
Exploiting Symbolic Execution
to Accelerate Deterministic Databases

Shady Issa
U. Lisboa/INESC-ID

shadi.issa@tecnico.ulisboa.pt

Nuno Machado
Teradata, Spain

nuno.machado@teradata.com

Miguel Viegas
U. Lisboa/INESC-ID

miguel.viegas@tecnico.ulisboa.pt

Miguel Matos
U. Lisboa/INESC-ID

miguel.marques.matos@tecnico.ulisboa.pt

Pedro Raminhas
OutSystems, Portugal

pedro.raminhas@tecnico.ulisboa.pt

Paolo Romano
U. Lisboa/INESC-ID

paolo.romano@tecnico.ulisboa.pt

Abstract—Deterministic databases (DDs) are a promising ap-
proach for replicating data across different replicas. A fun-
damental component of DDs is a deterministic concurrency
control algorithm that, given a set of transactions in a specific
order, guarantees that their execution always results in the same
serial order. State of the art approaches either rely on single
threaded execution or on the knowledge of read- and write-
sets of transactions to achieve this goal. The former yields poor
performance in the multi-core era while the latter is achieved
either via manual inputs from the user — a time-consuming and
error prone task — or by relying on a reconnaissance phase that
increases both the latency and abort rates of transactions.

In this paper, we present Prognosticator, a novel deterministic
database system. Rather than relying on manual transaction
classification or a expert programmer to predict transaction
accesses, Prognosticator automates the process through Symbolic
Execution. This allows Prognosticator to build a fine-grained
knowledge (at the key-level) of transactions accesses which is then
used by our novel deterministic concurrency control algorithm
to achieve a high degree of parallelism in transaction execution.
Our experimental evaluation, based on both TPC-C and RUBiS
benchmarks shows that Prognosticator can achieve up to 5×
higher throughput, when compared to state of the art solutions.

I. INTRODUCTION

Deterministic databases (DDs) [1], [33] are an appealing
approach to build replicated data management systems. DDs
are typically organized in two logical layers: a consensus
layer that delivers batches of transactions in the same order
to the replicas, and a transaction processing layer responsible
for executing the transaction logic. Modern consensus im-
plementations leverage a series of techniques (e.g. batching
schemes [32] and/or throughput-optimized/ring-based proto-
cols [25])) to achieve high throughput at the expense of a
small user latency and thus throughput is typically limited by
the transaction processing layer.

Upon receiving a transaction batch, the transaction pro-
cessing layer is responsible for executing the transactions
in a deterministic fashion. Assuming the transaction logic is
deterministic, a trivial approach to ensure correctness is to
execute the batch of transactions sequentially in a single-
thread. Naturally, this severely limits performance and fails
to take advantage of modern multi-core processors. This lim-
itation can be overcome by employing deterministic concur-

rency control algorithms [34], which ensure that, even though
transactions are executed concurrently, they are serialized
in an order equivalent to the order specifed by consensus.
Unfortunately, building an efficient deterministic concurrency
control algorithms is far from simple. A typical approach [26],
[35] consists in predicting the set of data accesses that a
transaction is going to read or write, i.e. the read- and write-
sets (RWS), and uses this information to acquire the set
of locks they will require prior to the their execution in a
deterministic fashion using a single thread.

In a system such as NODO [26] the RWS are given by
the set of tables each transaction accesses. While being very
simple to implement, this approach leads to poor parallelism
as it fails to exploit the fact that two transactions that access
different records in the same table can, in fact, be executed in
parallel. Calvin [35] takes a different approach and delegates
determining the RWS to the programmer which must specify,
for each transaction, the set of tuples that it is going to
access. This has the potential to yield fine-grained RWS but it
requires that programmers reason about all possible accesses
of a transaction which is impractical and error prone for all
but toy applications. As an example, which we will detail
further in Section III-B, the delivery transaction of TPC-C [36]
has 1024 RWS combinations depending on the input. Clearly,
building this manually is very time consuming and error
prone. Either the programmer is too optimistic and commits a
mistake, compromising correctness, or she is too conservative
and provides a coarse grained overestimation, hence reducing
the potential parallelism. Nonetheless, even if we assume
an expert programmer who is able to precisely specify the
RWS, there are certain transactions where the RWS depends
on the state of the database. As an example, a transaction
could read an item from the database and depending on the
value read, write in one of two different keys. As in Calvin,
we call these transactions dependent transactions (DT), and
will further discuss them in Section III-B. To overcome the
complexity of manually determining the RWS, and to support
DT, Calvin relies on a protocol called OLLP [34], which
provides a reconnaissance phase mechanism where clients can
pre-execute the transaction to obtain the set of data items that



are accessed. Then, the client submits the transaction to the
system, along with the predicted RWS. Note that this is only
an estimation as the database state can change between the
reconnaissance phase and the actual transaction execution.
This not only results in wasted resources, as transactions
are executed at least twice, but also leads to high-abort
rate in write intensive workloads where the database state is
more likely to change between the reconnaissance phase and
transaction execution.

In this paper, we propose Prognosticator, a deterministic
database system that addresses these limitations as follows.
Rather than relying on programmer expertise to manually
specify the RWS, we propose a fully automated transaction
analysis, based on Symbolic Execution (SE) that determines
the RWS for all but DT. Briefly, SE is a static program analysis
technique to determine what inputs allow which parts of the
program to be reached and has been successfully used for
the verification of complex systems [2]. The key insight of
Prognosticator is to use the exhaustive search capabilities of
SE to determine for any given transaction: (i) all possible
execution paths and the respective set of data items accessed
in each path, (ii) build a tree — which we call the transaction
profile — that, for a given transaction input, determines the
concrete set of data items that are accessed. This eliminates
programmer mistakes and allows for highly concurrent trans-
action execution. Regarding DTs, we use SE to obtain the
fraction of the RWS that does not depend on the database
state. For the RWS that depends on the database state, we still
need to query the data store to estimate the RWS. However, our
approach differs from Calvin, in two fundamental ways. First,
because we have a partial transaction profile, the reconaissance
phase needs to be done only for part of the transaction which
reduces database load. Second, the reconaissance phase is
done on the server rather than on the client. This has the effect
of removing the consensus execution from the “vulnerability
window” between the reconaissance phase and the actual
transaction execution, hence minimizing the chance of an
outdated prediction. Note that this requires the reconaissance
phase to be deterministic such that all servers do the same
prediction. Moreover, in case of an outdated prediction, rather
than aborting the transaction and delegating the re-execution
of the reconnaissance phase to the client, as in Calvin, we
re-execute the transaction immediately on the server.

