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Abstract—Distributed systems are increasingly important in
modern society, often operating on a global scale with stringent
dependability requirements. Despite the vast amount of research
and the development of techniques to build dependable systems,
faults are inevitable as one can witness from regular failures
of major providers of IT services. It is therefore fundamental
to evaluate distributed systems under different fault patterns
and adversarial conditions to assess their high-level behaviour
and minimize the occurrence of failures. However, succinctly
capturing the system configuration, environment, fault patterns
and other variables affecting an experiment is very hard, lead-
ing to a reproducibility crisis. In this paper we propose the
FAULTSEE toolkit. The two components of FAULTSEE are (1)
the simple and descriptive FDSL language that captures the
system, environment, workload and fault pattern characteristics;
and (2) an easy-to-use platform to deploy and run the experiments
described by the language. FAULTSEE allows to precisely describe
and reproduce experiments and leads to a better assessment the
impact of faults in distributed systems. We showcase the key
features of FAULTSEE by studying the impact of faults with real
deployments of Apache Cassandra and BFT-Smart.

I. INTRODUCTION

Modern society is increasingly reliant on distributed systems
to support critical infrastructure such as banking and finance,
healthcare, e-commerce and social media among many others.
It is therefore fundamental to design and build distributed
systems with strong dependability requirements. Despite the
decades-long effort from both the industry and academia to
design and build dependable distributed systems, failures do
still happen frequently as can be witnessed by recent outages
in services from global IT players [1], [2], [3]. While the
occurrence of faults in any real system is inevitable, there is a
vast literature on fault tolerant designs to prevent such faults
from becoming errors and failures.

Unfortunately, the complexity of modern distributed sys-
tems, often composed of thousands of interacting compo-
nents [4], makes it hard to reason about the impact and
consequences of those faults on the system as a whole. In
the field of software engineering, test-driven approaches that
cover a wide range of scenarios have been shown to reduce the
number of bugs (faults) and significantly increase the software
quality [5], [6]. While the same systematic approach to testing
and evaluation can improve the dependability of distributed

systems, this is a challenging endeavor. Distributed systems
are inherently complex, have multiple interacting components,
are run on heterogeneous and varying environments, and thus
subject to a wide range of fault patterns that must be measured
and benchmarked.

The underlying reason for this difficulty stems from the
fact that the evaluation results are affected by many variables,
some known and controlled, others known but not controlled,
and finally many completely unknown [7]. As an example, it
has been shown that the size of the environment variables
can have a significant impact on system performance [8].
Similarly, the profiler configuration can affect the results of
well-known benchmarks such as Java Dacapo [9], [10]. The
presence of such sources of variability impairs experimental
reproducibility precluding researchers to assess each other’s
work [11], [12]. As a matter of fact, the ability to inject a wide
range of faults is fundamental to assess the dependability of
distributed systems [13]. To properly evaluate the impact of
faults on a system, and hence assess its dependability, we need
tools to systematically reproduce experiments that can subject
a system to a wide range of fault scenarios.

Technologies such as virtual machines, containers, and
orchestration platforms such as Docker Swarm [14] or Ku-
bernetes [15] partially mitigate the reproducibility problem
by capturing, in part, the system, its configuration and the
environment. Specialized tools such as ReproZip [16], [17]
or Guix [18] allow to take a snapshot of the system state
(binaries and configurations) and reproduce this configuration
at a later point in time. However, no existing tool can capture
the injected workload and the dynamic properties of the
system, such as faults and churn, i.e. the continued addition
and removal of nodes to the system. Moreover, such details are
usually omitted in a research paper due to space constraints
and language limitations. As an example, generic sentences
like “In this experiment, we failed three replicas, and mea-
sure the impact on system throughput”, common in systems
papers, fail to capture key aspects of the experiment. Which
replicas failed? How were the faults injected? By stopping
processes? By killing them? By shutting down the network
interface? Depending on the answers to questions such as
these, the experimental results and conclusions of experiments
can be strikingly different [7]. Furthermore, without properly
capturing the workload, which entails a subsystem with its



own software, lifecycle and configuration, no meaningful
conclusions about the system behavior and performance can
be drawn.

