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Nakamoto’s seminal work gave rise to permissionless blockchains – as well as a wide range of
proposals to mitigate their performance shortcomings. Despite substantial throughput and energy
efficiency achievements, most proposals only bring modest (or marginal) gains in transaction commit
latency. Consequently, commit latencies in today’s permissionless blockchain landscape remain
prohibitively high.

This paper proposes NimbleChain, a novel algorithm that extends permissionless blockchains
based on Nakamoto consensus with a fast path that delivers causal promises of commitment, or simply
promises. Since promises only partially order transactions, their latency is only a small fraction
of the totally-ordered commitment latency of Nakamoto consensus. Still, the weak consistency
guarantees of promises are strong enough to correctly implement cryptocurrencies. To the best of our
knowledge, NimbleChain is the first system to bring together fast, partially-ordered transactions with
consensus-based, totally-ordered transactions in a permissionless setting. This hybrid consistency
model is able to speed up cryptocurrency transactions while still supporting smart contracts, which
typically have (strong) sequential consistency needs.

We implement NimbleChain as an extension of Ethereum and evaluate it in a 500-node geo-
distributed deployment. The results show NimbleChain can promise a cryptocurrency transactions up
to an order of magnitude faster than a vanilla Ethereum implementation, with marginal overheads.
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1 INTRODUCTION

The majority of permissionless blockchains, including mainstream ones such as Bitcoin [52]
or Ethereum [70], rely on the foundations of Nakamoto’s seminal consensus protocol [52]. In
these systems, the probability that a given block has stabilized grows with the number of
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System Event Double-spending-resistant Consistency Latency

Ethereum Commit Yes Total order ∼3min

NimbleChain
Promise Yes Causal Typically ∼4s to ∼25s
Commit Yes Total+causal ∼3m

Table 1. Comparison of NimbleChain’s promise/commit events with Ethereum (an instance of BBP).

blocks that succeed it in the chain. Hence, by setting a high enough threshold to consider
a block – and the transactions therein – as committed, one can ensure an arbitrarily low
probability of the block being discarded. This is commonly known as finality and has been
formalized as a persistence property by Garay et al. [20].
Permissionless blockchains can thereby be used as a (probabilistic) totally-ordered dis-

tributed ledger service with unique features, in particular their resilience to Sybil attacks
which characterize permissionless environments. Permissionless blockchains support a wide
range of geo-distributed applications, from cryptocurrencies to general-purpose smart con-
tracts, but unfortunately they are also known for their poor performance.

In recent years, the research community has contributed with important improvements to
permissionless blockchains – such as to Nakamoto’s longest chain rule [40, 42, 65, 66, 70],
hierarchical and parallel chains [6, 19, 56, 71], sharded blockchains [17, 37, 46, 72], Layer-2
approaches [14, 27, 28, 49, 59] BFT-based blockchains [1, 23, 36, 45, 51, 57], and Proof-of-X
alternatives [2, 5, 10, 15, 23, 32, 73]. These approaches have focused mostly on improvements
to throughput and/or energy efficiency, bringing only modest improvements to commit latency.
Some notable exceptions reduce commit latencies by sacrificing security or scalability (as
we discuss in §8). In fact, as of today, commit latencies remain notably high in mainstream
permissionless blockchains – around 1 hour in Bitcoin and 3 minutes in Ethereum.

Such high commit latencies are especially prohibitive for many applications that require low-
latency transactions. Examples range from merchant applications that need to deliver goods
quickly (< 30 seconds) [30], such as point-of-sale purchases and retail vending machines, take-
away stores, online shopping, supermarket checkouts and bike sharing systems [7, 13, 26, 30],
to blockchain-backed IoT devices and applications [27]. To overcome the high commit delays,
merchants and service providers frequently adopt risky 0- or 1-confirmation policies [13],
which accept transactions as granted well before the underlying blockchain can provide
sufficiently strong guarantees of their persistence. Such policies are inherently vulnerable to
double-spending attacks.
The commit latencies of mainstream permissionless blockchains reflect two well-known

limitations of Nakamoto’s consensus: for correctness, blocks need to be generated (on average)
at a slow pace with respect to network latency, and a transaction should only be considered
as committed (i.e., persistent) after it is followed by a long sequence of (slowly generated)
blocks in the chain [20]. To further complicate matters, a recent study [61] concluded that,
due to the emergence of powerful mining pools, blockchain systems should wait for even
larger blockchain suffixes before committing, which means that commit latency is bound to
increase, rather than decrease.

This paper focuses on improving the latency of general-purpose permissionless blockchains.
Our insight is based on the observation that the actual consistency needs of cryptocurrencies,
which constitute the bulk of today’s most important permissionless blockchains (i.e., almost
100% in Bitcoin [8] and 44% in Ethereum [61]), can be satisfied without resorting to
consensus [25]. With this in mind, we set out to build a general-purpose permissionless
blockchain that offers a hybrid consistency model where two distinct transaction handling
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paths gracefully coexist, each one serving applications with differing consistency needs. In
detail, a novel fast path that handles weakly-consistent cryptocurrency transactions, together
with the existing slow path that processes the remaining strongly-consistent transactions –
such as smart contract transactions – in a consensus-based, totally-ordered fashion.

This paper comprises contributions to achieve the above vision. As a first contribution,
we propose an extension to the traditional issue/commit model, by introducing the notion of
causal promise of commitment, or simply promise. A promise is a new event in a transaction’s
life cycle. Informally, when a process promises a transaction 𝑡, that means that 𝑡 will be
eventually committed by every correct process, even if 𝑡 is part of a double-spending attempt
by a malicious user, while satisfying any causal dependencies of 𝑡. Promises offer weaker
consistency guarantees than traditional blockchain consensus – most importantly, promises
are only partially ordered. Therefore, promises can be implemented by a faster protocol in a
small fraction of the commitment latency. Despite weaker, the guarantees of the promise
event are still strong enough to fulfil the consistency needs of cryptocurrencies. Namely,
they are causally ordered and resist double-spending attacks. Table 1 summarizes the key
differences between promising and committing a transaction.

As a second contribution, we propose NimbleChain, a novel permissionless blockchain
system that extends permissionless blockchains based on the Bitcoin Backbone Protocol
(BBP) [20] with a partially ordered promise fast path. This fast path allows cryptocurrency
transactions, which constitute the bulk of today’s most important permissionless blockchains
(i.e., almost 100% in Bitcoin [8] and 44% in Ethereum [61]) to be promised substantially
faster than the original commit, in a large portion of correct processes. Since today’s general-
purpose blockchains also support smart contracts, which typically have sequential consistency
needs, NimbleChain also supports strongly consistent transactions. Together, offers a hybrid
consistency model that is able to handle transactions supports both types of transactions,
as Table 1 outlines. To the best of our knowledge, NimbleChain is the first permissionless
blockchain system to bring together fast partially ordered transactions with totally ordered,
consensus-based transactions in a permissionless setting.

As a third contribution, we implement NimbleChain as an extension of the Ethereum
blockchain, which demonstrates the practicality of our proposal.

As a final contribution, an evaluation with 500 processes in a realistic geo-distributed
environment that shows that NimbleChain’s fast path reduces the commit latencies of cryp-
tocurrency transactions by an order of magnitude with negligible overhead when compared
with Ethereum.

The rest of the paper is organized as follows. §2 provides background on permissionless
blockchains and describes a generic baseline protocol. §3 defines the notion of promises
and §4 shows how NimbleChain extends the baseline with promises. §5 describes how
we can leverage NimbleChain ’s promises to implement low-latency cryptocurrencies. §6
evaluates our implementation of NimbleChain as an extension of Ethereum in a large-scale
geo-distributed scenario. §7 discusses the limitations of NimbleChain. §8 surveys related
work, and §9 concludes the paper.

2 BACKGROUND

Today’s most valuable permissionless blockchains, such as Bitcoin or Ethereum, are based
on the foundations laid by the consensus protocol proposed by Nakamoto [52]. Different
studies [20, 21, 33, 55] have formally analyzed the common core of such blockchain protocols.
Hereinafter, we adopt the term coined by Garay et al. [20], Bitcoin Backbone Protocol (BBP),
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Symbol Meaning

𝐷 Maximum message delivery delay

𝐵𝐵𝑃 Bitcoin Backbone Protocol [20]

𝐵 Average block generation time

𝐶 BBP commit threshold (minimum chain suffix height)

Table 2. Notation used in the paper

to generically refer to the core protocol behind today’s permissionless blockchains inspired
by Nakamoto’s consensus protocol.

Garay et al. [20] established two main properties of BBP, persistence and liveness (further
discussed below), and formally studied them under a strict (and unrealistic) network
model. Subsequent works showed such properties also hold for more realistic network
models [21, 33, 55]. In this work, we consider BBP under the latter models as our starting
point, which we extend to build NimbleChain.
In the next sections, we present the system model, the main properties of BBP, and

conclude with an overview of the protocol.

2.1 Assumptions

The BBP runs on a peer-to-peer network of processes and relies on the following assump-
tions [32, 33, 55, 58]. First, Byzantine adversaries control less than 50% of the total mining
power that is used to produce blocks and do not have computational power to subvert the
standard cryptographic primitives. Any message broadcast by a correct process is delivered to
every correct process with high probability, and with a maximum delay of 𝐷 [32, 55, 58, 60].
This is often a hidden assumption of permissionless blockchains systems but it is in fact a
critical aspect of the system that we do not only expose but embrace. In fact, in Nakamoto
consensus, the difficulty of the Proof-of-Work (PoW) puzzle is based on the maximum
delivery delay D [55, 60], and hence this is an assumption shared by Bitcoin and Ethereum.
The same applies to proof-of-stake blockchains such as Ouroboros [32] and Algorand [23],
which assume a bounded delay. The correctness of BBP, and systems such as Bitcoin or
Etherum, thus depends on the premise that the system takes much longer to generate a new
block than to propagate it [20]. Let us denote 𝐵 as the overall average block generation
time. Hence, we assume that 𝐷/𝐵 is relatively small [20, 31, 33, 55].
For presentation simplicity, we assume that all processes can produce (i.e. mine) blocks

and act as clients by submitting transactions to the system. Moreover, we also assume that
each correct client is collocated with a correct process participating in the protocol. Devising
robust solutions to support correct clients that interact with possibly Byzantine processes
running the protocol is an open problem, which is orthogonal to our work [29].
A transaction is signed by the process that issues it. The body of a transaction is

an application-dependent payload (e.g. the target account and amount to transfer in a
cryptocurrency transaction, or, in a smart contract transaction, the target smart contract,
its method and arguments).
Each transaction also carries a local sequence number, which is consecutively unique for

that issuer1. Note that a Byzantine process 𝑝 can submit two or more distinct transactions
with the same sequence number, with the intention of having some correct processes commit

1This is the case, for instance, with Ethereum’s transaction nonces. Still, we note that BBP can generically
abstract blockchain protocols without per-transaction sequence numbers.
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one transaction (and, hence, discard the other one(s) as invalid), and other corrects processes
decide in the opposite direction. For any pair of distinct transactions that share the same
sequence number, we say that each transaction is a double spending of the other (and
vice-versa).

