Metadata of the chapter that will be visualized in

SpringerLink

Book Title

Distributed Applications and Interoperable Systems

Series Title

Chapter Title Kollaps/Thunderstorm: Reproducible Evaluation of Distributed Systems
Copyright Year 2020
Copyright HolderName IFIP International Federation for Information Processing
Corresponding Author Family Name Matos
Particle
Given Name Miguel
Prefix
Suffix
Role
Division
Organization U. Lisboa & INESC-ID
Address Lisbon, Portugal
Email miguel.marques.matos@tecnico.ulisboa.pt
URL https://www.gsd.inesc-id.pt/~mm/
ORCID http://orcid.org/0000-0001-6916-2866
Abstract Reproducing experimental results is nowadays seen as one of the greatest impairments for the progress of

science in general and distributed systems in particular. This stems from the increasing complexity of the
systems under study and the inherent complexity of capturing and controlling all variables that can
potentially affect experimental results. We argue that this can only be addressed with a systematic
approach to all the stages and aspects of the evaluation process, such as the environment in which the
experiment is run, the configuration and software versions used, and the network characteristics among
others. In this tutorial paper, we focus on the networking aspect, and discuss our ongoing research efforts
and tools to contribute to a more systematic and reproducible evaluation of large scale distributed systems.

Author Proof

®

Check for
updates

Kollaps/Thunderstorm: Reproducible

Evaluation of Distributed Systems
Tutorial Paper

Miguel Matos®)

U. Lisboa & INESC-ID, Lisbon, Portugal
miguel.marques.matos@tecnico.ulisboa.pt
https://www.gsd.inesc-id.pt/~mm/

Abstract. Reproducing experimental results is nowadays seen as one of
the greatest impairments for the progress of science in general and dis-
tributed systems in particular. This stems from the increasing complexity
of the systems under study and the inherent complexity of capturing and
controlling all variables that can potentially affect experimental results.
We argue that this can only be addressed with a systematic approach
to all the stages and aspects of the evaluation process, such as the envi-
ronment in which the experiment is run, the configuration and software
versions used, and the network characteristics among others. In this tuto-
rial paper, we focus on the networking aspect, and discuss our ongoing
research efforts and tools to contribute to a more systematic and repro-
ducible evaluation of large scale distributed systems.

1 Introduction

Evaluating distributed systems is hard. The underlying network topology, in par-
ticular, can have a drastic impact on key performance metrics, such as through-
put and latency but also on correctness depending, for instance, on the asyn-
chrony assumptions made by the system designer. With the increasingly popu-
lar deployment of geographically distributed applications operating at a global
scale [5], assessing the impact of geo-distribution, and hence network topology,
is fundamental to build and tune systems that perform correctly and meet the
desired Service Level Objectives. Unfortunately, there is still an important gap
between the easiness of deploying a distributed system and its evaluation.

On the one hand, the deployment of geographically distributed systems was
made simpler thanks to the increasing popularity of container technology (e.g.,
Docker [13], Linux LXC [8]). Big IT players introduced such technologies in their
commercial offering (e.g., Amazon Elastic Container Service [1], Microsoft Azure
Kubernetes Service [2] or Google Cloud Kubernetes Engine [7]), and they are an
attractive mechanism to deploy large-scale applications.

On the other hand network properties such jitter, packet loss, failures of
middle-boxes (i.e., switches, routers) are by definition difficult, if not impossi-
ble, to predict from the standpoint of a system developer, who has no control
over the underlying network infrastructure. Moreover, such conditions are the
© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020

A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 1-8, 2020.
https://doi.org/10.1007/978-3-030-50323-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_8&domain=pdf
http://orcid.org/0000-0001-6916-2866
https://doi.org/10.1007/978-3-030-50323-9_8

Author Proof

2 M. Matos

Latencies measures from us-east-1

,‘-é; eu-north-1 —ap-northeast-2 eu-central-1 = us-west-2 sa-east-1 =
= 250

)

f= A

& A

ER A | ——
& 100 b4 -

3

o 50

§ 0 ! !