A. Our contributions

In this work we propose the FAULTSEE toolkit encom-
passing (1) the simple and descriptive FDSL language that
captures the system, environment, workload and fault pattern
characteristics; and (2) an easy-to-use platform to deploy
and run the experiments described by the language. The
FAULTSEE FDSL language can describe the configuration and
lifecycle of the different aspects of the experiment, whereas
the platform provides a generic fault injection framework that
can be extended to support arbitrary fault patterns. FAULT-
SEE builds on top of both Docker Swarm and can, by design,
easily evaluate and reproduce unmodified containerized appli-
cation experiments under a wide range of fault patterns. We
illustrate the capabilities and usefulness of FAULTSEE using
two real world applications: the NoSQL Apache Cassandra
database [19], and BFT-Smart, a Byzantine Fault-Tolerant
State Machine Replication system. Internally, we have used
FAULTSEE sucessfully to conduct system research and also
in the experimental work of students.

The rest of this paper is organized as follows. We describe
the FAULTSEE language and present the FAULTSEE platform
in Sections II and III. In Section IV, we illustrate the function-
alities of FAULTSEE in a realistic scenario. Finally, we discuss
related work in Section V and conclude in Section VI.

II. FDSL: THE FAULTSEE DOMAIN SYSTEM LANGUAGE

In this section, we describe FDSL, the FAULTSEE Domain
System Language. FDSL allows researchers and practitioners
to succintly and precisely express the system binaries, config-
uration, workload, lifecycle and dynamics such as churn and
faults. We chose YAML [20] for the FDSL syntax as it is
compact and both human and machine readable.

We now describe in detail how an experiment can be
expressed with FDSL. To illustrate the main concepts we use
the running example depicted in Listing 1. It describes an
experiment with the NoSQL Apache Cassandra database [19]
evaluated with the YCSB benchmark [21] while subject to
faults. The objective is to assess the impact of faults on
the system throughput. More details, and results, of this
experiment are presented in Section IV.

The intuition behind FDSL is to describe the experiment in
two parts. The first part contains the overall environment and
the initial state of the system (binaries and configurations),
expressed by the environment section and beginning
event. The second part is the sequence of events, such as
adding, failing or stopping replicas, that modify the state over
time. These are expressed by a sequence of moment that
correspond to changes in the experiment state.

A. Detailed FDSL features

The environment captures system wide properties that
impact the experiment (Listing 1, lines 2–4). FDSL supports

1 #overall environment
2 environment :
3 seed : 568
4 n t p s e r v e r : eu ro pe . poo l . n t p . o rg
5 e v e n t s :
6 #setup initial instances
7 - beg inning :
8 cassandra : 0
9 setup−s e r v i c e : 0

10 ycsbarun : 0
11 ycsba load : 0
12 #start one cassandra replica
13 - moment:
14 t ime : 10
15 s e r v i c e s :
16 cassandra :
17 - s t a r t :
18 amount: 1
19 #start another cassandra replica
20 - moment:
21 t ime : 200
22 s e r v i c e s :
23 cassandra :
24 - s t a r t :
25 amount: 1
26 #load the data in the database
27 - moment:
28 t ime : 900
29 s e r v i c e s :
30 ycsb load :
31 - s t a r t :
32 amount: 1
33 #run the benchmark with two clients
34 - moment:
35 t ime : 1400
36 s e r v i c e s :
37 ycsbarun :
38 - s t a r t :
39 amount: 2
40 #kill a specific replica
41 - moment:
42 t ime : 2000
43 s e r v i c e s :
44 cassandra :
45 - f a u l t :
46 t a r g e t :
47 s p e c i f i c : [ 1 ]
48 k i l l :
49 #end the experiment
50 - end: 4000

Listing 1: FDSL showing the main language features. The
example captures the Cassandra experiment described in Sec-
tion IV.



the use of a random seed for experiments with random
decisions such as killing a random replica. This is crucial for
successfully reproducing experiments. If no seed is provided
the system uses a seed based on the local time and outputs its
value to the log at the end of the experiment (further detailed
in Section III.) This allows running several instances of the
same experiment under different conditions, while allowing
to reproduce relevant experiments by rerunning them with
the appropriate seeds. We also support the definition of the
NTP [22] for clock synchronization at the environment level.
This is relevant when running the experiments as further
detailed in Section III.