We summarize the notation used in the paper in Table 2.

2.2 Properties

We start by defining the event of committing a transaction as follows. If a correct process
𝑝 has a block 𝑏 in its blockchain followed by at least 𝐶 other blocks, we say that every
transaction included in 𝑏 is committed at 𝑝.
Garay et al. [20] define the following two main properties of the commit event of BBP,

with high probability:2

Persistence property. If a correct process 𝑝 commits a block 𝑏, and consequently the
transactions in 𝑏, then any correct process has block 𝑏 in the same position in the blockchain,
from this moment on.

Liveness property. If a correct process submits a transaction 𝑡 then all correct process
eventually commit 𝑡.

Different works have formally studied the above properties, using different methods.
Starting from Garay et al.’s initial analysis, which considered simplified network assumptions
[20], subsequent works [21, 33, 55] have formally shown that BBP guarantees such properties
under the more realistic assumptions that we consider in §2.1.
Two important corollaries can be easily drawn from the above properties. The first one

is that, if a correct process 𝑝 commits a transaction 𝑡, then all other correct processes will
eventually commit 𝑡. A second corollary is that, if a correct process 𝑝 commits transaction
𝑡𝐴 and, later, transaction 𝑡𝐵 , then any other correct process 𝑞 will commit both transactions
in the same order – in other words, the commit event is totally ordered.

Together, the above properties and the associated corollaries constitute strong consistency
guarantees, which BBP provides with high probability. These enable many geo-distributed
applications to operate even when operating under an adversarial permissionless environment.
For instance, state-machine replication can be built on top of BBP through smart contracts.
Yet, these guarantees are provided at the cost of a high latency.

2.3 BBP Algorithm

At a high-level, the algorithm works as follows. Each process holds a local ledger of trans-
actions that consolidates two components: a local copy of the blockchain (or, simply, local
chain) and the mempool. The local chain is organized as a cryptographically linked list of
blocks. Blocks have a monotonically increasing gap-free sequence number and each block in-
cludes a totally-ordered sequence of transactions. The mempool is a local queue of individual
transactions not yet included in the local chain. The transactions in the mempool are ordered
after the transactions in the local chain. When receiving a transaction, a process performs
a series of validations such as checking for funds, checking whether another transaction
with the same identifier already exists in the local ledger (i.e. a double-spend attempt) and

2For presentation simplicity, we present a formulation that is simpler than Garay et al.’s original one. Namely,
we omit some parameters that are orthogonal to our contributions in this paper, and explicitly use the term
commit.

, Vol. 1, No. 1, Article . Publication date: December 2022.



6 Paulo Silva, Miguel Matos, and João Barreto

verifying the transaction’s digital signature, among others. If the transaction is valid and
not yet in the local chain, it is inserted in the mempool.
Processes initially share a genesis block 𝑏0 and produce blocks by selecting a subset of

transactions in the mempool and creating a proof that depends on these transactions and
on the last block in the local chain. The proof is a Sybil-proof leader election mechanism,
such as PoW, that ensures the process legally produced the block. The puzzle difficulty of
PoW is a function of 𝐷 [58].

Upon producing a new block, a process appends it to its local chain and broadcasts it. When
a block is delivered, it is validated before being included in the local chain. Due to concurrency,
it is possible that two or more processes produce two competing blocks 𝑏𝑖+1 and 𝑏′𝑖+1 that
extend the sequence (𝑏0, . . . , 𝑏𝑖). Processes will select either sequence (𝑏0, . . . , 𝑏𝑖, 𝑏𝑖+1) or
(𝑏0, . . . , 𝑏𝑖, 𝑏

′
𝑖+1), using a chain selection rule (CSR). In Nakamoto consensus, the CSR

corresponds to selecting the chain with greatest PoW effort. By relying on the CSR, the
protocol will make the system converge by gradually agreeing on an increasing common
blockchain prefix. Blocks, and the transactions therein, are considered committed, when
followed by a sequence of C blocks.

2.4 The weak consistency needs of cryptocurrencies

Our work hinges on the observation that cryptocurrency transactions, also known as as-
set transfer transactions, do not need to be totally order [25]. The intuition behind this
observation is the following. In an asset transfer scenario, the system maintains a set of
accounts where each account maintains the number of assets held, for instance the amount of
cryptocurrency in a given account. Each account has a single owner that can withdraw funds
from this account and transfer them to other accounts. The other users in the system can
only read the accounts balance and transfer funds to it (from their own accounts). Therefore,
it is the sole responsibility of an account owner to order the assets withdrawn from that
account.

Intuitively, this removes the need to order a transaction that withdraws assets from a given
account relatively to every other transaction that is concurrently withdrawing from distinct
accounts. Therefore, instead of a total order across asset transfer transactions, Guerraoui et
al. [25] have shown that the semantics of asset transfer only require causal order and some
mechanism that prevents double-spending attempts.

This observation unveils a notable opportunity to implement faster cryptocurrencies that
escape the high cost of agreeing on a total order. This opportunity has been explored by
recent proposals for weakly-consistent cryptocurrency protocols for permissionless systems,
not just by Guerraoui et al. [11, 25] but also by others [38, 54, 60, 63, 64](more details in
§8).

However, such proposals are not compatible with mainstream permissionless blockchains,
whose general-purpose nature requires also serving transactions issued by applications with
strong, sequential consistency requirements – such as those issued to/by smart contracts.
To the best of our knowledge, bringing weakly consistent cryptocurrency transactions to
mainstream permissionless blockchains that also support strongly consistent smart contracts
remains an open problem. We address such problem in the next sections.

3 PROMISES

NimbleChain extends the life-cycle of a transaction, 𝑡, with an additional event, a promise
of commitment of 𝑡, which we abbreviate to promise of 𝑡. Whenever a process 𝑝 is able to
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Fig. 1. An example illustrating the eventually committed upon promised property. Transaction 𝑡𝐴,
which belongs to a double-spending attack (along with 𝑡′𝐴) is promised by correct process 𝑝1. By the
above-mentioned property, every correct processes will eventually commit 𝑡𝐴 and, consequently, discard
its double-spending counterpart, 𝑡′𝐴.
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Fig. 2. An example in a 2-process system illustrating how promises are weaker than commits. Only
promise and commit events are shown (we omit issue events). The example illustrates the two ways in
which the promise order is more relaxed than the commit order: i) promise order is partial (more precisely,
a causal order), not total; and ii) not every transaction that commits needs to have been promised at
every process.

anticipate – through some means, as we discuss later on – that 𝑡 will eventually commit (by
BBP), 𝑝 can immediately promise 𝑡. The following property formally captures this notion.

Eventually committed upon promised property. If a correct process promises a
transaction 𝑡 then all correct process eventually commit 𝑡.

Figure 1 illustrates this property with an example. Process 𝑝1 promises transaction 𝑡𝐴,
thus every correct process (including 𝑝1) will eventually commit 𝑡𝐴.
This example also illustrates that promises resist double-spend attacks, similarly to

commits. In our example, a malicious user issues two conflicting transactions, 𝑡𝐴 and 𝑡′𝐴
in an attempt to double-spend. Recall that BBP ensures that, if one of such transactions
commits, then the other conflicting transaction(s) will not, with high probability. Hence,
since correct process 𝑝1 promises 𝑡𝐴, then that process can immediately infer that, even if a
double-spending attempt threathens 𝑡𝐴, the system will eventually commit 𝑡𝐴 and, thus,
discard any conflicting transactions (𝑡′𝐴 in the example). This implies that an alternative
example where the system instead committed 𝑡′𝐴 (Figure 1 right) is not allowed.
To be useful, promises must be delivered faster than commits. To accomplish that, we

hinge on the observation that an important class of applications do not require the strong
consistency guarantees of commits. Therefore, promises offer weaker, but still strong enough,
guarantees for such applications. As we show in §5, cryptocurrencies are one notable example
that can be implemented by the weak guarantees of promises.
Compared to commits, promises are fundamentally weaker along two dimensions, which

Figure 2 illustrates with an example. As a first relaxation, promised transactions are only
partially ordered by causal dependencies among them. In other words, promises occur in
causal order.
For instance, each process in Figure 2 promises transactions in different orders, which

all satisfy the causal dependencies between transactions. In contrast, BBP commits the
transactions in total order, as depicted on right-hand side of Figure 2. Causally ordering
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events in a distributed system is well-studied to be easier than totally ordering them [3],
hence implementing promises is an easier problem than the one solved by BBP.
As a second relaxation, correct processes do not need to agree on promising a given

transaction. A transaction 𝑡 may be promised at some correct process, but not necessarily
at all other correct process. This relaxation allows best-effort implementations that, under
worst-case scenarios, can simply give up their efforts to promise some transaction at a subset
of processes.

For example, transaction 𝑡𝐷 in Figure 2 is promised at process 𝑝1 but not at 𝑝2. Although
𝑝2 does not promise 𝑡𝐷, 𝑝2 later commits 𝑡𝐷. Since commits ensure strictly stronger properties
than promises, the commit of 𝑡𝐷 properly replaces the missing promise. Concretely, for a
client at 𝑝2 with weak consistency demands that wishes to know when 𝑡𝐷 has been promised,
the fallback is to wait longer until 𝑡𝐷 commits (or, instead, is discarded by BBP).

