direct
impact in client-facing metrics. Engineers and researchers can
therefore use THUNDERSTORM to conduct controlled and
reproducible experiments to assess the behavior of real system
under a wide range of network dynamics and devise the best
strategies to adopt when such events happen in production.

MariaDB over a lossy connection. We conclude our
evaluation by studying the effect of lossy network connections
on the performance of MariaDB [?], an open-source fork
of MySQL. The experiments uses the official unmodified
MariaDB Docker image, and the standard sysbench [?] image
to execute the standard oltp_read_write benchmark. We
vary the number of client threads in the benchmark to control
the offered load. The topology is a simple point-to-point
topology connected with a 100Mbps (Figure 13) or 1Gbps
(Figure 14) link. We conducted a series of experiments with
loss rates of 0, 0.5, 1, 2, or 4 percent. To establish a baseline
of emulation accuracy, we ran the same benchmark on bare

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32

T
ra

n
s
a

c
ti
o

n
s
/s

Threads

Bandwidth = 100Mbit/s

no loss

0.5%

1%

2%

4%

Fig. 13: MariaDB transactions per second over a 100Mbps link
with different numbers of threads and levels of packet loss.

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16 32

T
ra

n
s
a

c
ti
o

n
s
/s

Threads

Bandwidth = 1Gbit/s

no loss

0.5%

1%

2%

4%

Fig. 14: MariaDB transactions per second over a 1Gbps link
with different numbers of threads and levels of packet loss.

metal, registering only around 1% difference in performance.
This experiment shows that a database connection over

TCP is very sensitive to packet loss. For a small number
of threads, regardless of the connection bandwidth, as much
as 0.5% packet loss can cause the number of transactions
per second to be halved, or worse. Moreover, for loss rates
of 2% and 4%, the difference in transactions per second
between a 100Mbit connection an a 1Gbit one is just 1.12%.
Interestingly, approaching the link throughput limit of the
100Mbps (as estimated from the lossless benchmark), the
relative performance degradation due to packet drop decreases.
We assume this performance degradation to be due to TCP
throttling its throughput upon packet loss, as it would in a
congested network. Finally, a packet loss rate of 2%, while
certainly not negligible in nature, can cause a 1Gbps link to
behave as if it had just a tenth of its actual bandwidth.

V. CONCLUSION
In this paper, we have shown that network dynamics,

which are often unpredictable, have a large impact on the
performance of distributed applications. Therefore, it is crucial
for engineers, researchers and practitioners to understand how
their systems behave under these conditions such that the
appropriate designs, trade-offs and contingency plans can be
selected. However, state-of-the-art tools limit the scale and
scope of such experiments.

THUNDERSTORM is a tool acting as a decentralized topol-
ogy emulator that can scale to hundrends of containers de-
ployed across a cluster of commodity machines, and allows to
inject a wide-range of network dynamic events throuh a com-
pact human-readable language. Our experiments with static
and dynamic settings show that THUNDERSTORM is able to
accurately reproduce real-world deployments of off-the-shelf
systems, such as Cassandra, and to expose the effect of faulty
networks on the observable performances of DBMS systems
such as MariaDB. The reproducibility of results is becoming
increasingly important and we believe THUNDERSTORM can

be a useful tool to achieve this goal. Finally, THUNDERSTORM
can also be used to predict application performance and
correctness under hypothetical, but fully controlled, network
conditions. Our THUNDERSTORM prototype is integrated in
the Kubernetes container orchestrator and will be released
under an open-source license.

ACKNOWLEDGMENTS

This work was partially supported by Fundo Europeu
de Desenvolvimento Regional (FEDER) through Programa
Operacional Regional de Lisboa and by Fundação para a
Ciência e Tecnologia (FCT) through projects with reference
UID/ CEC/ 50021/ 2019, Lisboa-01-0145-FEDER- 031456
(Angainor) and Lisboa-01-0145-FEDER-029271 (Cosmos).

REFERENCES

[1] “A Microscope on Microservices by Netflix Technology Blog,” https:
//link.medium.com/AnOLr9crdW, 2015.

[2] Majors and Kromhout, “Keep Calm and Carry On: Scaling Your Org
with Microservices.” San Francisco, CA: USENIX Association, 2017.

[3] https://blog.twitter.com/engineering/en_us/a/2015/
all-about-apache-aurora.html, 2015.