To ensure determinism in transaction execution, DDs such
as Calvin rely on a single threaded scheduler and multiple
worker threads for transaction execution. The single threaded
scheduler ensures determinism in the lock acquisition across
all replicas but bottlenecks system throughput. In Prognosti-
cator we have several mechanisms to tackle this issue. First,
worker threads are used in the reconaissance phase to predict
the data accesses for DTs relieving the scheduler thread from
this work. Second, worker threads operate in two phases:
execution of read-only transactions and execution of update
transactions. This allows to execute read-only transactions in
a lock-less fashion, allowing Prognosticator to scale in read-
dominated workloads, a limitation of state of the art DD high-

Algorithm 1 Sample code for SE analysis
1: function EXAMPLE(input)
2: x ← input
3: z ← x + 1
4: if x > 10 then
5: z ← z + 9
6: else
7: z ← z + 19
8: end if

lighted in a recent study [12]. Further, it permits overlapping
the work done by the Queuer Thread with the execution of
read-only transactions. Finally, whenever a worker thread is
throttled down (as the Queuer Thread has become a bottleneck
for the system) and becomes idle, it can help the Queuer
Thread by acquiring locks for the next batch of transactions,
if any.

In summary, this paper makes the following contributions:
• a novel SE-based technique that automatically analyzes

an application and builds the transaction profiles,
• a novel deterministic concurrency control algorithm that

leverages the transaction profiles, which scales across
cores and reduces transaction abort rates, and

• the implementation and thorough evaluation of Prognos-
ticator, showing up to 5× higher throughput compared
to state of the art solutions across a wide range of TPC-
C [36] and RUBiS [5] benchmarks1.

The rest of this paper is organized as follows. In § II
we provide background on Symbolic Execution. In § III
we discuss the system model, and present the design of
Prognosticator, which we evaluate in § IV. Related work is
discussed in § V and finally, § VI concludes the paper and
discusses future work.

II. SYMBOLIC EXECUTION

Symbolic execution (SE) is a static program-analysis tech-
nique pioneered by King [15] that explores multiple execution
paths of a particular program based on its input. SE relies
on a symbolic execution engine [29], [4], which is a special
interpreter that allows program variables to have symbolic
values rather than concrete ones. To this end, during program
execution, the SE engine maintains a symbolic state, which
is described as the conjunction of two formulae: a symbolic
store and a path constraint.

The symbolic store can be defined as a function σ that maps
a set of variables to symbolic expressions according to the
instructions executed. For example, let us consider the simple
program in Algorithm 1 that contains an integer variable x that
is initialized with an input value passed by the user. When the
program is executed symbolically, x will be assigned a symbol
α regardless of the user input, hence σ : x 7→ α. After the
program executes the statement z = x + 1 in line 3, the
symbolic store will be updated to σ : x 7→ α, z 7→ α+ 1.

The path constraint keeps track of the program’s control-
flow by encoding the conjunction of the branch conditions

1The source code will be made available online when the paper is accepted.



taken up to a given point in the execution. Therefore, the path
constraint is typically defined as a logical formula φ without
quantifiers. Whenever the SE engine encounters a conditional
statement containing symbolic values, it forks the symbolic
state such that both branches can be explored. For example,
upon reaching the conditional branch in line 4 if(x > 10),
the symbolic state above is forked into {σ : x 7→ α, z 7→ α+
1 ;φ = α > 10} and {σ : x 7→ α, z 7→ α + 1 ;φ = α ≤ 10}.
Note that the evaluation of the conditional statement affects
the path constraint, but not the symbolic store. After evaluating
both paths of the branch, the symbolic state becomes {σ :
x 7→ α, z 7→ α + 10 ;φ = α > 10} and {σ : x 7→ α, z 7→
α+ 20 ;φ = α ≤ 10}

To ensure that only feasible paths are explored, the SE
engine resorts to a constraint solver [8], [9] to assess the
satisfiability of every path constraint. If a path constraint is
unsatisfiable, then the corresponding symbolic state is dis-
carded. Despite that, SE still suffers from path explosion, as
the number of paths to explore grows exponentially with the
number of branches in the code (which is particularly prob-
lematic in the presence of loops). Addressing path explosion
generally falls into two approaches: restrict the input and/or
code expressiveness (e.g. by bounding loops), or employ
heuristics to guide state exploration towards a given criteria
(e.g. maximize line coverage).

III. PROGNOSTICATOR

In this section, we detail Prognosticator design and archi-
tecture. We start with an overview of the different modules,
and then we discuss the design of each module in detail.

A. Overview

Prognosticator is a deterministic database execution layer
that is designed with the following goal: given a batch of
transactions with a specific execution order, Prognosticator
maximizes transaction execution parallelism while ensuring
the same serialization order across different replicas. Prog-
nosticator assumes that data is not partitioned across replicas,
i.e., each replica contains all the data state.and supports store
procedures transactions that are written in Java, which query
a data store through read and update interface. Prognosticator
achieves this goal by determining the transaction profiles, i.e.
the read- and write-sets (RWS) of each transaction, without
any manual inputs from programmers. This is performed
in two steps. In an offline step, Prognosticator leverages
Symbolic Execution (SE) to automatically build a transaction
profile that encodes, for every possible transaction input,
the respective RWS. This is obtained by leveraging the SE
symbolic state as discussed in Section II. The pre-built trans-
action profile is then used at runtime to schedule transaction
execution in such a way that non-conflicting transactions —
i.e. those whose RWS are disjoint — can be executed in
parallel without requiring any coordination among replicas.

Figure 1 depicts Prognosticator’s architecture, which is
composed by two macro-modules: (i) the Client Application
modules that receive and batch transactions and (ii) System

Fig. 1: Architecture of Prognosticator system

Replicas that replicate the data state and consume requests
provided by the client in order to read or update data. The
number of Client Application modules and System Replicas
do not have to be equivalent as they are independent.

The Client application is composed by two sub-modules:
(i) a run-time Client Request Dispatcher and (ii) an offline SE
Engine. The Client Request Dispatcher receives transactions
from external clients and is responsible for generating batches
of transaction requests alongside the input parameters to which
transaction requests are instantiated with and deliver those
batches to the replicas to be executed. Before sending the
transactions to the replicas, different clients must agree on the
order of transactions within each batch. This is accomplished
by relying on a consensus algorithm [17], [24].

The SE Engine is invoked by the Application Client, one
time and offline, to analyze the application code and provide
the transaction profiles. As described earlier, transaction pro-
files contain information on the execution paths and the RWS
associated with each execution path. At runtime the Client
Request Dispatcher sends the transaction requests enriched
with this information to the System Replicas.

System Replicas are composed by a Queuer Thread, a set
of Worker Threads and a lock table data structure. These three
components work together in synergy to implement a multi-
threaded deterministic concurrency control mechanism. They
leverage the transactional profiles to execute non-conflicting
transactions concurrently without violating the serialization
order defined by the clients.

In the following sections, we will explain how Prognos-
ticator uses SE to generate fine-grained transactions profiles
then detail the algorithm employed by the Queuer and Worker
threads that leverage these profiles.



B. Transaction Profiling

Overview. Prognosticator relies on JPF [29] with the Symbolic
JPF extension [22] to symbolically execute the code associated
with each transaction and compute its profile. Informally, the
profile of a transaction defines the sets of data items read and
written by a transaction for any of its possible execution paths.