At an extreme scenario, transactions 𝑡𝐸 and 𝑡′𝐸 (a double-spending pair) are not promised
at any process. In this case, processes will eventually learn that one of such transactions has
committed (𝑡′𝐸 in our example). This scenario is different than the previous ones because,
since no process promises neither 𝑡𝐸 nor 𝑡′𝐸 , the eventually committed upon promised
property does not hold and, thus, a correct system is free to agree on either transaction
to be committed at every correct process – concretely, an alternative example where every
correct process committed 𝑡𝐸 would also be correct.
On a related note, suppose that, after 𝑡′𝐸 commits at 𝑝2, that process receives a new

transaction, 𝑡𝐹 , that causally depends on 𝑡′𝐸 . By the same rationale as above, we allow 𝑝2
to promise 𝑡𝐹 since its causal dependency has already committed (instead of promised) at
𝑝2. Leveraging the above observations, we can finally formulate the (partial) causal order of
promises, as follows.

Causal promise order property. No correct process promises a transaction 𝑡 before
promising or committing 𝑡’s causal dependencies.

Hereafter, we assume that transactions carry a metadata field that denotes its causal
dependencies (using some suitable causality tracking mechanism). Also, a transaction 𝑡
issued by correct process 𝑝 causally depends on every transaction previously issued by 𝑝3.

As a final requirement, which has been implicit so far, we must enforce that BBP’s commit
order also respects the causal dependencies that determine the causal promise order. This
ensures the commit total order is a linear extension of the causal promise orders observed at
the different processes. This requirement prevents that the commit order introduces causality
anomalies that are absent in the promise order.

Causal commit order property. No correct process commits a transaction 𝑡 before
committing 𝑡’s causal dependencies.

Finally, we remark that, in general-purpose blockchains, different applications or operations
within an application, might have distinct consistency demands. This explains why we decided
to add the promise event to the original issue/commit model, rather than replacing the
commit event with the promise event. The richer issue/promise/commit event set offers a
hybrid consistency model. It allows different applications, or different operations from the
same application, to choose whether to wait for a transaction to be promised or committed,
depending on the required guarantees.

3This is a usual definition in distributed algorithms with causal order [3, 39].
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Fig. 3. An example where NimbleChain’s ageing fast path promises a transaction, 𝑡. Later, the biased
BBP slow path eventually commits 𝑡, even if 𝑡 was issued by an attacker that issued a double-spending
transaction that is competing with 𝑡.

4 NIMBLECHAIN

The main goal of NimbleChain is to provide a fast path that promises transactions much
sooner than BBP commits them. To accomplish that goal, we exploit the fact that the
partial causal order across promised transactions is fundamentally easier to achieve than the
total causal order that is required across committed transactions.

Besides the promise fast path, NimbleChain still relies on BBP, for two main reasons.
First, NimbleChain’s fast path is best-effort, since some unlikely scenarios caused by double-
spending attempts prevent it from promising specific transactions. To handle such cases,
NimbleChain uses BBP to let clients determine whether an unpromised transaction is
effectively committed or not. The BBP slow path also serves to provide a total causal
order when application semantics have strong consistency demands. Table 1 summarizes the
essential differences between both paths.

Next, we present NimbleChain’s design. §4.1 starts with an overview of NimbleChain. §4.2
then details the main algorithm of NimbleChain. §4.3 discusses how NimbleChain can be
tuned to maximize its resilience and §4.4 details how NimbleChain enforces causal order.

4.1 Overview

In NimbleChain, any transaction that is received by a process (either issued locally or
received from another issuer) is fed simultaneously into two modules, which handle the
transaction in parallel. We first present the high-level semantics of each module (we defer
their algorithms to the following section). Next, we describe how both building blocks are
used together to support fast transaction promises. For presentation simplicity, we here
assume that transactions have no causal dependencies. We lift this simplification in §4.4.

4.1.1 Fast path. The fast path runs a transaction ageing algorithm. As a transaction 𝑡 ages
at some process 𝑝, its current age is labelled as a color (red, yellow or green), which we
denote by 𝑐𝑜𝑙𝑜𝑟𝑝(𝑡). A transaction is initially red (when received at the process), but may
later transition to yellow, and finally to green, as Figure 3 illustrates.
Not all transactions reach the green state; in fact, double-spending attempts may cause

some transactions to stop their aging in red or yellow (see §4.2). In any case, it takes a short
time (considerably shorter than BBP’s latency) for any process to determine the final age of
a transaction.

The ageing is determined locally at each process, with no cross-process coordination taking
place. A consequence is that it cannot guarantee that every correct process reaches the same
final age for a given transaction. Instead, it ensures a weaker guarantee:

Bounded age consistency property. If at least one process, 𝑝𝑖, ages some transaction,
𝑡, up to green (𝑐𝑜𝑙𝑜𝑟𝑝𝑖

(𝑡) = 𝑔𝑟𝑒𝑒𝑛), then any other correct process 𝑝𝑗 must have aged 𝑡 up to
yellow or green (𝑐𝑜𝑙𝑜𝑟𝑝𝑗

∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑔𝑟𝑒𝑒𝑛}).
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Fig. 4. Local state of a process in NimbleChain.

4.1.2 Slow path. The second module consists of BBP augmented with a novel feature, called
biased BBP commit, which we will describe shortly. Upon receiving some transaction 𝑡 as
input, the BBP’s consensus protocol eventually decides whether 𝑡 commits within the total
order of the blockchain, or not. Since this takes a long time, BBP constitutes the slow path
of NimbleChain.

For any transaction 𝑡, each process has the option to bias BBP towards 𝑡. By default, this
option is disabled for new transactions that are received by NimbleChain. If activated by
every correct process for a common transaction, the biased BBP option provides a powerful
guarantee:

Biased transaction selection property. If every correct process biases BBP towards a
given transaction 𝑡, then BBP will eventually commit 𝑡, even if double-spending transactions
(of 𝑡) have also been issued.

4.1.3 Putting it all together. NimbleChain uses the ageing protocol as a best-effort mechanism
to trigger promises. When a process 𝑝 ages some transaction 𝑡 up to green, 𝑝 can immediately
promise 𝑡.
Of course, NimbleChain needs to ensure that, if at least one correct process promises 𝑡,

then BBP eventually commits 𝑡 at every correct process. This is not trivial since 𝑡 may have
been issued by an attacker that, concurrently, also issued a double-spending transaction, 𝑡′;
hence, if no additional care was taken, BBP might end up committing 𝑡′ and, thus, discarding
𝑡. To address this, NimbleChain connects the ageing protocol and the biased BBP feature as
follows: as soon as a process 𝑝 has aged a transaction up to (at least) yellow, 𝑝 biases BBP
towards 𝑡. This is depicted in Figure 3.
From the above-mentioned properties (bounded age consistency and biased transaction

selection), one can conclude that this approach ensures that, if at least one process 𝑝 promises
a transaction 𝑡 in the fast path, then 𝑡 will be eventually committed (by BBP) at every
correct process. In fact, if 𝑝 promises 𝑡 (hence, 𝑡 has aged up to green in 𝑝), then 𝑡 will at
least age up to yellow at every other correct process. Therefore, every correct process will
bias BBP towards 𝑡. Consequently, BBP will eventually commit 𝑡 – even in the presence of
a double-spending transactions (conficting with 𝑡).

It is worth noting that there are scenarios, caused by double-spending attempts, where a
process 𝑝 cannot promise a transaction 𝑡 and, therefore, needs to wait for BBP’s slow path
to learn whether 𝑡’s outcome. We discuss such scenarios in the next section.

4.2 Main algorithm of NimbleChain

NimbleChain comprises two main modules, the transaction ageing and the biased BBP
commit. Both run on top of an instance of BBP, intercepting specific routines of BBP.
We take advantage of the extensible design of BBP, customizing it with relatively simple
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Algorithm 1: Ageing protocol (NimbleChain ’s fast path)

1 Initially
2 ageingTxs← ∅;

3 agedTxs← ∅;

4 Function age(transaction 𝑡)):
5 (𝑡𝑎𝑔𝑒𝑑, 𝑎𝑔𝑒𝑣𝑎𝑙)← 𝑙𝑜𝑜𝑘𝑢𝑝(agedTxs, 𝑡.𝑖𝑠𝑠𝑢𝑒𝑟, 𝑡.𝑠𝑒𝑞𝑛𝑜);

6 if 𝑡𝑎𝑔𝑒𝑑 then
7 return 𝑎𝑔𝑒𝑣𝑎𝑙;

8 (𝑡𝑎𝑔𝑒𝑖𝑛𝑔, 𝑡𝑠)← 𝑙𝑜𝑜𝑘𝑢𝑝(ageingTxs, 𝑡.𝑖𝑠𝑠𝑢𝑒𝑟, 𝑡.𝑠𝑒𝑞𝑛𝑜);

9 if 𝑡𝑎𝑔𝑒𝑖𝑛𝑔 then
10 return (𝑛𝑜𝑤 − 𝑡𝑠)/𝐷;

11 else
12 return ⊥;

13 Procedure AgeingMonitor:
14 while true do
15 for each 𝑡 in ageingTxs do
16 if 𝑎𝑔𝑒(𝑡) = 𝐴𝑇 then
17 remove(ageingTxs, 𝑡);

18 add(agedTxs, (𝑡, 𝐴𝑇 ));

19 promise(𝑡);

20 Upon receiving transaction 𝑡:
21 𝑡𝑝𝑟𝑒𝑣 ← 𝑙𝑜𝑜𝑘𝑢𝑝(agedTxs ∪ ageingTxs, 𝑡.𝑖𝑠𝑠𝑢𝑒𝑟, 𝑡.𝑠𝑒𝑞𝑛𝑜);

22 if 𝑡𝑝𝑟𝑒𝑣 = 𝑛𝑢𝑙𝑙 then
23 add(ageingTxs, 𝑡, now);

24 else
25 if 𝑡𝑝𝑟𝑒𝑣 ̸= 𝑡 then
26 reject 𝑡 from mempool;

27 if 𝑖𝑠𝐴𝑔𝑒𝑖𝑛𝑔(𝑡𝑝𝑟𝑒𝑣) then
28 add(agedTxs, (𝑡𝑝𝑟𝑒𝑣, 𝑎𝑔𝑒(𝑡𝑝𝑟𝑒𝑣)));

29 remove(ageingTxs, 𝑡𝑝𝑟𝑒𝑣);

30 Function color(transaction 𝑡)):
31 switch 𝑎𝑔𝑒(𝑡) do
32 case ⊥ do
33 return ⊥
34 case 𝐴𝑇 do
35 return green

36 case 𝐴𝑇 − 2 do
37 return yellow

38 otherwise do return red ;

extensions that affect the incoming transaction and chain validation routines4. We provide
details on our concrete extension of Ethereum in §6.1.