[4] https://segment.com/blog/why-microservices/, 2016.
[5] Taibi, Lenarduzzi, and Pahl, “Processes, motivations, and issues for

migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[6] Merkel, “Docker: lightweight Linux containers for consistent
development and deployment,” p. 2, 2014. [Online]. Available:
https://bit.ly/2IuhKBv

[7] https://linuxcontainers.org/.
[8] https://katacontainers.io/.
[9] https://aws.amazon.com/ecs/.

[10] https://cloud.google.com/kubernetes-engine/.
[11] https://azure.microsoft.com/en-us/services/kubernetes-service/.
[12] https://status.cloud.google.com/incident/cloud-networking/18012?m=1.
[13] Vahdat et al., “Scalability and accuracy in a large-scale network em-

ulator,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
271–284, 2002.

[14] Hibler et al., “Large-scale virtualization in the Emulab network testbed,”
in USENIX ATC’08.

[15] Handigol, Heller, Jeyakumar, Lantz, and McKeown, “Reproducible
network experiments using container-based emulation,” in CoNEXT ’12.

[16] Weingärtner, Schmidt, Vom Lehn, Heer, and Wehrle, “SliceTime: a
platform for scalable and accurate network emulation,” in NSDI’11.

[17] To, Cano, and Biba, “DOCKEMU - A Network Emulation Tool,”
Proceedings of the 29th IEEE International Conference on Advanced
Information Networking and Applications Workshops, WAINA 2015, pp.
593–598, 2015.

[18] Sinha and Wang, “evalBox: A cross-platform evaluation framework for
network systems,” in IEEE MASCOTS’15.

[19] Peuster, Karl, and Van Rossem, “Medicine: Rapid prototyping of
production-ready network services in multi-pop environments,” in IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN),. IEEE, 2016, pp. 148–153.

[20] Schiavoni, Riviere, and Felber, “SplayNet: Distributed User-Space
Topology Emulation,” in ACM/IFIP/USENIX Middleware’13.

[21] Eriksen, “Trickle: A userland bandwidth shaper for unix-like systems.”
in USENIX ATC’05.

[22] Avvenuti and Vecchio, “Application-level network emulation: the emu-
socket toolkit,” Journal of network and computer applications, vol. 29,
no. 4, pp. 343–360, 2006.

[23] Hemminger, “Network emulation with NetEm,” in Proceedings of the
Linux Conference, 2005.

[24] Puljiz, Penco, and Mikuc, “Performance analysis of a decentralized
network simulator based on IMUNES,” in International Symposium on
Performance Evaluation of Computer and Telecommunication Systems,
ser. SPECTS, 2008.

[25] Wang, Chou, and Lin, “The design and implementation of the nctuns
network simulation engine,” Simulation Modelling Practice and Theory,
vol. 15, no. 1, pp. 57–81, 2007.

[26] Liu et al., “Crystalnet: Faithfully emulating large production networks,”
in SOSP’17.

[27] Yan et al., “Pantheon: the training ground for Internet congestion-control
research,” in USENIX ATC’18.

[28] Basiri et al., “Chaos engineering,” IEEE Software, vol. 33, no. 3, pp.
35–41, May 2016.

[29] Carson and Santay, “NIST Net-a linux-based network emulation tool,”
ACM SIGCOMM Com. Comm. Rev., vol. 33, no. 3, pp. 111–126, 2003.

[30] Pizzonia and Rimondini, “Netkit: easy emulation of complex networks
on inexpensive hardware,” in TridentCom’08.

[31] Carbone and Rizzo, “Dummynet Revisited,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 2, p. 12, 2009.

[32] Lantz, Heller, and McKeown, “A network in a laptop: rapid prototyping
for software-defined networks,” in ACM HotNets’10.

[33] Wette, Draxler, Schwabe, Wallaschek, Zahraee, and Karl, “Maxinet:
Distributed emulation of software-defined networks,” in IFIP Network-
ing’14.

[34] Peuster, Kampmeyer, and Karl, “ContainerNet 2.0: A Rapid Prototyping
Platform for Hybrid Service Function Chains,” in IEEE NetSoft’18.

[35] Bonofiglio, Iovinella, Lospoto, and Di Battista, “Kathará: A container-
based framework for implementing network function virtualization and
software defined networks,” in NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2018, pp. 1–9.