The events describe the experiment timeline (List-
ing 1, lines 5–50). FDSL supports three types of events:
beginning, end and moment. The beginning event
describes the initial state of the experiment. This includes
the system and benchmark binaries, configuration and number
of instances. To capture the binaries and configurations we
rely on containers as they already specify, in a concrete
language (e.g. through a Dockerfile in the case of Docker
containers [23], [24]), how the binaries are built, and what
are the dependencies and version. Therefore, the beginning
event describes the name of the container images to instantiate
(lines 1–4), the number of container instances to start at the
beginning of the experiment, and additional parameters that
might be required (not shown in Listing 1).

The end event indicates when the experiment ends. At this
point all the instances are terminated, and the system and
application metrics are aggregated for posterior analysis as
discussed in Section III.

The moment events describe changes in the state of the
experiment, which can be start and stop to start and
gracefully stop a replica, respectively, and fault to inject
faults. These events apply to the specified services which
correspond to a set of containers with the same functionality
and configuration, following the Docker terminology. For
instance lines 13–18 specify to start one new Cassandra replica
10 seconds after starting the experiment.

The fault event allows to inject a fault in the service
replicas. Faults can be applied to one or more containers and
different faults are supported, including custom ones. The
specification of each fault follows a common structure,
detailed in Listing 2. This structure includes the target
and the fault_type. The target specifies the replicas
where the faults should be injected. The target options are
(1) amount, indicating the exact number of replicas affected,
selected uniformly at random; (2) percentage, indicating
the percentage of replicas affected when the fault is injected;
and (3) specific, indicating the exact set of replicas that
should be affected. Note that, for a given target, only one
of amount, percentage or specific can be defined,
however different faults can select different options for the
same experiment. The fault_type indicates the type of
fault to be injected. Currently, FDSL supports three fault types:
kill, cpu and custom. kill specifies that the container
should be killed. cpu specifies a CPU exhaustion fault by

1 − f a u l t :
2 t a r g e t :
3 # specify in how many/which
4 # targets to inject the fault
5 # the options below are
6 # mutually exclusive
7 amount: <n a t u r a l number>
8 percentage : <n a t u r a l number>
9 s p e c i f i c :

10 - <r e p l i c a id>
11 - . . .
12 - <r e p l i c a id>
13 f a u l t t y p e

Listing 2: Detailed structure of a fault event in FDSL.

running a compute intensive task for a given period of time,
hence modeling resource starvation or interference from other
containers. custom allows to define custom faults.

Custom faults allow the researcher or practitioner to run an
arbitrary script inside the containers, and inject application-
dependent faults, for instance corrupting the data or log files
of a database system. Listing 3 shows the structure of a custom
fault. The parameter kills_containers indicates whether
this fault results in a total failure of the container (i.e. a crash)
or not. This information is used for two different purposes.
First it allows checking if the application is resilient to this
fault or not. If the fault is not supposed to crash the container
(i.e. kills_containers is false) and the container ends
up failing, then the user is warned about this and can proceed
accordingly. The second reason is to allow for the correct
computation of the percentage of containers that should
be affected by a fault (Listing 2) as this should only affect
containers that are alive at the time the fault is injected. The
remaining parameters allow defining the location of the script,
the execution environment and their parameters.

With an experiment described in FDSL, the next step is to
run the experiment with the FAULTSEE platform which we
describe in the next section.

B. Towards improved experiment reproducibility

Despite it conciseness, FDSL allows to capture the char-
acteristics of an experiment. Our long-term objective is to
allow researchers and practitioners to easily distribute, along
with their code and documentation, the FDSLs used in their
experiments, hence contributing to experiments that are easier
to reproduce. In this spirit, the FDSLs that were used in the
experiments of Section IV, together with FAULTSEE itself,
are made available to the community1.