At each process, both modules share the state depicted in Figure 4. This includes BBP’s
state; namely, a local chain and a mempool. Moreover, each process also maintains each
transaction’s age (or color), stored in the agedTxs and ageingTxs sets which comprises
transactions that have already reached their final age, and transactions whose ageing is still
ongoing, respectively.

We now present the algorithms of each module.

4More precisely, inside the content validation predicate (𝑉 (·)) and the environment (more precisely, where

the input tapes of each process are determined) according to Garay et al.’s terminology [20], which are
external to BBP and, thus, can be modified without hurting the correctness of the underlying BBP.
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2.

4.2.1 Fast path: transaction ageing. The transaction ageing fast path runs Algorithm 1.
A transaction 𝑡 can be ageing, be already aged, or in none of such states. The age of a
transaction 𝑡 at a given process is an integer value, determined by function age in Algorithm
1. This value is translated to a color, as we explain later on. Before a transaction starts to
age, we simply say that its age/color is undefined (denoted by ⊥).
When receiving a transaction 𝑡, a process 𝑝 assigns a local physical timestamp to 𝑡 and

adds 𝑡 to ageingTxs (ln. 23, Alg. 1). From that instant on, we say that 𝑡 is ageing. While
a transaction 𝑡 is ageing, its age is given by how much time has already passed since 𝑡’s
timestamp, measured in units of 𝐷 (ln. 10). The ageing of 𝑡 stops in two situations:

(1) When the age of 𝑡 reaches a system-wide ageing threshold (AT) (ln. 16). For presentation
simplicity, in this section we assume 𝐴𝑇 = 4. In §4.3, we show that lower 𝐴𝑇 values
are not appropriate and, more importantly, higher values can achieve higher resiliency
under targeted attacks at the expense of latency.

(2) When the local process receives a double-spend of 𝑡 (ln. 29).

In either case, we say that 𝑡 has aged, and its age is final. In the case of double-spending
attempts, where at least two conflicting transactions 𝑡 and 𝑡′ are received by a process
𝑝, only the first one of them that reaches 𝑝 is accepted into the mempool and ages at 𝑝.
The remaining (double-spending) transactions are rejected from the mempool (ln. 26) and,
consequently, will always have an undefined age (⊥) at 𝑝.

The age values are translated into a color (ln. 30). When a transaction 𝑡 starts ageing, its
color is red. As soon as its age reaches 𝐴𝑇 − 2, its color changes to yellow. Finally, when its
age is 𝐴𝑇 , 𝑡’s color changes to green and, consequently, the local process promises 𝑡 (ln. 19).
Therefore, transactions issued by correct processes (which, by definition, do not have

double-spends) will always age up to green and hence be promised in the fast path at every
correct process. In contrast, a transaction 𝑡 that is issued as part of a double-spend attempt
and is the first (among its conflicting transactions) to be received by a process 𝑝 may age
up to red, yellow or green – depending on how much time it takes until a double-spend 𝑡′ is
subsequently received at 𝑝. In any case, the first transaction received at 𝑝, 𝑡, will be added
to the local mempool and thus 𝑝 will try to include 𝑡 in new blocks that 𝑝 tries to mine; in
contrast, 𝑝 will reject 𝑡′ from the local mempool, hence 𝑝 will never mine blocks with 𝑡′.

Since transactions are delivered at different times at distinct processes, their final ages or
colors are not guaranteed to be consistent across the system. Still, since the behaviour of
the broadcast layer is bounded by a maximum delivery delay (D), the potential divergence
is bounded and, as we prove next, always meet the bounded age consistency property (see
previous section).
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Algorithm 2: Biased BBP commit (NimbleChain ’s slow path)

1 Upon receiving chain 𝑏0, ..., 𝑏𝑛:
2 for each 𝑏𝑖(0 ≥ 𝑖 ≥ 𝑛) not yet in the local chain do
3 for each transaction 𝑡𝑖 ∈ 𝑏𝑖 that conflicts with a previously received transaction 𝑡 do
4 if RRS(t) > 𝑛− 𝑖 then
5 reject chain suffix 𝑏𝑖, ..., 𝑏𝑛;

/* Simplest implementation */

6 Function RRS(transaction 𝑡)):
7 if 𝑐𝑜𝑙𝑜𝑟(𝑡) ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑} then
8 return 𝐶;

9 else
10 return 0 ;

/* Progressive variant (see §4.3) */

11 Function RRS(transaction 𝑡)):
/* Assuming 𝐴𝑇 = 2(𝐶 + 1) */

12 return ⌊𝑎𝑔𝑒𝑝(𝑡)/2⌋;

This is illustrated in Figure 5. It may occur that 𝑡 ages up to green (thus, promised in the
fast path) in some correct processes, but only up to yellow in others. Or that 𝑡 ages up to
yellow at some correct processes, but only up to red in others. Generalizing these examples,
we can formulate and prove the following lemma.

Lemma 1. If a correct process 𝑝 ages a transaction 𝑡 up to green (i.e., 𝑎𝑔𝑒𝑝(𝑡) = 𝐴𝑇 )
then: (a) for any correct process 𝑞, 𝑡 ages at least up to yellow (𝑎𝑔𝑒𝑞(𝑡) ≥ 𝐴𝑇 − 2); further,
(b) for any transaction 𝑡′ that conflicts with 𝑡, then 𝑎𝑔𝑒𝑞(𝑡

′) =⊥ for every correct process 𝑞.

Proof. (1) Suppose, by contradiction, that either (a) 𝑎𝑔𝑒𝑞(𝑡) < 𝐴𝑇 −2 or (b) 𝑎𝑔𝑒𝑞(𝑡) =⊥;
this implies that either (a) 𝑞 received 𝑡′ either less than 2𝐷 after 𝑞 first received 𝑡, or (b)
that 𝑞 received 𝑡′ before 𝑡, respectively. Since 𝑝 received 𝑡 first and 𝑡′ more than 4𝐷 after
(since 𝑎𝑔𝑒𝑝(𝑡) = 𝐴𝑇 ), then hypothesis (a) and (b) only occur in executions where 𝑡 or 𝑡′ was
delivered at 𝑞 or 𝑝 (resp.) more than 𝐷 after they were broadcast by their issuer, which
contradicts the assumption of a bounded delivery delay, 𝐷. (2) Suppose, by contradiction,
that 𝑎𝑔𝑒𝑞(𝑡

′) ̸=⊥. This implies that 𝑞 received 𝑡′ before 𝑡, which corresponds to hypothesis
(b) above, which is impossible under the bounded delivery delay assumption. □

From sub-lemma (a) above, we directly obtain that the proposed ageing algorithm satisfies
the bounded age consistency property. Due to space constraints, we ommit the correctness
arguments for the remainder of this section.

4.2.2 Slow path: Biased BBP commit. We now focus on the slow path of NimbleChain, the
biased BBP commit feature. As outlined in §4.1, the biased BBP commit is activated by each
process for a given transaction, 𝑡, as soon as a 𝑡 ages up to yellow (at least). According to
the biased transaction selection property (see §4.1), we expect that, if every correct process
biases BBP towards 𝑡, then BBP eventually commits 𝑡.

To implement the biased BBP commit feature, we add two restrictions on BBP’s operation.
A first restriction is already described in Algorithm 1. From a set of double-spending
transactions, only the first one that is received at a process 𝑝 will be included in 𝑝’s mempool
and aged at 𝑝; any subquently received double-spends are rejected from 𝑝’s mempool.

We now introduce a second restriction, which affects BBP’s CSR and is shown in Algorithm
2. For each new block 𝑏𝑖 in a new chain that a process 𝑝 receives, 𝑝 checks whether block 𝑏𝑖
has any transaction that is a double-spending of another transaction 𝑡 that 𝑝 had already
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Fig. 6. Example of NimbleChain handling a transaction that is part of a double-spending attempt, with
𝐴𝑇 = 4. Top: transaction ages up to green (thus, is promised) in at least one correct process. Bottom:
transaction does not age up to green in any correct process.

received. If so, the age of 𝑡 (at 𝑝) determines whether the offending block 𝑏𝑖 can be accepted
or must be rejected. If 𝑡 has aged at least to yellow at 𝑝, then 𝑏𝑖 is rejected, together with
any subsequent blocks.
There is, however, an exception to this rule. When 𝑏𝑖 is followed by at least 𝐶 blocks in

the received chain, NimbleChain no longer rejects 𝑏𝑖. We present the rationale behind this
exception shortly. Algorithm 2 captures the above rule (and its exception) with the required
replacement suffix (RRS) function. This function returns 𝐶 for those transactions which the
local process has aged to at least yellow; and 0 otherwise.
To illustrate, let us consider the first example in Figure 6 (top). In this example, some

correct processes (such as 𝑝𝐴) promise 𝑡, as soon they age 𝑡 up to green ( 3○). From the
bounded age consistency property, we know that even if, due to a double-spending transaction
𝑡′, other correct processes (such as 𝑝𝐵) might not age 𝑡 up to green, they are guaranteed to
age 𝑡 up to yellow ( 4○). Therefore, at that point, every correct process (either 𝑝𝐴 or 𝑝𝐵)
biases BBP towards 𝑡. According to the restrictions presented above, this means that:

(1) 𝑡 has been included in every correct processes’ mempool, thus they are all trying to
mine a new block with 𝑡 (unless a block with 𝑡 is already in their local chains), and
any double-spend of 𝑡 is excluded from their mempools; and

(2) all correct processes are rejecting any chains that contain a double-spend of 𝑡 unless
the block containing such double-spend is suffixed by at least 𝐶 blocks.

Together, both observations imply that the whole mining power of correct processes will
be used towards appending 𝑡 to their chains and continuing building on a chain with 𝑡. The
probability that an attacker is able to generate a chain containing a double-spending of 𝑡
followed by at least 𝐶 blocks is arbitrarily low. Therefore, the correct processes biasing BBP
towards 𝑡 will never replace the chain with 𝑡, which they are collectively building, by a fork
with a double-spend of 𝑡. Hence, every correct process will eventually commit 𝑡 by BBP.

, Vol. 1, No. 1, Article . Publication date: December 2022.