£ 26.02.19 12.03.19 26.03.19 09.04.19

Fig. 1. Latency variability between five different AWS regions across the world over
45 days. Latencies vary on average between 90 ms and 250 ms, while spikes occur across
all regions.

Variability of network conditions (27.04.19-28.04.19)

- 128 client: Portugal server:Switzerland bandwidth — latency — 40
% 1 35
96 30
= 1% E
3 64 20 =
5 1152
§ 32 10 o
< 15
= 0 | ! L 0
0 12H 24H 36H 48H

Fig. 2. Dynamic network conditions between two university campuses in Europe, in
Portugal and Switzerland respectively.

norm rather than the exception, in particular when considering large-scale wide-
area networks that might cross several distinct administrative domains. As a
motivating example, consider Fig.1 which shows the average latency between
six AWS [1] regions over 45 days measured by https://www.cloudping.info. We
observe that even in the infrastructure of a major cloud provider, there are
significant and unpredictable variations in latency.

Variability is not limited to latency. We demonstrates this with a measure-
ment experiment for two different cases. The first set of measures are taken
between two stable endpoints inside university networks, respectively in Por-
tugal and Switzerland, shown in Fig.2. The second case measures the network
conditions between a remote AWS instance in the ap-northeast-1la zone (in
Tokyo) and a server node in Switzerland (Fig.3). As we can observe, there are
important variations both for bandwidth and latency. Such variability can have
a dramatic effect not only on a system’s performance but also on reliability as
shown by recent post-mortem analysis of major cloud providers [4]. The chal-
lenge, therefore, is how to equip engineers and researchers with the tools that
allow to systematically understand and evaluate how this variability affects sys-
tem’s performance and behavior.

In our ongoing work, we are conducting research and developing tools to
precisely enable these experiments. In this tutorial paper, we briefly introduce

https://www.cloudping.info

Author Proof

KorLAPs/THUNDERSTORM 3

Variability of network conditions (30.04.19-02.05.19)

. 128 client: AWS-AP (Tokyo) server: Switzerland bandwidth — latency —
»
=
= 250
S % =
=3 200 |
3 64 150 %
=) 100 £
3 32 o
< 50
= 0 L L L 0

0 12H 24H 36H 48H

Fig. 3. Dynamic network conditions between a university node in Switzerland and a
node in AWS ap-northeast-1a (Tokyo).

KoLrLaPps [10], a decentralized and scalable topology emulator (Sect.2), and
THUNDERSTORM [12], a compact domain specific language to describe dynamic
experiments on top of KOLLAPS (Sect.3). Then we present some experiments
enabled by KoLLAPS and THUNDERSTORM in Sect. 4 and conclude in Sect. 5.

2 Kollaps

In this section, we briefly describe the architecture and workflow KOLLAPS,
depicted in Fig. 4.

First, the user must describe the topology in the THUNDERSTORM Descrip-
tion Language (TDL), discussed in the next section. This includes the network
topology, network dynamics, if any, and the Docker images of the distributed
application being evaluated (Fig.4, define step). These images can come from
either private repositories or public ones such as Docker Hub [3].

With the experiment defined, the user invokes the deployment generator, a
tool shipped with KOLLAPS that transforms the TDL into a Kubernetes Manifest
file, or a Docker compose file. This file is ready to be deployed using Kubernetes
or Docker Swarm, but the user can manually fine-tune it if needed.

The user can then use this file to deploy the experiment in any Kubernetes
cluster (Fig. 4, deploy step). This deploys not only the target application under
evaluation but also an Emulation Manager component per physical machine
(Fig. 4, execute step). The Emulation Manager is a key component of KOLLAPS
responsible for maintaining and enforcing the emulation model in a distributed
fashion. More details on the design and implementation of KOLLAPS can be
found in [10].