III. THE FAULTSEE PLATFORM

In this section we describe the FAULTSEE platform that
operationalizes experiments from a FDSL listing in a working

1Available at https://angainor.science/faultsee



1 custom:
2 k i l l s c o n t a i n e r : <yes / no>
3 f a u l t f i l e n a m e : <f a u l t f i l e n a m e >
4 # defaults to /usr/lib/faultsee/
5 f a u l t f i l e f o l d e r : f a u l t f i l e f o l d e r
6 f a u l t s c r i p t a r g u m e n t s :
7 # default - empty array
8 - arg 1
9 - . . .

10 - arg N
11 e x e c u t a b l e : e x e c u t a b l e
12 # default - /bin/sh
13 executable arguments :
14 # default - empty array
15 - arg 1
16 - . . .
17 - arg N

Listing 3: Structure of a custom fault in FDSL.

infrastructure, providing access to a cluster of virtual or
physical machines. The only requirment is for those machines
to be acessible through SSH, either via password-based au-
thentication or public key authentication.

The general architecture of FAULTSEE is depicted in
Figure 1. FAULTSEE has three major components, namely
the Master Controller (Section III-A), the Local Controller
(Section III-B) and the Dashboard (Section III-C). The FAULT-
SEE platform is implemented in Python and Go.
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Figure 1: FAULTSEE architecture. Regular arrows represent
control messages whereas dashed arrows represent telemetry
information, namely logs and metrics.

A. Master Controller

The Master Controller is the main component of the plat-
form: it is responsible for orchestrating the whole experiment.
Users can interact with the Master Controller with scripted
experiments via the command line, and with the web-based
Dashboard. After receiving an FDSL file, the Master Con-
troller performs three validation steps: (1) validation of the
syntax of the experiment; (2) validation of the semantics of
the experiment; and (3) validation of the cluster state. Step (2)

ensures that the specified container images are available and
that the described faults patterns are satisfiable. An example
of an unsatisfiable pattern would be, for a cluster of 10 nodes,
having one fault that kills 6 nodes followed by a fault that
kills 5 nodes). Step (3) ensures that the cluster is operational
and reachable. If all the validations are successful, the FDSL
is converted into an experiment plan which is an internal
representation describing the experiment. All random events
are sampled and the replicas where faults need to be injected
are specified. The result is a sequence of (time, event,
replica) tuples which identify when, which, and where
events need to be injected. The Master Controller then starts
the Local Controllers on each of the cluster machines and
distributes the experiment plan to each of them.

Pre-generating the experimental plan has several advan-
tages. First, it simplifies the logic of the Local Controllers
which simply have to go over the plan and implement it
without any further processing logic. Second, it allows the
Local Controllers to work in a fully independent manner
without any sort of coordination with the Master Controller
or other Local Controllers. This is essential for running large-
scale experiments and to minimize the impact of FAULT-
SEE on network traffic by limiting the number of control
messages. Finally, this allows the experimental plan to remain
the same, regardless of the number of Local Controllers and
placement decisions of the container orchestrator (such as
Docker Swarm or Kubernetes) that might choose to place
containers in different machines across different runs.

The Master Controller also synchronizes the machine clocks
through NTP before starting the experiment. Since Local
Controllers work independently during the experiment and
follow the experiment plan by executing events at specified
times, this synchronization step is important to bound the
experimental error [25]. Once this step is complete, the Master
Controller instructs all Local Controllers to start running the
experiment.

B. Local Controller

As depicted in Figure 1, each machine in the cluster runs
a Local Controller whose main responsibility is to apply
the experiment plan that globally describes the experiment
to the containers running locally. The Local Controller also
gathers resource metrics from the local machine and each local
container. These include: CPU usage, memory usage, network
usage, and disk I/O. These metrics, along with the log events
produced by the application containers, are kept locally during
the experiment to reduce the impact of FAULTSEE on the
network.