NimbleChain: Speeding up cryptocurrencies in general-purpose permissionless blockchains 15

We also need to take other scenarios into account. These are illustrated in Figure 6 bottom.
Here, different correct processes only age 𝑡 up to either red or yellow. Those correct processes
that age 𝑡 up to yellow, such as 𝑝𝐴 ( 3○), bias BBP towards 𝑡, thus reject chains with any
double-spending transaction 𝑡′ since 𝑅𝑅𝑆(𝑡) = 𝐶. In contrast, other correct processes that
only age 𝑡 up to red, such as 𝑝𝐵 ( 4○), remain open to accept chains with either 𝑡 or 𝑡′, since
𝑅𝑅𝑆(𝑡) = 0.

This situation can be problematic if the Byzantine process that issued the double-spend
further manages to extend the current main chain with a new block comprising 𝑡′. In this
situation, processes like 𝑝𝐴 will reject such new chain, while processes like 𝑝𝐵 will accept it
(by the longest chain rule of BBP).

We call this a fragmentation attack. It introduces an artificial fork that divides the mining
power of correct processes across two fragments, denoted 𝐴 and 𝐵 in Figure 6. While the
fragmentation persists, the attacker’s mining power will be temporarily closer to the largest
correct fragment’s mining power, which may harm the robustness of BBP.

To mitigate the impact of a fragmentation attack, NimbleChain is able to self-heal upon
any successful fragmentation attack. To understand how, let us again focus on the bottom
of Figure 6. A first scenario ( 5○) is when the fragment of correct processes biasing BBP
towards 𝑡 are able to grow their chain faster than the opposite fragment (holding a chain
with 𝑡′), but not vice-versa. This fragment will be naturally healed by BBP’s longest chain
selection rule as soon as the main chain grows to be larger than the opposite fragment’s
chain.
The second scenario ( 6○), however, may take longer to heal. In this case, the fragment

holding a chain with 𝑡′ happens to have the majority of correct processes. Therefore, it is
likely that this chain will tend to grow faster than the chain with 𝑡. This is where the 𝐶
bound on 𝑅𝑅𝑆 becomes useful. The fragment holding a chain with 𝑡 will accept the chain
with 𝑡′ as soon as it becomes suffixed by 𝐶 blocks, which heals the fragmentation attack. It
should be noted that, in the scenario we are considering, no correct process has promised 𝑡.
Therefore, the system of correct processes can safely converge towards committing 𝑡′ and,
thus, discard 𝑡.

4.3 Trading fast path latency for robustness

The previous section showed that, with the minimal 𝐴𝑇 = 4 value, a single fragmentation
attack may require waiting up to 𝐶 block generation rounds to heal. In this section, we
explain how NimbleChain can be configured to substantially mitigate the chances of success
of the above attack. The key insight is that, by increasing 𝐴𝑇 , NimbleChain can reduce
the time it takes to heal fragmentation attacks from 𝐶 to the time it takes for the fastest
fragment’s chain to generate 2 blocks, with high probability. This improved robustness comes
at the cost of a higher fast path latency, since a higher 𝐴𝑇 implies that transactions take
longer to age up to green.
Before describing how NimbleChain can reduce the above vulnerability window, let us

recall the two fragmentation scenarios in Figure 6, which assume 𝐴𝑇 = 4. In both scenarios,
every correct process has received transaction 𝑡 and an attacker is mining an alternative
chain that contains a double-spend transaction 𝑡′. While some correct processes will accept
the alternative chain as long as it meets the standard BBP requirements, others will be
more reluctant and impose the additional constraint that, in the alternative chain, the block
with 𝑡′ must be followed by at least 𝐶 blocks. As shown in Figure 6, with 𝐴𝑇 = 4, 𝑅𝑅𝑆𝑝𝑖(𝑡)
may differ between 0 and 𝐶 for different correct processes. Intuitively, this upper bound on
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Fig. 7. Example of NimbleChain healing from a fragmentation attack, with its most robust configuration
(𝐴𝑇 = 2(𝐶 + 1)).

the divergence across 𝑅𝑅𝑆𝑝𝑖
(𝑡) directly determines the time – in terms of block generation

rounds – that a fragmentation attack may take to heal.
If we can lower this upper bound, ideally down to 1, we can minimize the healing time. We

achieve this by extending the algorithm described in the previous section with a progressive
variant (ln. 11, Alg. 2) where each process gradually increments 𝑅𝑅𝑆 in 2𝐷 steps. More
precisely, we define 𝑅𝑅𝑆𝑝(𝑡) = ⌊𝑎𝑔𝑒𝑝(𝑡)/2⌋. To enable this progressive variant, while ensuring
that 𝑝 only promises transaction 𝑡 once every correct process 𝑝𝑖 is biasing BBP towards 𝑡
(i.e., 𝑅𝑅𝑆𝑝𝑖

(𝑡) = 𝐶), we need to redefine 𝐴𝑇 = 2(𝐶 + 1).
As an example, suppose that process 𝑝 receives a transaction 𝑡. Initially, 𝑅𝑅𝑆𝑝(𝑡) = 0. If

𝑝 does not observe any double-spend of 𝑡, 𝑅𝑅𝑆𝑝(𝑡) will grow to 1, 2, ... every 2𝐷, until it
reaches 𝑅𝑅𝑆𝑝(𝑡) = 𝐶 once 𝑎𝑔𝑒𝑝(𝑡) = 𝐶 × 2𝐷. Finally, 2𝐷 later, 𝑡 ages up to green at 𝑝
and, hence, 𝑝 promises 𝑡 (at 𝑎𝑔𝑒𝑝(𝑡) = 2(𝐶 + 1)).
To understand the impact of this new configuration, Figure 7 revisits the fragmentation

scenarios from Figure 6. As before, a successful fragmentation attack has split the set of
correct processes into two divergent fragments: fragment 𝐴, whose processes hold 𝑡 in their
local ledger and now have 𝑅𝑅𝑆𝑝𝐴

(𝑡) = 1 (instead of 𝑅𝑅𝑆𝑝𝐴
(𝑡) = 𝐶 as per the original

formulation); and fragment 𝐵, whose processes have 𝑅𝑅𝑆𝑝𝐵
(𝑡) = 0 and, consequently, have

accepted a chain with transaction 𝑡′, a double-spend of 𝑡, which the attacker produced and
disseminated. On the one hand, a process in fragment 𝐴 does not accept the chain held
by fragment 𝐵, since it holds a block with a double-spend of 𝑡 that is not suffixed by at
least one block (due to 𝑅𝑅𝑆𝑝𝐵

(𝑡) = 1). On the other hand, a process in fragment 𝐵 will not
accept the chain of fragment 𝐴 since it has a lower height than fragment 𝐵’s main chain
(due to the longest-chain rule).

Let us first consider the scenario where fragment 𝐴 is faster in extending its chain ( 5○)
than fragment 𝐵. In this case, as soon as 𝐴’s chain grows 2 blocks, processes in 𝐵 will start
accepting that (according to the longest-chain rule). Let us, instead, analyse the reverse
situation, where fragment 𝐵’s chain grows faster ( 6○). The fragmentation may now heal as
soon as fragment 𝐵 appends a single new block to its chain. These represent substantial
improvements in healing time relatively to the 𝐴𝑇 = 4 configuration, which could take up
to 𝐶 blocks to heal in worst-case scenarios.
We remark that these upper bounds are also observed in concurrent scenarios, where

more than one block is produced either at the same fragment or across different fragments.
Furthermore, we highlight that the 1 or 2 blocks needed to heal a fragmentation can
be produced by any process in either fragment, which means that the healing speed is
determined by the aggregate resources of the correct nodes (i.e., not restricted to the largest
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AT
Upon ageing to green Upon fragmenta-

tion
Promise

latency

Speedup

(vs. BBP commit)
Healing time

4 4𝐷 𝐶/(4𝑟) up to 𝐶 × 𝐵

2(𝐶+1) 2𝐷(𝐶 + 1) approx. 1/(2𝑟) up to 2𝐵

Table 3. Trade-off between promise performance and fragmentation healing time in function of 𝐴𝑇 .
The speedup is relative to BBP’s commit latency of 𝐶 ×𝐵. The 𝐷/𝐵 ratio is denoted by 𝑟, which, by
definition, is expected to be small [20].

correct fragment’s resources). These upper bounds on the healing time can be generalized to
scenarios where: i) the fragmentation attack occurs when 𝑡 had a higher age; and, ii) the
fragmentation attack simultaneously aims at multiple double-spending transactions.

Summing up, NimbleChain can be configured between two extremes and offer a trade-off
between fast path latency and robustness against fragmentation attacks. Table 3 summarizes
the trade-off between both extremes of 𝐴𝑇 .

4.4 Ensuring causal order

We now describe how NimbleChain handles causal dependencies consistently across the slow
and fast paths, with the goal of ensuring promise and commit causal order (§3). We hereafter
assume that causal dependencies are specified in an additional transaction field using some
suitable causality tracking mechanism.

Let us start by addressing promise causal order. This is easy to ensure by adding a simple
condition that checks causal dependencies before a transaction is promised upon ageing (ln.
19, Alg. 1). Concretely, when a transaction 𝑡 that has aged up to green at a given process,
that process checks every causal dependency of 𝑡 before promising 𝑡. If every such causal
dependency is already promised or committed at that process, then it promises 𝑡. Otherwise,
𝑡 is temporarily held in a local set of green transactions that still have causal dependencies
awaiting to be promised/committed.

We also need to enforce commit causal order, which we achieve by extending NimbleChain
with two additional restrictions to how each process manages its local chain.

The first restriction requires that the mempool comprises two distinct queues: a ready and
a pending queue. When a given process 𝑝 receives a transaction 𝑡 and is about to be included
in the local mempool, an additional validation procedure will check every causal dependency
of 𝑡. If at least one causal dependency of 𝑡 is still absent from the ready queue at 𝑝, 𝑡 is
inserted in the pending queue. Otherwise, 𝑡 is added to the ready queue, and any transactions
in the pending queue that causally depend on 𝑡 have their causal dependencies re-evaluated
and, accordingly, moved to the ready queue if 𝑡 was their last missing dependency. When
generating blocks, 𝑝 will only select transactions from the ready queue. Therefore, any
transaction in a block generated by a correct process is preceded (in the corresponding chain
order) by its causal dependencies.

As a second restriction, causal dependencies are checked for transactions in chains received
from processes. If the causal dependencies are not satisfied in a received chain, that chain is
discarded.