3 Thunderstorm

In this section, we describe the THUNDERSTORM Description Language (TDL).
The TDL abstracts the low level details of KOLLAPS and allows to succinctly
express dynamic experiments. An example of the TDL, illustrating the main
features of the language can be found in Listing1.1.

Author Proof

4 M. Matos

Results Topology, pods, i
o |out A dynamics, ... 8 (:{ontamer
< o > o outer
Y . S0 Rl
\ (k8s,swarm)

Container
——prchestrator

2 (topology (¢) (e master

nodes daemon

(k8s,swarm)

Fig. 4. KoLLAPS architecture and workflow. We assume the existence of an existing
cluster and a working Docker Swarm or Kubernetes environment.

The language describes the services (lines 3-6), the static topology (lines
10-14) and the dynamics in the topology (lines 16-26). The service, bridge
and link elements can get an arbitrary number of tags. In the example, the api
and db services belong to the backend, while the server belongs to the frontend.
These three are grouped into the same application together, expressed by the app
tag. The client is not part of the application. We use tags to group services and
links together based on real-world criteria. For example, one of the most common
causes for network “failures” is the distributed roll-out of software upgrades [14],
e.g. for routers. Tags help to capture groups of devices sharing network status-
relevant characteristics, e.g., driver versions that could be updated at the same
time. Tags could also be used to map services to data centers (i.e., what if
one’s connection suddenly changes?) or to logical parts of a distributed system
(frontend, backend). Bridges (line 8) must have unique names. Links must specify
the source, destination and the properties (e.g., latency, bandwidth, jitter, etc.).
The symmetric keyword allow to easily create bidirectional links with the same
specified properties.

The dynamic events can be expressed in a concise yet rich manner. In our
example, we first start all application services (3 replicas for the api and the
db, and 5 replicas for the server, lines 16-19), and after 30s the clients (line
19). After 30 min, we inject several faults into the topology. The churn keyword
crashes either an absolute number of services, or a certain share of all instances
of that service. The replace keyword then specifies the probability of such
a service to immediately re-join the cluster. At line 20, we specify that the
server replicas will be subject to churn over a 3h period. In particular, 40% of
the servers will crash uniformly at random over this period, and of those, 50%
will be replaced immediately. Although the language allows to define events
with a degree of randomness, such as the churn event above, it is possible to
systematically reproduce the same order of events by setting a fixed random
seed. We can also specify the dynamic behavior for a specific container. In the
example, one server instance leaves the system at four hours and twenty, and
joins 5min later (lines 21-22).

Author Proof

KorLAPs/THUNDERSTORM 5

bootstrapper thunderstorm:2.0

service server img=nginx:latest tags=frontend ;app
service api img=api:latest tags=backend;app
service client img=client:1.0 command=[’80"]
service db img=postgres:latest tags=backend;app

0~ O T Wi

bridges sl s2

©

10 link server—sl1 latency=9.1 up=1Gb down=800Mb
11 link api—sl latency=5.1 up=1Gb symmetric

12 link sl—s2 latency=0.11 up=1Gb symmetric

13 link client—s1 latency=23.4 up=50Mb down=1Gb
14 link db—s2 latency=8.0 up=1Gb symmetric

15

16 at Os api join 3

17 at 0s db join 3

18 at Os server join 5

19 at 30s client join

20 from 30m to 3h30m server churn 40% replace 50%
21 at 4h20m server—sl leave

22 at 4h25m server—s1 join

23 from 10h2m to 10h6m api—sl1 flap 0.93s

24 from 12h to 24h tags=be leave 60%

25 from 15h to 15h20s server disconnect 1

26 at 18h20m api—sl set latency=10.2 jitter=1.2
Listing 1.1. Example of experiment descriptor using the THUNDERSTORM description
language. Link rates are given in ’per second’.