More precisely and formally, a transaction profile is a set
of N pairs < PSCi, RWSi >, with i ∈ [1, N ], where PSCi

(Path-Set Condition) identifies a partition of the execution
paths, and RWSi defines the set of items read and written
by the transaction when its code executes along any of the
paths identified by PSCi. Since we want to be able to
predict the data to be accessed by a transaction for all of
its possible execution paths, the PSCs in a transaction profile
define disjoint partitions of the whole set of execution paths,
i.e., every execution path is included in exactly one PSCi.

In the most general case, both the execution paths of a
transaction (defined via PSC) and its accessed data items
(defined via RWS) can be affected by two factors: (i) the
input value with which the transaction code is invoked, noted
I, and/or (ii) the value of one or more data items which are
read during transaction execution, which we call pivot items
and note as P . Through the use of SE, Prognosticator defines
PSC and RWS via symbolic expressions that are functions
of I and P . In the following, if a symbolic expression is solely
a function of the transaction’s input (I) we say that it is direct,
else we say that it is indirect.

Prognosticator encodes the set of PSCs of a profile by means
of a tree, where each node of the tree specifies a logical
condition that is function of I and/or P . This design decision
allows to efficiently merge the logical conditions of execution
paths that produce the same database accesses, thus allowing
to produce a compact representation of the transaction profile
that can be consulted efficiently at run-time.

Determining the RWS of an execution path. The SE engine
of JPF provides a listener-based API, which allows for inter-
cepting relevant events, such as the execution of conditional
statements, method invocation and assignments of symbolic
variables. In order to infer the RWS of a given execution
path we implemented a custom listener which is notified
whenever a method for reading from or writing to a data item
is invoked. Our current implementation assumes a key/value
data model with a classic GET/PUT interface2 that allows read-
ing/writing individual keys. Whenever one of these methods
is invoked, we extract the symbolic formula that identifies the
key read/written and add it to the read-set/write-set, respec-
tively, of the path being currently analyzed. In order to identify
the pivots, at this stage we also check whether the symbolic
formula that encodes the identity of the item to be accessed
depends, either directly — e.g., GET(GET(inputV ar)) — or
indirectly — e.g., y ← GET(inputV ar); GET(y)) — on a

2Methods for GET/PUT are defined in a configuration file, which does not
need to be compiled and therefore can be easily adopted to different data
stores’ APIs

value that has to be retrieved from the database — e.g., in
the two previous examples, the value of the item identified
via inputV ar. Pivots can affect not only the composition of
the read and write set of transactions, but also their execution
paths. This happens whenever a conditional statement depends
on the value of some item maintained in the data store. To track
these pivots, whenever a conditional branch is encountered, we
check whether the corresponding symbolic formula (which is
to be added to the path constraint) is indirect, in which case
we extract any pivots on which the formula depends.

Exploring and merging execution paths. The approach we use
for controlling the SE engine is designed to achieve two main
goals: (i) reducing the memory footprint of the SE analysis
and (ii) generating the transaction profile in a format such
that it can be efficiently parsed to define the conflict classes
of a transaction. For the former, we rely on a depth first
exploration of the set of execution paths, which allows us to
discard redundant states as soon as possible. For the latter,
we adopt a tree data structure, where its nodes describe path
conditions and the symbolic store of the key-set collected from
the execution path between the node’s path condition and the
subsequent conditional statement.

More in detail, the set of execution paths is explored by
executing symbolically the code of a transaction and collecting
the identities of any data item read and written until the
next conditional statement is reached. This information is
stored within a node, along with the logical condition of
corresponding conditional statement expressed in symbolic
form. Each node that has two sub-trees corresponding to the
different outcomes of the conditional statement and, as already
mentioned, we visit (i.e., execute symbolically) them in depth
first order. When we reach the end of the program for the
first time, we have established the path constraint and RWS
of the first execution path. Next, we back-track the execution
to the last conditional statement and execute symbolically the
other branch. At this point, if we detect that the two executions
produced the same RWS, the left and right branches are pruned
and their RWSs are added to the ones of the parent node. In
this case, in fact, the conditional statement that caused the
branching ended up not affecting in the same way the set
of accessed data items. This depth first approach allows us to
reduce the memory footprint of the SE analysis, by eliminating
this sort of “redundant” paths in a timely fashion. Note that,
had we followed a breadth first approach, we would have had
to explore all the states before pruning the redundant ones.

The resulting tree encodes the transaction profile in a
way that is both compact and efficient to query at run-
time. Each distinct path in this tree encodes a different tuple
< PSCi, RWSi > of the transaction profile and can be used
to predict the RWS of a (possibly very large) number of
distinct execution paths. Also, at query time, the identification
of which PSC to use to predict the accesses of an incoming
transaction can be executed in logarithmic time (with the
number of PSCs in the transaction profile).

Algorithm 2 illustrates a simple example based on a simpli-



Algorithm 2 Pseudocode for the newOrder transaction of the
TPC-C benchmark
1: transaction NEWORDER(districtID, olCnt, olIid, olIquantity[])
2: districtInfo=GET(districtID);
3: districtId=districtInfo.lastOrderId++;
4: PUT(districtID,districtInfo); // update id of last order on db
5: order ← newOrder()
6: PUT(orderId, order)
7: olNum ← olCnt - 1
8: while olNumber ≥ 0 do
9: itemId ← olIid[olNumber]

10: item ← GET(itemId)
11: olQuantity ← olIquantity[olNumber]
12: if item.quantity - olQuantity ≥ 10 then
13: item.quantity ← item.quantity - olQuantity
14: else
15: item.quantity ← item.quantity - olQuantity + 91
16: end if
17: PUT(itemId, item.quantity)
18: olNumber ← olNumber - 1
19: end while

fied version of the newOrder transaction of the TPC-C bench-
mark, which contains a for loop with number of iterations
equal to the input olCnt. The value of olCnt ranges between
5 and 15 according to the benchmark’s specification and this
information is used during symbolic execution to bound the
possible values for this input variable, which is marked as
symbolic (as all inputs). The loop contains a single conditional
statement at Line 12, which generates a total of 2olCnt distinct
execution paths. Both branches, though, generate the same
RWS, since the conditional statement only affects the value
being written by the PUT at Line 17. In this simple example,
thus, although a total of 2olCnt different execution paths are
explored, all of them yield the same RWS. As such, the
resulting tree collapses into a single node.

Avoiding irrelevant paths. An optimization that we have found
to be critical for avoiding state explosion issues (at least with
the code that we analyzed) is to identify via a preliminary static
code analysis phase a set of, what we call, irrelevant variables.
These are variables for which we can statically guarantee
(using well-known static analysis toolkits like Soot [37]) that
there is no explicit (i.e., via assignment) or implicit (i.e., via
control flow) information flow [31] to any of the variables
that affect the RWS, i.e., the variables that are used in some
GET/PUT statement to identify which data item should be
read/written. During symbolic execution, we mark the irrele-
vant variables as concrete, i.e., we assign them an actual value
instead of a symbolic one. The resulting (concolic) execution
has an important advantage: whenever a conditional statement
is encountered, if it only depends on concrete variables, only
one execution path (the one satisfied by the concrete variables)
is pursued, thus reducing the number of paths to be analyzed
during symbolic execution.