It is easy to show that the two above restrictions ensure that any transaction 𝑡 in a process’
local chain is ordered after every causal dependency of 𝑡. Consequently, the committed prefix
is causally ordered, which implies that transactions commit in causal order.
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We remark that, while the algorithm described in the previous sections ensured that every
transaction issued by a correct process would be promised at every correct process, this no
longer holds when transactions have causal dependencies. As an example, suppose that a
correct process 𝑝 has promised a transaction 𝑡1 that was issued by a Byzantine process as
part of a double-spend attempt; and, after observing 𝑡1, 𝑝 issues 𝑡2, which causally depends
on 𝑡1. Recall that, since 𝑡1 is part of a double-spending attempt, 𝑡1 may not be promised at
some (or all) process. In that case, some (or all) processes will only promise 𝑡1. Hence, even
though 𝑡2 was issued from a process that had promised 𝑡1 via its fast path, the processes
that had not done so will delay 𝑡2’s commit until the outcome of 𝑡1 is determined by the
slow path.

Finally, we note that, even though Nakamoto consensus defines a total order of transactions,
it does not prescribe any specific transaction order to miners. In particular, miners are free
to select which transactions to include in a block and the order in which they appear in
the block. Our approach skews the order in which transactions are included in a block such
that this order satisfies the causal order defined by the promises. But because Nakamoto
consensus is itself oblivious to the concrete order of transactions within a block, our approach
does not affect the correctness of the original protocol.

5 LOW-LATENCY CRYPTOCURRENCIES WITH NIMBLECHAIN

As discussed in §2.4, a notable application that can benefit from the weaker guarantees of
the promise event provided by NimbleChain is a cryptocurrency. We now detail how.

A cryptocurrency can be abstracted as an instance of the asset-transfer object type defined
by Guerraoui et al. [25]. An asset transfer object maintains a set of accounts, where each
account is associated with an owner client that is the only one allowed to issue transfers
withdrawing from this account. To do so, the owner client of an account 𝑎 can invoke a
transfer(a,b,x) to transfer 𝑥 from account 𝑎 to account 𝑏. There is a second operation, read(a),
which every process can invoke to read the balance of account 𝑎.

Traditional permissionless blockchains, such as BBP, implement the asset-transfer object
type by relying on the consensus-based commit event, as follows.

∙ transfer(a,b,x). When the process that owns account 𝑎 wishes to execute trans-
fer(a,b,x), it reads the current balance of 𝑎 (see next) and, if the balance is sufficient,
issues a new transaction whose payload transfers 𝑥 from account 𝑎 to account 𝑏.

∙ read(a). The read(a) operation is implemented by returning 𝑎’s balance from the
state that results from the ordered execution of every committed transaction in the
local chain.

Guerraoui et al. [25] prove that, in fact, the asset-transfer object type can be correctly
implemented in a consensusless fashion. They also present (and prove correct) an actual
consensusless implementation of the asset-transfer object type based on message passing.
The algorithm they propose relies on a secure broadcast layer that exposes a broadcast and
a deliver event (for messages), while offering uniform reliable delivery with source order
guarantees despite Byzantine faults. The complete algorithm by Guerraoui et al. defines
which state each process maintains in order to know, which outgoing transactions have
been issued by that process, as well as which incoming transactions have been delivered
and validated at that process. Further, it defines how, based on that state, the causal
dependencies field of a newly-issued transaction can be efficiently encoded.

We can port their approach to NimbleChain by replacing the underlying secure broadcast
layer with NimbleChain. Concretely, by simply replacing the broadcast and deliver events in
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Guerraoui et al.’s algorithm with the issue and promise events of NimbleChain ’s interface.
The key insight to this transformation is that the properties that Guerraoui et al. require
from the secure broadcast layer (namely, integrity, agreement, validity and source order [25])
are also satisfied by NimbleChain ’s promises with high probability. We prove this later on
this section.
Below, we present a high-level summary of the algorithm that results from porting

Guerraoui et al.’s to rely on NimbleChain ’s interface. For lower-level details, we refer the
reader to [25].

∙ transfer(a,b,x). When a processes 𝑝 that owns account 𝑎 executes the transfer(a,b,x)
operation, it confirms that account 𝑎 has enough funds and, if so, issues a transaction
𝑡, whose payload describes the requested operation. Further, the causal dependencies
field of the new transaction 𝑡 is the set of transactions comprising: i) every previously
issued outgoing transfer transaction (i.e., transferring funds from 𝑎); and ii) every
incoming transaction (i.e., transferring funds to 𝑎) already promised by process 𝑝.

∙ read(a). The read(a) operation is implemented by returning 𝑎’s balance from the
state that results from the ordered execution of every promised transaction in the local
chain.

Recall that, for most transactions, NimbleChain ’s fast-path ensures that most correct
processes are able to promise such transactions much sooner than the time that BBP
slow-path takes to commit them. Therefore, the above implementation of the asset-transfer
object achieves important latency improvements.
The above promise-based implementation is correct according to the specification of the

asset-transfer object type [25]. In other words, the above implementation correctly supports
a cryptocurrency. The following lemma states this.

Lemma 2. The proposed promise-based implementation of transfer(a,b,x) and read(a) is
a correct implementation of an asset-transfer object type [25].

Proof. To show that the above implementation is equivalent to Guerraoui et al.’s
message passing asset-transfer object implementation, which was originally proposed and
proved correct in [25], we prove that NimbleChain’s issue and promise events satisfy, with
high probability, the properties of the secure broadcast layer underlying Guerraoui et
al.’s implementation. Next, we take the properties of the broadcast layer that underlies
Guerraoui et al.’s algorithm (namely, integrity, agreement, validity and source order [25])
and reformulate them by renaming the broadcast and deliver events by the issue and promise
events. Then, we prove that the resulting properties are satisfied by NimbleChain.
Integrity: a correct process promises a transaction 𝑡 from a process 𝑝 at most once and, if
𝑝 is correct, only if 𝑝 previously issued 𝑡. This is ensured since transactions in BBP are
digitally signed and carry a unique identifier.
Agreement: if processes 𝑝 and 𝑞 are correct and 𝑝 promises 𝑡, then 𝑞 promises 𝑡. Let us recall
that, if a correct process 𝑝 promises some transaction 𝑡, then 𝑝 eventually commits 𝑡 (by
the eventually committed upon promised property). Hence, any other correct process 𝑞 also
eventually commits 𝑡 (by BBP’s persistence property), thus, by definition of promise, 𝑞 also
promises 𝑡.
Validity: if a correct process 𝑝 issues 𝑡, then 𝑝 promises 𝑡. This is ensured since any transaction
𝑡 issued by a correct process 𝑝 is eventually committed by 𝑝 (by BBP’s liveness property)
therefore, by definition of promise, 𝑝 also promises 𝑡.
Source order: if 𝑝 and 𝑞 are correct processes and both promise transactions 𝑡 and 𝑡′, both
issued by the same process 𝑟, then they do so in the same order. Let us first consider the
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Number of processes 500

Mining power 24.0%, 21.3%, 13.2%, 12.1%, 5.7%, 1.9%, 1.8%, 1.5%, 1.4%,

1.3%, 1.1%, 1.0%, 1.0%, and 0.026% for each remaining process

Average block generation time (𝐵) 20 s

Average transaction generation time 125 ms

Commit threshold (C) 12

Average message delivery delay 120 ms

Maximum delivery delay (D) 960 ms

Table 4. Summary of experimental parameters.

case where 𝑡 and 𝑡′ have distinct sequence numbers. Therefore, the promise causal order
property guarantees that both 𝑝 and 𝑞 will promise both transactions in order defined by
their sequential numbers. Let us, instead, assume by contradiction that 𝑡 and 𝑡′ have the
same sequence number and are promised by 𝑝 and 𝑞. Therefore, by the eventually committed
upon promised property, 𝑝 and 𝑞 will eventually commit both transactions. Still, by definition,
distinct transactions with the same sequential number are conflicting and, therefore, at most
one can commit. This contradicts the initial assumption. □

We conclude with two final remarks. First, although Guerraoui et al.’s algorithm was orig-
inally proposed in the context of permissioned systems, adapting it to exploit the primitives
of NimbleChain enables it the work in permissionless environments. Furthermore, while the
original proposal supported a stand-alone cryptocurrency system, the above adaptation to
NimbleChain integrates the low-latency cryptocurrenty in a richer ecosystem where other
applications with stronger consistency requirements may also co-exist. For instance, this
hybrid consistency ecosystem enables processes to issue smart contract transactions (via the
issue/commit interface), whose execution costs are charged from cryptocurrency accounts
which may receive incoming transfers as defined above (via the issue/promise interface).

6 EVALUATION

In this section, we evaluate NimbleChain with the goal of answering the following questions:
i) what are the latency improvements that NimbleChain brings to applications with different
consistency needs, and ii) what is the impact of fragmentation attacks?

As we further detail below, our experimental evaluation is performed in an environment as
close as possible to a real deployment. Namely, it relies on the real code of the reference Geth
implementation of Ethereum [16], which we extend to implement NimbleChain, running in a
system of 500 processes. Adopting a similar methodology as related works (e.g., [19, 41, 71]),
the workload is derived from a real trace of Ethereum, PoW mining is simulated, and a
realistic geo-distributed network is emulated using a state-of-the-art emulator [24].

Next, we detail the evaluation scenario, metrics and discuss our results.

6.1 Implementation, deployment and workload.

We implemented NimbleChain as an extension of Ethereum using the reference Geth
implementation [16]. The implementation required ≈ 3000 new lines of code to implement
NimbleChain and changing ≈ 300 lines of code in Geth.

For experimental purposes, we also developed a custom client that, using the regular API,
injects transactions in the system according to real transaction traces from Etherscan [18]
(a sample of transactions from block 5306612 up to block 6222336). The workload has no
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Fig. 8. Transaction latency: 100% cryptocurrency transactions (above); 100% smart contract transactions
(middle); mixed cryptocurrency and smart contract transactions

information about causality (aside from the implicit dependencies among transactions issued
from the same account) and hence we set each transaction to depend on the most recently
promised transaction – and, transitively, from the causal dependencies of that transaction.
Note that this is a conservative choice, since it increases the probability that some processes
will have to wait for causal dependencies.

Table 4 summarizes the main experimental parameters. To run experiments with a large
number of processes we replaced the PoW component with a probabilistic mining selection
process that follows a Poisson distribution and mimics the block production distribution.
To reflect the non-uniform mining power distribution of today’s mainstream permissionless
blockchains, we allocated the estimated mining power of the top-13 most powerful mining
pools of Ethereum to a subset of 13 processes, according to [18] (as detailed in Table 4).
The remaining mining power was uniformly distributed across the remaining 487 processes.