At the end of the experiment, the Local Controller sends
the logs and telemetry information to the Master Controller,
which then merges and chronologically sorts all the events.
This information allows the researcher or practitioner to assess
the experiment either by analysing the log files or by studying
this information in the Dashboard.



Figure 2: Dashboard example showing the average load and network usage for the Cassandra experiment.

C. Dashboard

The Dashboard provides a web-based interface to analyze
the results of the experiments. It displays the following infor-
mation:

• Container Information: information about each con-
tainer that ran in an experiment, such as its full identifier
and the service it belonged to. This allows to easily
analyze specific containers after the experiment.

• Container Events: information about the lifecycle of
containers, such as when they started and stopped.

• Container Stats: resource usage metrics of each con-
tainer.

• Hosts Stats resource usage metrics of cluster machines.
Figure 2 depicts the average load and network usage metrics

for the Cassandra experiment described in Listing 1.

IV. EVALUATION

In this section we showcase the capabilities of FAULTSEE .
We evaluate the behaviour of two systems: the Cassandra
database [19] (Section IV-A), and BFT-Smart [26], a Byzan-
tine Fault-Tolerant State Machine Replication system (Sec-
tion IV-B). The Cassandra experiments were run in Google
Computing Cloud with six n1-standard-1 servers, each with
1 vCPU and 3.75 GB memory, running Ubuntu 16.04.6 LTS
and Docker 19.03.4. The BFT-Smart experiments were run
in Amazon Web Services with six t2.medium instances each
with 2 vCPUs and 4 GB memory, running Ubuntu 16.04.6
LTS and Docker 19.03.4. We chose different cloud providers
to highlight the fact that FAULTSEE abstracts the underlying
infrastructure, allowing one to easily deploy the same experi-
ment in different cluster.

A. Cassandra

As a starting point, we first consider the running example
of Apache Cassandra introduced in Listing 1. The experiment

consists of starting a Cassandra cluster with four nodes, subject
the cluster to a workload, inject a fault during this period
and assess the impact on throughput. The workload was
injected by YCSB, a general benchmarking tool for NoSQL
databases [21]. We used two YCSB clients, each with 10
threads and default configurations2. As the workload, we
selected YCSB workload A, which corresponds to a mix of
50% read and 50% write operations. Note that our goal in
this evaluation is not to stress test Cassandra but rather to
illustrate the type of experiments enabled by FAULTSEE . We
use Cassandra version 3.11.4 configured with a replication
factor of 3, and YCSB version 0.14.

We evaluate Cassandra under two fault scenarios. The first
scenario is the one described in Listing 1 where a Cassandra
replica is killed approximately 33 minutes (2000 seconds) after
starting the experiment, and a new replica is added 12 minutes
later (2700 seconds)3. In the second experiment, we run the
same scenario but instead of killing a replica, we inject a CPU
exhaustion fault on a single replica. Expressing this in FDSL
simply requires changing lines 45–48 of Listing 1 to specify
a CPU exhaustion fault rather than a kill fault.

The results for the first scenario, where we kill a Cassandra
replica, are shown in Figure 3. Figure 3a shows the number of
Cassandra and YCSB replicas over time. Note that the number
of Cassandra replicas is the one reported by Cassandra itself,
hence when a replica is killed at second 2000, this is only
reported by Cassandra 47 seconds later. The first vertical bar
in the plot indicates when Cassandra considered the replica as
failed and the second vertical bar when Cassandra recognized
the new replica that was added to the system. We also show

2The default configuration can be seen at https://github.com/
brianfrankcooper/YCSB/wiki/Core-Properties

3Note that for brevity the addition of a new replica after the fault is injected
is not shown in Listing 1. This consists of a copy of the lines 19–25 but with
the time set to 2700. The full experiment requires 78 lines of FDSL.



the lifecycle of YCSB replicas that inject the workload in
the database. The resulting throughput is shown in Figure 3b.
After the YCSB clients start, and the initial ramp-up period,
throughput stabilizes at ≈ 3250 operations per second. After
the fault, the throughput remains briefly unaffected and then
drops dramatically before recovering to levels smaller than
prior to the fault, due to the smaller capacity of the system
which only contains three replicas rather than four. This is
explained by the impact of the recovery protocol which needs
to readjust the replication factor of the data that was in the
failed replica. Interestingly, after the new replica joins the
system the throughput also drops, due to the need to perform
state transfer to the new replica, until it recovers to steady
state levels before the fault.
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Figure 3: Number of nodes and throughput, when a Cassandra
replica is subject to a KILL fault.