Returning to the example of the the newOrder transaction
(Algorithm 2), we note that the variables item.quantity and
olQuantity can be statically identified as irrelevant, since they
affect only the value written into the key updated key at

Tables

1

Keys

Tx 1

6
X

Y

:

: Tx 2

Tx 3

1 Tx 1

3

:

: Tx 2
...

...

Tx 3

Queues
Ready to Execute

Must wait to Execute

Fig. 2: Lock Table
Line 17 and not the key’s identity. Thanks to the above opti-
mization, only one of the two branches of the if statement at
Line 12 has to be executed symbolically. As a consequence, the
number of execution paths that has to be executed symbolically
decreases from 2olCnt to just 1.

It is worth noting that our pruning technique might not
always yield a substantial reduction in the number of states
to be explored. Therefore, to handle state explosion, we cap
the SE analysis time and as a result, we may end up with
an incomplete transaction profile. To ensure correctness, we
rely on executing a reconnaissance phase to infer the key-
sets of such transactions. Note though that the reconnaissance
phase only happens for the part of the transaction that was not
analyzed rather than the full transaction as it done in Calvin.

C. Transaction Execution

When a client receives a transaction and the associated
set of inputs, it consults the offline generated transaction
profile to define the key-set, or the set data items that will
be accessed throughout the transaction. This step simply
entails traversing the tree of path conditions generated by
the transaction profiling phase (as explained in the previous
section) to determine which data items will be accessed by
the transaction. Prognosticator operates in batches where each
client collects a set of transactions within a certain time
window. After each client has collected transactions for a
given batch, it synchronizes with the other clients in order to
agree on a total order for executing the transactions within the
batch. This agreement can be reached by running a consensus
algorithm (such as Paxos [17] or Raft [24]) between the clients.

To ensure correct replication of the data across all the
replicas, the state after each batch should be the same on all the
non-faulty replicas. To satisfy this condition, Prognosticator
leverages a deterministic multi-threaded concurrency control
algorithm which achieves twofold goal: (i) guaranteeing that
transactions are executed following the same serialization
order across all replicas and (ii) executing transactions concur-
rently, utilizing the abundance of multicore architectures avail-
able in processors nowadays. The latter, specifically, exploits
the fact that non-conflicting transactions, i.e., transactions that
do not modify the same data 3 can be safely re-ordered while
still maintaining the same serialization order.

At the core of Prognosticator’s deterministic multi-threaded
concurrency control algorithm, there is a lock table data
structure. As shown in Figure 2, lock table is a set of queues,

3Prognosticator assumes a key granularity for conflict detection.



each identified by a table and a key within that table. The
idea at the basis of lock table is to enqueue each transaction
in the queues of all keys from its key-sets following the order
agreed upon by the clients. Transactions that are at the head
of all their queues (such as Tx1 and Tx2 in Figure 2) are
guaranteed not to conflict with each other and therefore it
is safe to execute them concurrently. Note that conflicting
transactions must be serialized in the same queue. After the
execution of a transaction, it can be removed from the lock
table and new transactions can be executed once they are at
the head of all their respective queues. For example, Tx3 will
be executed only after both Tx1 and Tx2 have executed.

Prognosticator differentiates between three types of transac-
tions: (i) read-only transactions (ROT), i.e., transactions that
do not modify the data, (ii) independent transactions (IT),
which are transactions whose read- and write-sets depend
only on the transaction’s input and (iii) dependent transactions
(DT), which are transactions whose key-sets depend on the
state of the data, i.e., they include indirect keys.

We will first start by explaining Queuer Thread, which is
responsible for populating the lock table with the transactions
following the order given by the client. ROTs do not modify
the state of the database, therefore they do not need to be
enqueued into the lock table, as long as they are guaranteed
to witness a consistent snapshot of the data whenever they are
executed. This can be achieved in several ways, for example
with a data store that support multi-version, ROTs can be set
to read from the state generated by the previous batch. In
our implementation of Prognosticator, however, we opt for
a more generic solution to support a wider range of data
stores: ROTs are enqueued — in a round robin fashion —
into special, per worker thread, set of queues. We will describe
shortly how do the worker threads consume ROTs in their local
queues without requiring any lock acquisition. Such a design,
alleviates the single Queuer Thread being a bottleneck for the
scalability of ROTs, which is an issue that was reported in [12].

ITs and DTs are both enqueued into the lock table. However,
there exists a subtle difference on how the Queuer Thread
handles each of them. ITs are supplied by the client along with
the set of keys that they are going to access (recall that the
key-set relies only the input of the transaction in case of IT). In
Prognosticator, we use a single Queuer Thread, therefore it is
straightforward to ensure that ITs are enqueued into lock table
following the order agreed upon by the clients. The key-set of
DTs, however, depends on the state of the data, i.e., the Queuer
Thread must consult the data store to get the value of the pivot
keys to be able to determine the set of queues into which each
DT will be enqueued. This raises the challenge of ensuring that
this phase, which we call preparing indirect keys, results in
the same key-set for each transaction across different replicas.
By preparing the indirect keys at the beginning of the batch,
after the previous batch had finished executing, and before
executing any update transaction from the current batch, the
Queuer Thread ensures a consistent snapshot across different
replicas. This design decision, specifically, allows for relying
on as fresh as possible snapshot to prepare the indirect keys,

which in turn reduces the probability of the IT aborting due to
the data being at a different state during the execution phase.
Moreover, the Queuer Thread enqueues DTs ahead of ITs in
the lock table so that they get executed earlier to further reduce
the likelihood of abort.

Unlike a single Queuer Thread, Prognosticator employs
multiple Worker Threads, which operate in phases to execute
transactions concurrently. When a batch is ready, Worker
Threads start consuming the available ROTs in their local
respective queues. During this phase, Worker Threads access
disjoint data structures and do not have to coordinate while
executing ROTs as they are guaranteed to witness the same
state and re-ordering of ROTs does not affect the final state
of the replica after each batch. After a Worker Thread finishes
executing its ROTs, it waits for both all other Worker Threads
to finish executing their ROTs and for the Queuer Thread to
signal that it has finished preparing indirect keys. Next, starts
the phase of executing update transactions.