We adjusted the block production probability to mimic Ethereum’s rate of 3 blocks per
minute [18]. Moreover, we extended both NimbleChain and Ethereum implementations to
log transaction events such as generation, reception, dissemination and block events (such
as insertion to the local chain and forks) to allow a posteriori offline processing for our
evaluation. We use the same codebase, client and PoW component for the NimbleChain
and Ethereum. Every correct process is parameterised with 𝐶 = 12, the current standard
commit threshold in Ethereum [70].
We ran each experiment for one hour with 500 processes for both NimbleChain and

Ethereum, using 5 machines equipped with a mix of Intel(R) Xeon(R) CPUs. We empirically
found this configuration of machines to be able to accommodate 500 processes without
becoming overloaded and hence compromising the fidelity of the results. The processes
run on an emulated network using Kollaps [24] with internet latencies that model the
geo-distributed nature of permissionless blockchains. As suggested by previous measurement
studies [22, 61], we used an average latency value of 120𝑚𝑠, and a conservative value for
𝐷 = 8 × 120𝑚𝑠 = 960𝑚𝑠. Each node started with the same local chain, consisting of a
single genesis block. We injected 8 transactions per second, as common in Ethereum [18].
All results are the average of 5 runs.
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Fig. 9. Fragment adoption during a fragmentation attack, comparing NimbleChain with 𝐴𝑇 = 4 (top)
and 𝐴𝑇 = 2(𝐶 + 1) (middle) against the Ethereum baseline (bottom, no fragmentation attack) The
y-axis expresses the percentage of resources owned by each fragment of correct processes, where 100%
in the same colour (light grey) means that every correct process’ local chain is identical. The x-axis
represents time, in seconds.

6.2 Promise and commit latencies

In this section, we study transaction latency as perceived from a process 𝑝, which we define as
the time from the moment a given transaction 𝑡 is issued (at some process, not necessarily 𝑝)
and the moment 𝑝 triggers the event that is required by the application semantics associated
with 𝑡 (i.e., either promise or commit). We evaluate transaction latency for two transaction
types, with distinct consistency needs: cryptocurrency transactions, which only require
promises; and smart contract transactions, which need to be committed.
We consider 3 scenarios: i) 100% cryptocurrency transactions; ii) 100% smart contract

transactions; iii) and a mixed ratio of 44% cryptocurrency and 66% smart contract transac-
tions as observed in Ethereum [61]. We evaluate these 3 scenarios considering no Byzantine
behaviour. (We study Byzantine behaviour in the next section.)

We consider NimbleChain configured with 𝐴𝑇 = 2(𝐶 + 1), the most robust configuration.
For brevity, we do not evaluate NimbleChain configured with 𝐴𝑇 = 4, which is a less robust
configuration that would present even lower values for promise latency.

Figure 8 presents our results. As expected, the average transaction latency for cryptocur-
rency transactions is around one order of magnitude lower with NimbleChain (promise
latency) than with Ethereum (commit latency), as shown in Figure 8 (top).

Smart contract transaction commit times with Ethereum are very similar to NimbleChain’s,
which suggests that the overhead of NimbleChain on the underlying protocol is negligible, as
shown in Figure 8 (middle). NimbleChain seems to slightly outperform Ethereum at the head,
due to slightly different transaction ordering criteria in the mempool. As an example, causal
dependencies are ordered before a dependent transaction regardless of their price. Hence,
such dependencies may reach the blockchain earlier in NimbleChain than in Ethereum.

Figure 8 (bottom) depicts the mixed scenario and shows an interesting trend. Cryptocur-
rency transactions continue to perform much faster in NimbleChain (promise latency) than
in Ethereum (commit latency), while smart contracts commit at roughly the same pace with
the results showing a clear inflection point between each transaction type.
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6.3 Fragmentation attacks

To perform a fragmentation attack for some period 𝑇 , an attacker must allocate a portion
𝑥 of its mining power to that purpose during 𝑇 . As a return from such investment, the
attacker will reduce the average mining power of the largest correct fragment by 𝑦 during 𝑇 .
To be profitable to the attacker, 𝑦 must be higher than 𝑥. Otherwise, a rational attacker
will not have any tangible benefit, and thus will not carry on the attack. The main goal of
this section is to study the impact of fragmentation attacks, and consequently answer the
above question.

Recall that a fragmentation attack involves broadcasting a transaction 𝑡 and immediately
starting to produce a block with a double-spend 𝑡′. Later, the attacker broadcasts 𝑡′ in
an attempt that different correct processes will receive it at different ages of 𝑡. This will
result in some correct processes choosing 𝑅𝑅𝑆𝑝(𝑡) = 𝑎 and others 𝑅𝑅𝑆𝑞(𝑡) = 𝑎+ 𝛿, where 𝑎
denotes the age that 𝑡 had when the former received 𝑡′ and 𝛿 depends on the 𝐴𝑇 parameter
(as discussed in §4.3).

We empirically found that the most advantageous case for the attacker was with 𝑎 = 0,
i.e., some correct processes 𝑝 receive 𝑡′ when 𝑎𝑔𝑒𝑝(𝑡) = 0, while other processes 𝑞 receive 𝑡′

when 𝑎𝑔𝑒𝑞(𝑡) > 0 (i..e, either 1 or 2). Hence, in this analysis, we consider 𝑎 = 0.
As detailed in §4.3, the divergent fragments of correct processes eventually converge

when at most 2 new blocks are generated from either fragment (and delivered), when
𝐴𝑇 = 2(𝐶 + 1). In contrast, when 𝐴𝑇 = 4, the divergent fragments of correct processes
may require 𝐶 blocks to converge. In the meantime, the attacker may perform a burst of
consecutive fragmentation attacks with the intention to keep the system fragmented for a
longer period, by creating a new fragmentation before the current one is healed.
In these experiments, we assumed the attacker holds 24% of the resources, which corre-

sponds to the largest mining pool in Ethereum [61]. The attacker continuously performs
a fragmentation attack to weaken the aggregate resources owned by correct processes, by
making them adhere to distinct fragments. The attacker uses its total mining power to
perform the fragmentation attack series (𝑥 = 24%). For brevity, we omit scenarios where
the attacker only spends a fraction of its total mining power (𝑥 < 24%). Our analysis of
lower values of 𝑥 yielded similar observations as the ones that we present next.

Further, we artificially instrumented the delivery protocol to ensure a fragmentation ratio
that is favorable to the attacker: 80% of nodes randomly considered 𝑅𝑅𝑆𝑝(𝑡1) = 0 and could
accept a malicious block immediately, while the remaining 20% considered 𝑅𝑅𝑆𝑝(𝑡1) = 1 for
𝐴𝑇 = 2(𝐶 + 1) or 𝑅𝑅𝑆𝑝(𝑡1) = 𝐶 for 𝐴𝑇 = 4. In a real scenario, it would be very unlikely
for the attacker to be able to reach such precise fragmentation, since he does not control the
network latency. We tested other values for the fragmentation ratio (e.g. 50%-50%, 70%-30%
and 60%-40%), which yielded similar conclusions and hence we omit those results.
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Figure 9 shows the results as stacked histogram. The y-axis expresses the percentage of
resources owned by each fragment and the x-axis represents time, in seconds. The light
colored layer represents the percentage of resources owned by honest processes in the largest
(i.e., with the highest mining power) fragment at a given moment. It is worth noting
that, even in the baseline, the mere generation of a new block by a correct process (with
or without a concurrent fork) causes short periods where the correct processes are not
perfectly synchronized (i.e., in the same local chain state), which quickly end as the system
synchronizes again. Note that this is intrinsic to BBP.

As expected, the results for 𝐴𝑇 = 4 (Figure 9 top) show a long-lasting fragmentation since
processes require a long suffix of 𝐶 blocks before accepting a chain with 𝑡′1. For 𝐴𝑇 = 2(𝐶+1)
(Figure 9 middle) we observe a much faster healing since processes require only 1 block
before accepting a chain with 𝑡′1. This confirms that 𝐴𝑇 = 4 trades a decreased latency
in the fast path for less robustness against fragmentation attacks, while 𝐴𝑇 = 2(𝐶 + 1)
provides more robustness at the expense of a higher latency in the fast path.
To conclude our analysis of the fragmentation attack, we evaluate its impact on two

metrics originally proposed by Eyal et al. [19]. The mining power utilization (MPU) is the
ratio between the aggregate work of the main chain and all produced blocks. Fairness is the
ratio between the number of blocks generated by the largest honest miner and all produced
blocks. In a fair system, the fairness ratio should be identical to the mining power of the
reference miner, which holds 21.3% mining power in this experiment (corresponding to
the 2nd most resourceful miner). We also measure the average CPU power of the largest
fragment.

The results are presented in Figure 10. As it is possible to observe, the MPU decreases from
its baseline value when an attack is carried out. Further, MPU decreases as 𝐴𝑇 decreases.
The average CPU owned by the largest fragment during the attacks also decreases as 𝐴𝑇
decreases. These are expected results, since the mining power is scattered among fragments.
Most importantly, the decrease in both metrics is considerably lower than the mining

power the attacker invested to put the attack in practice. This is true even for the least
robust variant of NimbleChain, 𝐴𝑇 = 4. This means that the attacker does not reach a
break even point. Therefore, the analyzed attack is not profitable for a rational attacker.
Instead of using his mining power to slow down the correct system’s ability to advance the
main chain (through fragmentation), it would be more profitable for the attacker to employ
the same mining power to accelerate the generation of his malicious chain (an attack vector
that is possible in standard BBP).
Finally, and as expected, the fragmentation periods cause fairness deviations in Nim-

bleChain. While vanilla Ethererum is the closest to the desired fairness target (ideally,
21.3%), the fairness of NimbleChain ’s variants are still within a 10% distance from the ideal
target.