The language supports link flapping, where a single link connects and dis-
connects in quick succession [14]. In the experiment, the link between service
api and bridge s1 flaps every 0.93s during a period of 4min (line 23). The
leave action, used to define which entities should leave the emulation, takes as
a parameter an absolute number or a share of all selected instances. At line 24,
60% of all nodes with the backend tag, chosen uniformly at random, will leave
the experiment. Internally, when the language is translated into the lower level
format used by the KOLLAPS engine, we keep track of all nodes that have joined,
left, connected, or disconnected. Thus, if a percentage rather than an absolute
number is provided, that is always relative to the amount of legal targets in the
cluster at that moment.

The output of the parser is a XML file, ready to be consumed by the deploy-
ment generator and starting the experiment workflow discussed in the previ-
ous section. Further details about the design and implementation of THUNDER-
STORM can be found in [12].

Author Proof

6 M. Matos

4 Experiments

In this section, we illustrate the capabilities of KOLLAPS and THUNDERSTORM.
The goals are two-fold: show that the emulation is accurate, and also that it
allows to easily evaluate a system under network dynamics.

The evaluation cluster is composed of 4 Dell PowerEdge R330 servers where
each machine has an Intel Xeon E3-1270 v6 CPU and 64 GB of RAM. All nodes
run Ubuntu Linux 18.04.2 LTS, kernel v4.15.0-47-generic. The tests conducted on
Amazon EC2 use r4.16xlarge instances, the closest type in terms of hardware-
specs to the machines in our cluster.

Throughput/Latency real vs. emulated

600 T . . —
& 500 Bz ¥
E 400t EC2 Read —=+ = = mx= %
2 300k EC2 Update - = -
2 ThunderStorm Read ——
% 200 - ThunderStorm Update - * -
= 100 J

0 ‘ ‘ . ‘
0 500 1000 1500 2000 2500 3000

Throughput (ops/sec)

Fig. 5. Throughput/latency of a geo-replicated Cassandra deployment on Amazon EC2
and KOLLAPS

We start by comparing the results of benchmarking a geo-replicated Apache
Cassandra [6,11] deployment on Amazon EC2 and on KOLLAPS. The deployment
consists of 4 replicas in Frankfurt, 4 replicas in Sydney and 4 YCSB [9] clients in
Frankfurt. Cassandra is set up to active replication with a replication factor of
2. In order to model the network topology in KOLLAPS, we collected the average
latency and jitter between all the Amazon EC2 instances used, prior to execut-
ing the experiment. Figure 5 shows the throughput-latency curve obtained from
the benchmark on both the real deployment on Amazon and on KOLLAPS. The
curves for both reads and updates are a close match, showing only slight differ-
ences after the turning point where response latencies climb fast, as Cassandra
replicas are under high stress. This experiment demonstrates how such issues can
be identified, debugged and eliminated with KOLLAPS before expensive real-life
deployments.

We now highlight the unique support for dynamic topologies through the use
of the TDL. This allows to easily evaluate the behaviour of complex systems in
a variety of scenarios. In this experiment, the intercontinental link from EU to
AP used for the Cassandra experiment in Fig. 5 suddenly changes its latency to
half (at 240s), and later on (at 480s) the original latency is restored. In Fig. 6
we report the update latency observed by YCSB. Note that read operations do
not use the intercontinental link and hence are not affected (not shown). This
shows that the network dynamics imposed by KOLLAPS have a direct impact in

Author Proof

KorLAPs/THUNDERSTORM 7

Cassandra under varying latency
600

[
400
300
200
100

J J
G RC)
\\:a\\le'é \‘anq\O‘e

el

End-to-end latency (ms)

0 120 240 360 480 600 720
Seconds

Fig. 6. Latency variations measured by YCSB during a transitory period: one of the
replicas is moved to a far away region.

client-facing metrics. Engineers and researchers can therefore use KOLLAPS and
THUNDERSTORM to conduct controlled and reproducible experiments to assess
the behavior of real system under a wide range of network dynamics and devise
the best strategies to adopt when such events happen in production.