Instead of directly accessing the lock table, Prognosticator
uses an auxiliary queue data structure called ready queue.
After the Queuer Thread enqueues a transaction into the
lock table, if that transaction is at the head of all of its
queues, it would also be enqueued into the ready queue.
To support this, for each transaction, there is a total locks
variable which denotes the number of keys it is going to
access. total locks is decremented by the Queuer Thread in
case a transaction is at the head of its queue. A transaction
with total locks set to 0, is enqueued into ready queue. When
executing update transactions, Worker Threads start consuming
transactions form the ready queue. Note that transactions in
the ready queue do not conflict with each other, therefore it is
safe for them to be executed concurrently. Worker Threads
directly execute ITs that they fetch from the ready queue
as they are guaranteed not to fail. Before executing a DT,
however, Worker Threads need to first ensure that the keys
that will be accessed throughout the transaction did not change
since the preparing indirect keys phase. Accordingly, when
executing an DT, Worker Threads first access the data store
to check if all the values of the pivot keys have not changed.
If it is the case, then it is safe to proceed with executing the
DT. Otherwise, the DT must be aborted and is added to a
list of failed transactions. In case of a successful execution
of DT or IT, the respective Worker Thread accesses the lock
table, removing the successful transaction from the head of its
queues. Besides doing that, it also decrements the total locks
of the next transaction in each queue, and in case it encounters
a total locks with value of 0, it enqueues that transaction into
ready queue. It is worth noting here that all access to the lock
table are done in a lock-free manner as there exists no logical
contention between Worker Threads and Queuer Thread.

Worker Threads wait for each other until they all finish
executing the update transactions. Next, starts the phase of
re-executing failed transactions. Failed transactions must be re-
executed in the same order across different replicas. A simple
solution is to re-execute the failed transactions sequentially
using a single thread following their relative order from the



order agreed upon by the clients. Although this solution
would ensure that these transactions would not fail again, it
sacrifices potential concurrency among non-conflicting trans-
actions. Prognosticator resorts to re-enqueueing the failed
transactions into the lock table following the same approach
described above. Indirect keys are first re-prepared, then
transactions are re-inserted into the lock table and ready queue
to be consumed by Worker Threads accordingly. This cycle is
repeated as long as their exists failed transactions after each
iteration. In the evaluation section, we show that both strategies
are beneficial in different workloads.

Optimizations. Data stores with high access latency can impose
a bottleneck on the latency of executing a batch due to the time
it takes to prepare indirect keys. To overcome this bottleneck,
in Prognosticator Worker Threads can help the Queuer Thread
in preparing indirect keys. Specifically, once Worker Thread
finishes executing all its ROTs, it can start fetching DTs that
are being prepared and access the data store to collect the
values needed to generate their key-sets. As we shall discuss
in our evaluation, this optimization can help to reduce the
overall transactions latency.

An additional optimization that could be applied to enhance
the efficiency of the Queuer Thread (but that has not been
implemented in our prototype, yet) is to partially offload
to the clients the prediction of the RWS. As described in
the Section III-B, the SE engine produces a tree with path
conditions and their respective RWS, including the set of
indirect keys that are required in case of an DT. We can
differentiate between two types of DTs: one where the indirect
keys are not necessary to traverse the tree (i.e., traversing the
tree depends only on the transaction’s inputs, e.g., new order
transaction in TPC-C) and one where the indirect keys are
needed to traverse the tree (as they are used in the predicate
of a conditional statement that affects the transaction’s RWS).
For the former, the tree that encodes the transaction profile
does not need to be traversed by the Queuer Thread, as the
client could directly predict the set of keys that the transaction
will access based on its input values — thus alleviating the
load on the Queuer Thread.

IV. EVALUATION

In this section, we evaluate Prognosticator along several
dimensions. We start by studying the cost of the SE analysis
and the benefits of the techniques we propose (§IV-A), next
we compare Prognosticator with Calvin [35] and NODO [26]
under a variety of workloads (§IV-B), and finally study
the impact of Prognosticator optimizations on transaction
schedulling and execution (§IV-C). We selected NODO and
Calvin to compare Prognosticator with, because they represent
two interesting points in the design spectrum: NODO is very
simple but produces coarse-grained transaction profiles, while
Calvin is more complex but achieves fine-grained transaction
profiles thus allowing us to infer the trade-offs between design
complexity and potential parallelism.

For the benchmarks we used TPC-C [36], which emulates a
OLTP workload for a wholesale suplier, and RUBiS [5] which
emulates a bidding website. TPC-C consists of two ROT, two
DT and one IT which perform operations across different
warehouses. The number of warehouses determines the level of
contention and therefore the maximum degree of parallelism.
RUBiS consists of 28 transactions and in our evaluation we
focus only on the 5 update transactions which are all DT. We
implement Prognosticator on top of RocksDB [11], a persistent
key-value store implemented in C++ with a Java API. Our
experiments were conducted on an Intel Xeon Gold 6138
machine with 20 cores running Ubuntu 18.04 with Linux 4.18.
For all experiments, we execute 10 runs, discard the first 3 as
warm up and present the average of the remaining 7.

A. Symbolic Execution Analysis

Table I summarizes the results of the SE analysis of all the
update transactions for both benchmarks. For each transaction,
we report the number of states explored, the depth of an ex-
ecution path (i.e. maximum number of conditional statements
a transaction can observe), the number of distinct key-sets
collected, the number of indirect keys, memory used and the
execution time. For the states explored, we split it in explored
states and total states. The latter corresponds to the total
number of possible states that one would have to explore if
not for the prunning and DFS techniques detailed in §III. This
is particular relevant for transactions such as newOrder which
suffer from a state explosion problem with the number of loop
iterations, as detailed in §III-B. To illustrate this, in Table I
we detal the results for 5, 10 and 15 iterations. The depth
optimized/max, memory optimized/unoptimized and execution
time optimized/unoptimized columns in Table I correspond to
the SE analysis done with or without the techniques discussed
above. This illustrates two important points of our fully-
automated approach: first it is infeasible for a programmer
to reason about the very large number of states of transactions
such as TPC-C delivery, and secondly, without the proposed
optimizations the running time of SE is impractical taking, for
instance, ∼ 35 days for newOrder.

In conclusion, and for the selected benchmarks, the SE
analysis finished in less than 2 seconds and 1211MB, which
highlights the practicality of our approach.

B. Comparison with NODO and Calvin

To achieve a fair comparison between Prognosticator,
NODO and Calvin, we implemented all approaches in the
same code base which minimizes the technological and imple-
mentation aspects, and allow us to focus on the design trade-
offs. In particular, NODO and Calvin benefit from our SE
analysis to determine the transaction profiles hence allowing
us to assume an ideal programmer that can precisely build such
profiles, and also rely on the same lock table data structure for
scheduling transactions. Therefore, the measured differences
below correspond to the design decision of how to leverage the
transaction profiles to schedule transactions. Next, we describe
the configuration of each system.



Transaction
Profile

States
Explored / Total

Depth
Optimized / Max

Unique
Key-sets

Indirect
Keys

Memory (MB)
Optimized/Unoptimized

Execution (s)
Optimized/Unoptimized

TPC-C: new order (5 iters.) 2 / 2048 2 / 12 1 1 960 / 1713 <1 / 2
TPC-C: new order (10 iters.) 2 / 2097152 2 / 22 1 1 960 / 4696 <1 / 2230
TPC-C: new order (15 iters.) 2 / 2147483648 2 / 32 1 1 960 / 21844 <1 / 3066800
TPC-C: payment 2 2 1 0 960 <1
TPC-C: delivery 2048 12 1024 20 1211 2
RUBiS: store bid 28 15 2 1 960 <1
RUBiS: store buy now 14 8 2 1 960 <1
RUBiS: store comment 16 9 3 1 960 <1
RUBiS: register user 12 7 1 1 960 <1
RUBiS: register item 14 8 1 1 960 <1

TABLE I: Profiling of the Symbolic Execution analysis of update transactions in TPC-C and RUBiS benchmarks.