[36] Hubert, tc - show / manipulate traffic control settings, 2001. [Online].
Available: http://man7.org/linux/man-pages/man8/tc.8.html

[37] Wang, Shojania, and Li, “Crystal: An emulation framework for practical
peer-to-peer multimedia streaming systems,” in ICDCS’08.

[38] https://omnetpp.org/, 2019.
[39] Leonini, Rivière, and Felber, “Splay: Distributed systems evaluation

made simple (or how to turn ideas into live systems in a breeze),” in
NSDI’09.

[40] Riley and Henderson, “The ns-3 network simulator,” in Modeling and
tools for network simulation. Springer, 2010, pp. 15–34.

[41] “Docker hub,” https://hub.docker.com/, 2019.
[42] “Kubernetes: Daemonset,” https://kubernetes.io/docs/concepts/

workloads/controllers/daemonset/, 2019.
[43] “Kubernetes: Labels and selectors,” https://kubernetes.io/docs/concepts/

overview/working-with-objects/labels/, 2019.
[44] “Docker Security Capabilities,” https://docs.docker.com/engine/security/,

2019.
[45] “nsenter man page,” http://man7.org/linux/man-pages/man1/nsenter.1.

html, 2019.
[46] Fabio Ludovici, NETEM(8), 2011. [Online]. Available: http://man7.org/

linux/man-pages/man8/tc-netem.8.html
[47] Martin Devera, HTB - Hierarchy Token Bucket, 2002. [Online].

Available: http://man7.org/linux/man-pages/man8/tc-htb.8.html
[48] Khosravi, Kuznetsov, Kleen, and Salim, “Linux Netlink as an

IP Services Protocol,” RFC 3549, Jul. 2003. [Online]. Available:
https://rfc-editor.org/rfc/rfc3549.txt

[49] Kelly, “Charging and rate control for elastic traffic,” European transac-
tions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[50] Massoulié and Roberts, “Bandwidth sharing: Objectives and algorithms,”
IEEE/ACM ToN, vol. 10, no. 3, pp. 320–328, 2002.

[51] Padhye, Firoiu, Towsley, and Kurose, “Modeling TCP Reno perfor-
mance: a simple model and its empirical validation,” IEEE/ACM ToN,
vol. 8, no. 2, pp. 133–145, 2000.

[52] “Aeron,” https://github.com/real-logic/aeron, 2019.
[53] Potharaju and Jain, “When the Network Crumbles: An Empirical Study

of Cloud Network Failures and Their Impact on Services,” in ACM
SoCC’13.

[54] “Ply (python lex-yacc),” https://www.dabeaz.com/ply/, 2019.
[55] “Building large clusters with kubernetes,” https://kubernetes.io/docs/

setup/cluster-large/, 2019.
[56] https://github.com/esnet/iperf, 2019.
[57] Lakshman and Malik, “Cassandra: A Decentralized Structured Storage

System,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1773912.1773922

[58] Cooper, Silberstein, Tam, Ramakrishnan, and Sears, “Benchmarking
Cloud Serving Systems with YCSB,” in ACM SoCC ’10, 2010.

[59] https://mariadb.org/, 2019.
[60] “Sysbench: scriptable database and system performance benchmark,”
https://github.com/akopytov/sysbench, 2019.

https://link.medium.com/AnOLr9crdW
https://link.medium.com/AnOLr9crdW
https://blog.twitter.com/engineering/en_us/a/2015/all-about-apache-aurora.html
https://blog.twitter.com/engineering/en_us/a/2015/all-about-apache-aurora.html
https://segment.com/blog/why-microservices/
https://bit.ly/2IuhKBv
https://linuxcontainers.org/
https://katacontainers.io/
https://aws.amazon.com/ecs/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://status.cloud.google.com/incident/cloud-networking/18012?m=1
http://man7.org/linux/man-pages/man8/tc.8.html
https://omnetpp.org/
https://hub.docker.com/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://docs.docker.com/engine/security/
http://man7.org/linux/man-pages/man1/nsenter.1.html
http://man7.org/linux/man-pages/man1/nsenter.1.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-htb.8.html
https://rfc-editor.org/rfc/rfc3549.txt
https://github.com/real-logic/aeron
https://kubernetes.io/docs/setup/cluster-large/
https://kubernetes.io/docs/setup/cluster-large/
https://github.com/esnet/iperf
http://doi.acm.org/10.1145/1773912.1773922
https://mariadb.org/
https://github.com/akopytov/sysbench