5 Discussion

In this tutorial paper we illustrated the main features of KoLLAPS and THUN-
DERSTORM, in particular the accuracy of the emulation with respect to a real
system deployed in a real environment, and also the dynamic experiments that
THUNDERSTORM enables. Both tools are available as open source at https://
github.com/miguelammatos/Kollaps.

We believe the ability to systematically reproduce experiments in a controlled
environment, and the ability to subject a system to a wide range of dynamic
scenarios provided by KOLLAPS and THUNDERSTORM are a step towards building
more robust and dependable distributed systems.

Acknowledgments. The work presented in this tutorial paper is the joint effort of
researchers at the University of Lisbon, Portugal, and researchers at the Univerité
de Neuchatel, Switzerland, namely: Paulo Gouveia, Joao Neves, Carlos Segarra, Luca
Lietchi, Shady Issa, Valerio Schiavoni and Miguel Matos. This work was partially sup-
ported by national funds through FCT, Fundacao para a Ciéncia e a Tecnologia, under
project UIDB/50021/2020 and project Lisboa-01-0145- FEDER- 031456 (Angainor).

References

1. Amazon elastic container service. https://aws.amazon.com/ecs/

2. Azure kubernetes service. https://azure.microsoft.com/en-us/services/kubernetes-
service/

3. Docker hub. https://hub.docker.com/

4. Google cloud post-mortem analysis. https://status.cloud.google.com/incident/
cloud-networking/180127m=1

5. Containers: real adoption and use cases in 2017. Technical report, Forrester, March
2017

https://github.com/miguelammatos/Kollaps
https://github.com/miguelammatos/Kollaps
https://aws.amazon.com/ecs/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://hub.docker.com/
https://status.cloud.google.com/incident/cloud-networking/18012?m=1
https://status.cloud.google.com/incident/cloud-networking/18012?m=1

Author Proof

10.

11.

12.

13.

14.

M. Matos

Apache Cassandra (2019). https://cassandra.apache.org/. Accessed 12 Mar 2020

Google cloud kubernetes engine (2019). https://cloud.google.com/kubernetes-
engine/. Accessed 12 Mar 2020

Linux LXC (2019). https://linuxcontainers.org/. Accessed 12 Mar 2020

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing SoCC 2010, pp. 143-154. ACM, New York (2010). https://doi.
org/10.1145/1807128.1807152

Gouveia, P., et al.: Kollaps: decentralized and dynamic topology emulation. In:
Proceedings of the Fifteenth European Conference on Computer Systems EuroSys
2020. Association for Computing Machinery, New York (2020). https://doi.org/10.
1145/3342195.3387540

Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35-40 (2010). https://doi.org/10.1145/
1773912.1773922

Liechti, L., Gouveia, P., Neves, J., Kropf, P., Matos, M., Schiavoni, V.: THUNDER-
STORM: a tool to evaluate dynamic network topologies on distributed systems.
In: 2019 IEEE 38th International Symposium on Reliable Distributed Systems
SRDS2019 (2019)

Merkel, D.: Docker: lightweight Linux containers for consistent development
and deployment (2014). https://doi.org/10.1097/01.NND.0000320699.47006.a3.
https://bit.ly /2IuhKBv

Potharaju, R., Jain, N.: When the network crumbles: an empirical study of cloud
network failures and their impact on services. In: Proceedings of the 4th Annual
Symposium on Cloud Computing SOCC 2013, pp. 15:1-15:17. ACM, New York
(2013). https://doi.org/10.1145/2523616.2523638

https://cassandra.apache.org/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://linuxcontainers.org/
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1097/01.NND.0000320699.47006.a3
https://bit.ly/2IuhKBv
https://doi.org/10.1145/2523616.2523638

Author Proof

Author Queries

IChapter 8

Query Details Required Author’s
Refs. response
AQ1 Per Springer style, both city and country names must be

present in the affiliations. Accordingly, we have inserted
the city name “Lisbon” in the affiliation. Please check
and confirm if the inserted city name is correct. If not,
please provide us with the correct city name.