 0
 5

 10
 15
 20
 25
 30
 35

S
E

Q

N
o
d
o

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
F

S
E

Q

N
o
d
o

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
F

S
E

Q

N
o
d
o

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
F

M
a
x
 T

h
ro

u
g
h
p
u
t 
(1

0
3
 T

x
/s

)

4
.9

9

6
.4

0
.3

1
.3

8

2
3
.9

6

3
1
.9

6

4
.2 6

.9
3

0
.0

6

0
.0

9

1
2
.6

3

1
6
.1

5
.1

8

7
.6

2

0
.0

1

0
.0

2 5
.7

1

4
.3

6

1 warehouse10 warehouses100 warehouses

(a) Max Throughput

 0.1

 1

 10

 100

 1000

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
F

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
F

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
F

N
o
rm

a
li
z
e
d
 A

b
o
rt

 R
a
te

1 warehouses10 warehouses100 warehouses

(b) Abort Rate

Fig. 3: Maximum sustainable throughput and normalized abort rates for TPC-C benchmark at different levels of contention.
For Prognosticator we used the following variants:

(i) single-threaded re-execution of failed transactions (MQ-
SF) and (ii) re-enqueueing failed transactions (MQ-MF) into
the lock table, which highlights the different strategies for
handling failed transactions.

The differences between Calvin and Prognosticator are
the following: (i) DT are prepared at the client side before
being submitted to the system; (ii) the failed DT — i.e. DT
which observed a state at execution time different than in the
reconnaissance phase — are sent back to the client to be re-
prepared and executed in a future batch. To emulate this, we
run a dedicated client thread that prepares DT Nms ahead of
their batch execution. Therefore, the larger the N , the higher
the chance that DT fail during execution. Note that because
failed DT are resubmited in a future batch, their commit time
is affected also by the consensus latency required to produce
a new batch. In our experiments we use different values of
N (100 and 200ms) corresponding to the Calvin-N variants
below, to stress the effect of this design decision.

NODO schedules transactions only according to the ac-
cessed tables, therefore it hardly needs to access the datastore
to detect the transaction profile as the accessed tables seldom
depend on the database state. For instance, both in TPC-C and
RUBiS all transactions are deemed IT by NODO.

Finally, we also consider a SEQ baseline that executes all
transactions sequentially using a single thread.

For all the runs, we used 20 threads and varied the trans-
action arrival rate by fixing the batch arrival rate at 10ms
and varying the number of transactions per batch. Latency is
measured from the time a transaction first arrives at a replica
until it exits the system. We report the achievable throughput
when then 99th percentile latency is less than 10ms.
TPC-C. Figure 3 shows the results for the standard TPC-C

workload consisting of 44% new order (DT), 43% payment
(IT), 4% delivery (DT), 4% stock level (ROT) and 4% order
status (ROT) at different contention levels. We show the results
for 100, 10 and 1 warehouse (first, second and third clusters
in Figure 3, respectively) to demonstrate how Prognosticator
performs in low, medium and high contention workloads. We
report both the throughput (Figure 3a) and normalized abort
rates (Figure 3b). The normalized abort rates is given by the
percentage of failed transactions out of the total number of
executed transactions over the batch size.

Overall, Prognosticator achieves the best performance
across different contention levels. It either outperforms all
other systems, achieving up to 5× higher throughput (Fig-
ure 3a, 100 warehouses) or, in the worst case, its throughput
is on par with the best baseline (Figure 3a, 1 warehouse).

Under low contention (Figure 3a, 100 warehouses), Prog-
nosticator with all optimizations (MQ-MF) achieves 5× higher
throughput when compared with the second best system,
NODO. The low contention workload allows Prognosticator to
fully leverage the fine-grained transactions profiles to achieve
higher degrees of parallelism and hence outperform NODO.
Interestingly, because NODO does not have failed transactions
(all transactions are IT) it outperforms Calvin despite the
more complex machinery of the latter. In fact, Calvin suffers
from a high abort rate (Figure 3b) which limits throughput,
while Prognosticator achieves a low abort rate thanks to the
design decision of re-executing failed transactions right away
and preparing DT just before execution. Comparing the two
variants of Prognosticator, we can notice that MQ-MF has
30% higher throughput than MQ-SF. This is because under
low contention there is a smaller chance for transactions to fail
more than once and hence re-executing failed transactions in
parallel has benefits over a sequential execution. Still regarding



 0

 20

 40

 60

 80

 100

 120

S
E

Q

N
o

d
o

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
F

M
a

x
 T

h
ro

u
g

h
p

u
t 

(1
0

3
 T

x
s
/s

)

6
4
.3

1 8
0
.5

5

0
.1

4

0
.4

4

1
0
9
.2

8
6
.1

2

RUBiS-C

(a) Throughput

 0.1

 1

 10

 100

C
-2

0
0

C
-1

0
0

M
Q

-S
F

M
Q

-M
FN
o

rm
a

li
z
e

d
 A

b
o

rt
 R

a
te

RUBiS-C

(b) Normalized Abort Rate

Fig. 4: Maximum sustainable throughput and normalized abort
rates for RUBiS benchmark.
Calvin, and as expected, the value of N has a significant impact
on throughput. This is because higher values of N are likely to
result in observing different states between the reconnaissance
phase and the actual execution thus leading to higher abort
rates as confirmed by Figure 3b.

In a medium contention workload (Figure 3a, 10 ware-
houses), we observe the same trends as before albeit with
with lower gains. This is mostly attributed to the lower degree
of parallelism that this workload exhibits. Nevertheless, MQ-
MF is capable of achieving 2.3× higher throughput than
NODO. As before, the performance of Calvin (Figure 3b, 10
warehouses) is highly affected by the high abort rates.

At higher contention levels (Figure 3a, 1 warehouse), we can
see that NODO outperforms the other approaches, achieving
∼30% higher throughput than MQ-SF. In this workload there
is very little room for parallelism, therefore the simplicity
of NODO outperforms the complexity of Prognosticator and
Calvin that pay the overhead of exploiting fine-grained trans-
actions profiles without being able to reap its benefits. It is
worth noting that, MQ-SF achieves 30% higher throughput
than MQ-MF because. In the presence of high contention, DT
are expected to fail often and more than once, and hence it
is better to execute them sequentially. This is confirmed by
the abort rates, where MQ-SF incurs 2× lower abort rate than
MQ-MF (Figure 3a, 1 warehouse).
RUBiS. RUBiS has five update transactions (Table I). All
transactions insert a new entry in at least one table which
requires generating a unique identifier. The identifier is gen-
erated by consulting the respective table which implies that
all transactions are DT. We use the RUBiS-C workload which
consists of 50% store bid transactions and 50% of the other
transactions distributed equally [21].