Figure 4 shows the results for the experiment of injecting
a CPU exhaustion fault in one replica. Figure 4a depicts the
number of Cassandra replicas and YCSB instances, which in
this scenario are not affected by crash faults. The throughput
results are shown in Figure 4b where the vertical lines bound
the time interval during which the CPU exhaustion fault
occurred. We observe there is no sharp drop in throughput
as in the previous scenario, although the overall throughput is
smaller because one of the replicas has an overloaded CPU.
As soon as the fault is removed the throughput stabilizes to
its original level.

Interestingly, even though there is a larger variation in
throughput in the KILL scenario than in the CPU exhaustion
scenario, the average throughput of the former is ≈ 2655 op/s
while the average throughput of the latter is ≈ 2453 op/s.
While we expect this relation to be reversed had the faulty
period been shorter, this illustrates the impact of stranglers
(i.e. slow replicas) in the overall system performance [27].
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Figure 4: Number of nodes and throughput, when a Cassandra
replica is subject to a CPU exhaustion fault.

B. BFT-Smart

As we did for Cassandra, we also show two fault scenarios
for BFT-Smart: a kill fault and a CPU exhaustion fault. The
results for the kill scenario are depicted in Figure 5. We first
start the cluster, then start the clients, and finally kill one of
the replicas after ≈ 30 minutes, as can clearly be observed in
Figure 5a. The throughput results are shown in Figure 5b.
We observe that the fault initially negatively impacts the
throughput, but eventually the system recovers. This is because
BFT-Smart has full data replication and the remaining replicas
are able to accommodate the offered load. The FDSL of this
experiment is similar to the one presented in Listing 1 and the
full experiment can be described in just 58 lines (not shown).

In the second experiment, we run a similar scenario but
rather than killing a replica, we inject a CPU exhaustion fault
on a single replica after ≈ 30 minutes. Results are shown in
Figure 6. The number of replicas remains constant during the
time the client is injecting the load, as can be observed in
Figure 6a. Throughput results for this experiment are shown
in Figure 6b. As expected, overloading a replica with a CPU
exhaustion fault negatively affects throughput. The throughput
recovers to the original level as soon as the fault is removed
from the system.

C. Discussion

Despite their simplicity, these experiments show that it is
possible to succinctly and precisely describe complex scenar-
ios with several machines and fault patterns, thus allowing
to assess the behavior of a system under a wide range of
scenarios. Besides, by having a minimal set of requirements
regarding the target cluster where the experiment is run, it
is easy to deploy experiments in cloud environments, such
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Figure 5: Number of nodes and throughput, when a BFT-Smart
replica is subject to a KILL fault.
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Figure 6: Number of nodes and throughput, when a BFT-Smart
server is subject to a CPU exhaustion fault.

as we did for Amazon Web Services and Google Cloud,
as well as on local clusters. Finally, because FDSL fully
captures the experiment dynamics and workload, the process
of reproducing experiments is greatly simplified.

V. RELATED WORK

In this section we summarily discuss the related work,
focusing on fault injection and deployment.

Cords [28] is a framework developed with the purpose of
injecting faults in file systems, to test distributed applications.
Ganesan et al. [28] show that redundancy, in fact, does not

imply fault tolerance by uncovering a series of bugs in eight
popular distributed file systems. This shows the need for in-
corporating better mechanisms into the development lifecycle
and the need to have better tools to subject distributed systems
to faulty scenarions in a systematic way.