Results are presented in Figure 4. RUBiS-C exhibits a
high degree of contention, however, we can observe slightly
different trends than TPC-C with 1 warehouse. Both Prog-
nosticator variants are capable of outperforming all the other
baselines with MQ-SF achieving 35% higher throughput than
NODO. As for TPC-C, Calvin is highly affected by the
abort rate (Figure 4b) which stems from the same reasons
as discussed above. When comparing Prognosticator variants,
we can notice that parallelizing the re-execution of failed

 0

 5

 10

 15

 20

 25

 30

 35

M
Q

-S
F

M
Q

-M
F

1
Q

-S
F

1
Q

-M
F

M
Q

-S
F

-R
M

Q
-M

F
-R

1
Q

-S
F

-R
1

Q
-M

F
-R

M
Q

-S
F

M
Q

-M
F

1
Q

-S
F

1
Q

-M
F

M
Q

-S
F

-R
M

Q
-M

F
-R

1
Q

-S
F

-R
1

Q
-M

F
-R

M
Q

-S
F

M
Q

-M
F

1
Q

-S
F

1
Q

-M
F

M
Q

-S
F

-R
M

Q
-M

F
-R

1
Q

-S
F

-R
1

Q
-M

F
-R

M
a

x
 T

h
ro

u
g

h
p

u
t 

(1
0

3
 T

x
/s

)

1 warehouse10 warehouses100 warehouses

(a) Throughput

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

M
Q

-S
F

M
Q

-M
F

1
Q

-S
F

1
Q

-M
F

M
Q

-S
F

-R
M

Q
-M

F
-R

1
Q

-S
F

-R
1

Q
-M

F
-R

M
Q

-S
F

M
Q

-M
F

1
Q

-S
F

1
Q

-M
F

M
Q

-S
F

-R
M

Q
-M

F
-R

1
Q

-S
F

-R
1

Q
-M

F
-R

M
Q

-S
F

M
Q

-M
F

1
Q

-S
F

1
Q

-M
F

M
Q

-S
F

-R
M

Q
-M

F
-R

1
Q

-S
F

-R
1

Q
-M

F
-R

T
im

e
 (

u
s
)

prepare DT re-exec failed txs

1 warehouse10 warehouses100 warehouses

(b) Time Breakdown

Fig. 5: Maximum sustainable throughput and per transaction
execution times for various Prognosticator variants with TPC-
C benchmark at different levels of contention.

transactions does not payoff. In RUBiS-C, transactions fail
often which further emphasizes the relevance of executing
failed transactions sequentially. In fact, MQ-SF achieves 3×
lower abort rate than MQ-MF (Figure 4b).

C. Optimizations

To better understand the Prognosticator results, we now
study in detail the impact of each component and optimization.
To this end, we compare 8 Prognosticator variants across the
following axis: (i) using reconnaissance vs symbolic execution
(with vs without the -R suffix), (ii) using all threads to
prepare and enqueue transactions vs a single thread (MQ vs
1Q) and (iii) using either a single thread or multiple threads
to re-execute failed transactions (SF vs MF). We used the
same TPC-C configuration as above and show the transaction
throughput and transaction execution times in Figure 5a and
Figure 5b, respectively. For the execution time, we split it,
per transaction, into the time to prepare the DT and the time
to successfully re-execute a failed transaction. Note that the
time it takes to re-execute failed transactions in MF variants
(where failed transactions are re-enqueued into the lock table)
includes the time it takes to prepare them too.

When analyzing the throughput results (Figure 5a) it is clear
that the SE variants outperform the reconnaissance ones (*-R)
across all workloads. This is because the *-R variants always
require the execution of the transaction logic to determine
the key-sets which not only needs more time than non *-
R variants but also imposes more load on the underlying



datastore (Figure 5a). Thanks to SE, we do not need to execute
all the transaction logic which significantly reduces the time
needed to prepare a DT.

Similarly, by parallelizing the preparation of DT in the
MQ variants as opposed to the single thread 1Q variants,
we are able to reduce the transaction preparation time and
hence improve throughput. Finally, the choice between SF and
MF depends on the contention level. Under low contention,
MF variants are capable of achieving higher throughput while
in higher contention SF performs better (Figure 5a, 100
warehouses and 1 warehouse, respectively). The cause is
once again the time to re-execute failed transactions. In low
contention workloads, where transactions are expected to not
fail frequently, the MF variants incur lower execution times
than SF, whereas in the high contention workload, the opposite
is true. This is because under high contention DT are likely
to fail often and thus it is better to execute them sequentially.

V. RELATED WORK

The initial approach for implementing deterministic
databases relied on single-threaded sequential execution of
transactions [14], [26]. If transactions are executed by a single
thread following the same order on different replicas, then
the state of the data on each replica is guaranteed not to
diverge. However, in the multi-core era, such a design is
clearly not going to scale. To circumvent this limitation,
several works such as H-Store [13] and VoltDB [38] proposed
partitioning the data into disjoint partitions, i.e., no transaction
would access two partitions. Accordingly, different threads
can execute transactions of different partitions without the
need for inter-thread coordination. However, multi-partition
transactions that constitute majority of real-life workloads [7],
[27] render it impractical as it has to fallback to a more
expensive coordination mechanism, e.g., serial execution.

Recently, Thomson et al. proposed Calvin [35], a deter-
ministic database that allows concurrent execution of trans-
actions without the need for disjoint partitions. With Calvin,
transactions are batched and then sent to a sequencers to be
ordered. After agreeing on an order, sequencers forward the
transactions to replicas that execute transactions concurrently
while guaranteeing to yield a serial order equivalent to the
order agreed upon by the sequencers. To achieve this, the
lock manager allows a transaction to acquire locks once all
the preceding transactions have acquired all their locks. This
requires the prior knowledge of which locks each transaction
needs to acquire, i.e., transactions must expose their read- and
write-sets. Calvin relies on either the manual input of the
read- and write-sets by the developer or through the OLLP
protocol [34]. The former is a time-consuming and complex
task where errors may lead to violating the serializabilty
of the transactions. The latter performs a reconnaissance-
phase where transactions are executed without any isolation
guarantees at the client side to collect the read- and write-sets.
The reconnaissance-phase is particularly necessary for depen-
dent transactions (i.e., transactions whose read- and write-
sets depends on the database state). Prognosticator, instead,

leverages symbolic execution to automatically define the read-
and write-sets for each transaction via offline analysis. For
dependent transactions, where SE defines only which keys
rely on the database state (i.e., indirect keys), Prognosticator
performs a prepare indirect keys phase to collect those keys.
The prepare indirect keys is performed at the server side
using a deterministic state just before executing dependent
transactions. This subtle difference exposes dependent trans-
actions within Prognosticator to a much shorter “vulnerability
window” during which the data observed in the prepare phase
can change, leading to much lower abort rates when compared
to Calvin as we have shown in §IV. Moreover, OLLP increases
the latency of transactions as it requires executing each trans-
action (at least) twice: once during a reconnaissance-phase to
determine the read- and write-sets and once during the actual
execution, unlike Prognosticator that needs to only read the
pivot keys during the prepare indirect keys phase.

Prognosticator achieves determinism by exploiting
application-specific knowledge, specifically the read- and
write-sets. This allows Prognosticator to implement an
efficient deterministic concurrency control. Several solutions
were devised in the literature to support deterministic multi-
threaded execution at either the OS or the threads library
level [23], [18], [6], [19], [20]. Although these systems
achieve determinism without requiring any knowledge about
the application, they impose significant overheads that lead
to severe slowdowns. Moreover, these solutions were not
designed to support database replication, so utilizing them to
achieve replication may not be straightforward.

Prior to the introduction of deterministic databases, a large
body of literature has been developed investigating replica-
tion techniques that assumed non-deterministic concurrency
controls at each replica, such as such as two-phase lock-
ing [10], timestamp ordering [3] and optimistic concurrency
control [16]. Recent studies [30], [12] have performed ex-
tensive comparison between these systems and deterministic
databases. Although the results have shown that there is no
one size fits all and different workloads better fit different
algorithms, deterministic databases have proven to be more
robust against changes in workload and execution environ-
ments. Prognosticator inherits those advantages and manages
to outperform state of the art deterministic databases, which
further enhanced the state of the art of.

Prognosticator is also related to works aimed at predicting
conflict classes among transactions. NODO [26] assumes that
the transaction logic is expressed via a classic SQL-based
interface, based on which it is typically relatively simple to
identify which database table will be read/written within each
transaction, independently of the transactions’ inputs. Such
scheme provides a coarse grained conflict class detection, i.e.
at the table level, which leads to poor parallelism degree since
multiple transactions accessing different keys in the same table
will be refrained from executing concurrently. Wang et al. [39]
relaxed the constraint on SQL-based interface, but still suffered
from the poor parallelism due to the coarse granularity in
their static analysis-based conflicts classes. Pavlo et al. [28]



proposed using Markov-based modeling to predict the actions
performed by transactions to decide upon which optimization
to apply to them. Unlike SE, such approach provides only
probabilistic information on the read- and write-sets which is
not enough to ensure determinism.

VI. CONCLUSIONS

In this paper we present Prognosticator, a deterministic
database system that leverages offline symbolic execution
analysis to automate the process of exposing transactions’
read- and write-sets. Prognosticator incorporates an algo-
rithm that harnesses symbolic execution to achieve this goal
while maintaining memory footprint of the offline analysis
at amenable levels. Furthermore, it introduces efficient and
scalable scheduling and execution mechanisms to consume the
information produced by the offline symbolic analysis while
ensuring that the state of data in different replicas does not
diverge. Our thorough evaluation study across a wide range
of workloads against state of the art solutions has shown
that these techniques allows for achieving up to 5× higher
throughput than state of the art solutions.

ACKNOWLEDGMENT

Support for this research was provided by the Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) via projects PTDC/EEISCR/1743/2014,
LISBOA-01-0145-FEDER-031456 (Angainor) and
UIDB/50021/2020.

REFERENCES

[1] D. J. Abadi and J. M. Faleiro. An overview of deterministic database
systems. Commun. ACM, 2018.

[2] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A
survey of symbolic execution techniques. ACM Comput. Surv., 2018.

[3] P. A. Bernstein, P. A. Bernstein, and N. Goodman. Concurrency control
in distributed database systems. ACM Comput. Surv., 1981.

[4] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
USENIX Conference on Operating Systems Design and Implementation,
OSDI’08.

[5] O. Consortium. Rice University Bidding System. https://rubis.ow2.org.
[6] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A.

Gibson, and R. E. Bryant. Parrot: A practical runtime for deterministic,
stable, and reliable threads. In ACM Symposium on Operating Systems
Principles, SOSP ’13.

[7] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A workload-
driven approach to database replication and partitioning. Proc. VLDB
Endow., 2010.

[8] L. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[9] B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report,
2006.

[10] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
1976.

[11] FACEBOOK OPEN SOURCE. RocksDB: A persistent key-value store.
https://rocksdb.org.

[12] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker. An evaluation
of distributed concurrency control. Proc. VLDB Endow., 2017.

[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi. H-store: A high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow., 2008.

[14] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a
new way to implement database replication. In International Conference
on Very Large Data Bases, VLDB ’00.

[15] J. C. King. A new approach to program testing. In International
Conference on Reliable Software, 1975.

[16] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Trans. Database Syst., 1981.

[17] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 1998.
[18] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient deterministic

multithreading. In ACM Symposium on Operating Systems Principles,
SOSP ’11.

[19] T. Merrifield, J. Devietti, and J. Eriksson. High-performance deter-
minism with total store order consistency. In European Conference on
Computer Systems, EuroSys ’15.

[20] T. Merrifield, S. Roghanchi, J. Devietti, and J. Eriksson. Lazy determin-
ism for faster deterministic multithreading. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19.

[21] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase reconciliation for
contended in-memory transactions. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), 2014.

[22] NASA. Symbolic PathFinder. https://github.com/SymbolicPathFinder/jpf-
symbc, 2005.

[23] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient de-
terministic multithreading in software. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIV.

[24] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14.

[25] Parisa Jalili Marandi, M. Primi, N. Schiper, and F. Pedone. Ring
paxos: A high-throughput atomic broadcast protocol. In IEEE/IFIP
International Conference on Dependable Systems Networks, DSN’10.

[26] M. Patiño Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso.
Scalable replication in database clusters. In International Conference
on Distributed Computing, DISC ’00.

[27] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database par-
titioning in shared-nothing, parallel oltp systems. In ACM International
Conference on Management of Data, SIGMOD ’12.

[28] A. Pavlo, E. P. C. Jones, and S. Zdonik. On predictive modeling for
optimizing transaction execution in parallel oltp systems. Proc. VLDB
Endow., 2011.

[29] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic
execution and system-level concrete execution for testing nasa software.
In International Symposium on Software Testing and Analysis, ISSTA
’08.

[30] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the advantages
and disadvantages of deterministic database systems. Proc. VLDB
Endow., 2014.

[31] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 2003.

[32] N. Santos and A. Schiper. Optimizing paxos with batching and
pipelining. Theoretical Computer Science, 2013. Distributed Computing
and Networking (ICDCN 2012).

[33] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR), 1990.

[34] A. Thomson and D. J. Abadi. The case for determinism in database
systems. Proc. VLDB Endow., 2010.

[35] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: Fast distributed transactions for partitioned database systems.
In ACM SIGMOD International Conference on Management of Data,
SIGMOD ’12.

[36] TPC Council. Transaction Processing Performance Council, TPC
BENCHMARK™ C. http://www.tpc.org/tpcc.

[37] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot - a java bytecode optimization framework. In Conference of the
Centre for Advanced Studies on Collaborative Research, CASCON ’99.

[38] VoltDB. VoltDB. https://www.voltdb.com/.
[39] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore

databases via constrained parallel execution. In ACM International
Conference on Management of Data, SIGMOD ’16.