To motivate its engineers to build more fault tolerant tools,
Netflix created the SimianArmy [29] set of tools, of which
the ChaosMonkey is the most popular. These tools can inject
faults, with a given probability, into production systems on a
business day. The motivation behind this tool is that systems
will eventually fail, developers just do not know when. By
ensuring engineers that components will fail on a daily basis,
this tool provides them with extra motivation to build systems
that are more robust to faults. Moreover, with the iterative
lifecycle of software development, some faults might be in-
troduced in a system by human error, laying undetected until
the worse possible moment. SimianArmy ensures these faults
will likely become failures when engineers are most prepared
to deal with any issue that may arise.

Pumba [30] is a tool to inject faults into running systems.
After a system is deployed, the user is able to inject faults
into Docker containers by running the desired command in
the console line. This tool supports both Docker Swarm and
Kubernetes, however it does not support running scripted
experiments, the user has to manually run its experiences.
When compared to FAULTSEE these two tools do not provide
a succint and systematic way to describe fault scenarios
hence hampering experimental reproducibility. Additionally,
FAULTSEE enables its users to gather resource usage metrics,
that are available at the end of the experiment in a dashboard.

FEX [31] is a framework that aims at running benchmarks,
taking care of the whole life-cycle: deploy, run and plot
results. The system leverages Docker to deploy similar nodes
of a system in a host. Additionally, Docker ensures better
reproducibility of statements made by users. This is achieved
because other researchers can replicate original Docker im-
ages, therefore they can repeat the experiment in the same
conditions. However, FEX does not encompasses fault injec-
tion nor the life-cycle of the system and its clients

Dfuntest [32] is a framework developed with the intent to
automate experiments with distributed systems. It allows the
execution to be done in a single host or in a testbed. It makes
use of a centralized host to orchestrate tests, therefore cannot
scale indefinitely. Nevertheless, it allows a user to interact with
the system while it is being tested.

VI. CONCLUSION

In this work we presented FAULTSEE , a platform that
enables the simple, automated, and reproducible execution of
fault scenarios in distributed systems, and the FSDL language
for succintly describing those experiments. FAULTSEE solves
an important problem, as distributed systems are operating at
an increasing scale and with an increasing number of complex
and heterogeneous components. This complexity, in turn,
makes it harder for researchers, practictioners and engineers
to reason about the system and its behavior under different



fault conditions. By automating and systematizing part of this
process, we hope that FAULTSEE is a step towards more
reproducible experiments, thus more dependable distributed
systems. Our internal usage of FAULTSEE both to conduct
systems research and as a tool for the experimental work of
students shows that the systematization of the experiments
greatly reduces the overall experimentation time and smooths
the learning curve of newer students and researchers who start
to work on an existing projects modeled with FAULTSEE .

FAULTSEE greatly simplifies the process of reproducing
experiments: only the binaries with the configuration files and
the FDSL desribing the original experiments are required.
FAULTSEE includes a dashboard automating tasks such as
the generation of plots of resource usage, and can be extended
with custom plugins. It supports a wide range of deployment
environemts as we illustrated with experiments in both Ama-
zon Web Services (AWS) and Google Cloud Platform (GCP).
We showed the ease of use and versatility of FAULTSEE by
creating a benchmark for a CPU exhaustion scenario for two
different systems, Apache Cassandra and BFT-Smart, that
only required changing the names of the services and the
deployment configurations in the configuration file.

As future work, we plan to extend FAULTSEE to support
more types of faults such as network faults. We also want to
support different experiment flows. Currently, FAULTSEE only
a linear flow since faults are injected based on the time elapsed
since the beginning of the experiment. Allowing the language
to express experiments with conditional flows and loops allows
researchers to express more complex experimental scenarios
in a concise way. We plan to add support for expressing
experiments based on the observed state, for instance when
throughput reaches a given value, or else inject a fault or start
a client only after all the server replicas have been started
successfully. This would allow a greater expressiveness in
FDSL, and hence expand the types of fault scenarios that can
be modeled and simulated.
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