7 DISCUSSION

Assumptions on network propagation. The design of NimbleChain depends on the
assumption of a well-known maximum delivery delay, 𝐷. Of course, NimbleChain may behave
incorrectly if the 𝐷 assumption is not met by the underlying network. More precisely, a
period of arbitrary propagation delays (beyond 𝐷) can violate our assumption that the age
and 𝑅𝑆𝑆 that two correct processes assign to some transaction do not diverge by more than
2 and 1 (respectively). An arbitrary divergence across the ages each process sees may lead to
pathological situations where two double-spending transactions are able to successfully age
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at distinct processes. Further, an arbitrary divergence in 𝑅𝑆𝑆 may compromise the ability
of NimbleChain to heal upon a fragmentation attack.
We remark that a maximum network propagation time is a standard assumption in

permissionless blockchains. For instance, every permissionless blockchain mentioned in
§8 relies on this assumption. Further, different works have studied vulnerabilities that
are possible if the 𝐷 assumption is violated. For instance, an unexpectedly high block
propagation delay may slow down the time the system converges upon forks, which provides
an advantage to a resourceful attacker to temporarily benefit from lower mining power
utilization from the correct processes [20]. An eclipse attack [48] can isolate a subset of
correct processes from the remaining correct system – which can be translated to arbitrarily
increasing 𝐷 from the outside to the eclipsed partition –, allowing a resourceful attacker to
control the evolution of the blockchain within the partition.
Still, we acknowledge that NimbleChain might be more sensitive than BBP to smaller

sporadic violations of 𝐷, and/or smaller periods where 𝐷 is violated, during which Nim-
bleChain’s properties are violated but BBP’s hold. This is a natural consequence of a protocol
that reaches a decision over a shorter time window. This consequence is shared with every
proposal in §8 that provides lower commit latencies than BBP.

Performance with higher delivery delays. In absolute terms, NimbleChain depends
on 𝐷 being low enough to ensure a low fast path latency. Hence, one may rush to the
conclusion that the speedup that NimbleChain introduces relatively to the baseline BBP-
based permissionless blockchain depends on 𝐷. However, that is not correct. Let us suppose
that NimbleChain was used in a low-quality network whose 𝐷 was much higher than the one
that previous studies find in real permissionless blockchains [34, 35]. In that case, the PoW
difficulty (and, hence, the block generation time, 𝐵) would need to be adjusted accordingly, in
order to keep the rate 𝐷/𝐵 low enough to ensure the (probabilistic) correctness of BBP. This
readjustment of 𝐷 and 𝐵 would not only increase the fast path latency of NimbleChain, but
also the commit latency of BBP. Therefore, the speedup of NimbleChain would remain the
same. This conclusion is in line with Table 3, which shows that the speedup of NimbleChain
depends on 𝑓 and 𝐶, not on 𝐷.

8 RELATED WORK

In recent years, many proposals have arisen that improve the performance of permissionless
blockchains based on Nakamoto consensus. In the vast majority of such proposals, meaningful
consistency guarantees are only provided once a block is followed by enough (i.e., 𝐶) blocks in
the ledger, similarly to Nakamoto’s original proposal. Therefore, such proposals do not escape
the well-studied lower bound of commit latency in Nakamoto consensus [20]. Instead, they
provide improvements to throughput and/or energy efficiency, but not on commit latency.
In contrast, NimbleChain offers a hybrid consistency model in which weaker consistency
guarantees are provided by a new promise event, enforced by a different protocol that
coexists with Nakamoto consensus. Consequently, promise latency is not dictated by the
lower bounds of Nakamoto consensus’ commit latency.

In this section, we start by surveying related work that improves permissionless blockchains
based on Nakamoto consensus. Later, we describe work on more disruptive approaches that,
while falling outside the domain of Nakamoto-based permissionless blockchains, are related
to our work.
Improvements over longest chain rule. GHOST [66], partially implemented in

Ethereum [70], improves Nakamoto’s original longest chain rule by allowing all blocks
generated by honest participants to contribute to the commit of the main chain. This enables
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convergence even with higher block generation rates. A different approach, followed by
inclusive blockchain protocols [40] and PHANTOM [65], organizes blocks as directed-acyclic
graphs (DAG) of blocks instead of a totally-ordered list in order to optimize performance.
More recently, Conflux [42] combines the main principles behind GHOST and DAG-based
solutions in an adaptive fashion to provide them with better liveness guarantees. Despite
the significant throughput gains (e.g., Conflux is able to improve GHOST’s throughput by
32x), these approaches still rely on consensus as the only path to commit. Consequently,
they only bring modest commit latency savings (e.g., 25% latency gains in Conflux with
respect to GHOST). NimbleChain can be plugged to any of these systems and enhance them
with substantially lower commit latencies, while retaining their throughputs.

Hierarchical and Parallel Chains. Alternative blockchain organizations include hierar-
chical and parallel chains. In Bitcoin-NG [19], key blocks are generated at a similar rate as
Bitcoin. Still, in-between two key blocks, the miner of the previous key block can generate
many microblocks that contain transactions. FruitChain [56] adopts a similar hierarchical
approach. OHIE uses parallel instances of BBP and then deterministically sorts blocks to
reach a total order [71]. In all these proposals, the total order of the main chain is determined
by only a fraction of blocks (key blocks). Hence, the remaining blocks (microblocks), which
carry the actual transactions, can be safely generated at much higher rates than BBP
allows, thus increasing throughput. Unlike NimbleChain, these proposals focus on improving
throughput, not commit latency. For example, Bitcoin-NG does improve the time it takes
the system to agree on Bitcoin-NG’s microblocks but does not improve commit latency [19],
while OHIE’s average commit latency is around 10 minutes [71]. One exception is Prism
[6], which supports low-latency and high-throughput honest transactions by resorting to
parallel voting chains, which determine the total order of blocks in the main chain. Still, their
simulation-based evaluation results are around 2x higher than the causal commit latency of
NimbleChain’s most robust configuration (40 to 58 sec with 𝛽 = 0.3 [6]). Since all the above
proposals are optimizations over BBP’s foundations, NimbleChain can supplement any of
them with the low-latency of our promise fast path.

A notable alternative is to organize transactions as a directed acyclic graph (DAG), which
has been proposed in IOTA’s Tangle system [62] to achieve improved performance, including
lower latency. However, the safety of this solution depends on an honest central point of
control, which is at odds with the decentralized and permissionless nature of blockchains.

Sharding. Systems such as Elastico [46], OmniLedger [37], Rapid-Chain [72], Monoxide
[68], Ethereum 2.0 [17] or Tao et al.’s proposal [67] rely on multiple parallel blockchains
cooperating via sharding, where a small committee maintains each shard. This approach
achieves substantial throughput gains (up to thousands of transactions per second), but
at the cost of security, since the smaller shards are vulnerable to powerful attackers. Since
sharded proposals typically assume (multiple) BBP-based blockchain instances, NimbleChain
can be generalized to supplement sharded proposals with a low-latency promise fast path.
Some sharded proposals have also been shown to achieve comparable commit latency savings
as NimbleChain (e.g., [37, 72]). Still, such results are possible in networks with much lower
RTT than the one considered in our paper and only in specific best-case workloads.

Proof-of-X alternatives. Another research avenue has proposed permissionless consensus
algorithms that replace PoW with energy-efficient alternatives, such as Proof-of-Stake [5, 23,
32, 73], Proof-of-Space [2, 15] or Proof-of-Elapsed-Time [10]. Among such proposals, some
are still based on a variant of BBP, despite replacing the PoW leader election component by
a PoX alternative (e.g., [2, 15, 32, 73]). Therefore, NimbleChain’s fast path can be integrated
onto such proposals.
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Blockchains based on Byzantine Fault Tolerance (BFT). A relevant body of work
leverages BFT protocols, executed among small committees of processes, to improve the
performance of permissionless blockchains. Proposals such as ByzCoin [36], Thunderella
[57] and Solida [1] combine BBP with BFT protocols. Other proposals such as Algorand
[23], HoneyBadger [51], and Stellar [45] are more disruptive. These approaches can achieve
comparable commit latencies as NimbleChain’s most robust configuration (e.g., in Algorand
[23]’s best-case setting, 22 sec). However, they significantly change the trust assumptions
of permissionless blockchains, as BFT consensus requires that 2/3 of the validators must
be trusted. Further, most of these proposals are highly disruptive and, as such, cannot
incrementally extend existing mainstream permissionless blockchains.

Layer-2 proposals. Layer-2 proposals employ an additional protocol layer that handles
(and commits) transactions and use the permissionless blockchain as a backend anchor to
ensure consistency in the presence of malicious behaviour. In that sense, NimbleChain fits into
this broad category. Among the most relevant proposals, so-called off-chain solutions such as
the Lightning Network [59] and FastPay [27] rely on a separate network of payment channels
and allow two or more parties to exchange currency without committing in the blockchain.
However, these proposals have important shortcomings. They work at the expense of
temporarily locking payment guarantees (often called collaterals) in the blockchain if a party
misbehaves. While proposals based on payment networks are not tailored to unidirectional
payment flows (as typical in retail payments from customers to merchants [49]), alternatives
based on payment hubs [14, 28] either impose trusted entities or increased locked funds.
More recently, Snappy [49] proposes a novel on-chain smart-contract-based alternative

that mitigates the above-mentioned shortcomings and achieves payment commit latency
in the order of a few seconds. Still, Snappy has important scalability limitations in the
number of payment recipient processes (up to 200 statekeeping merchants [49]). Further,
since Snappy payments require smart contract invocations, they cost 8x more than simple
transactions (in Snappy’s Ethereum-based implementation [49]). In contrast, NimbleChain
neither requires collaterals, nor restricts scalability, nor increases transaction cost.

Weakly-consistent blockchains. Like NimbleChain, some proposals attempt to obtain
partial orders instead of total orders for cryptocurrency transactions. In the permissionless
world, notable proposals include SPECTRE [64], TrustChain [54], ABC [63], Avalanche [60]
and Pastro [38]. In the context of permissioned blockchains, Astro [11] exploits Byzantine
reliable broadcast [47] to build a payment system. All these proposals exploit the fact that
cryptocurrecy transfer transactions do not need to be totally-ordered, hence can be managed
by weaker primitives than consensus. Like NimbleChain’s promise fast path, the above
proposals can serve the weak consistency needs of some applications such as cryptocurrencies.
Still, these proposals cannot directly support general-purpose blockchains, whose application
ecosystem comprises applications with weaker consistency demands (such as cryptocurrencies)
and strong sequential consistency (such as most smart contracts). In contrast, NimbleChain’s
hybrid consistency model is tailored to such mixed ecosystems.
Permissioned blockchains. Permissioned blockchains (e.g., [4, 12, 53]) have emerged

as a considerably more efficient alternative to the permissionless counterpart. In contrast
to the latter, permissioned protocols do not support public systems in which anyone can
participate without a specific identify. Hence, permissioned blockchain protocols target a
different trust model and thus are out of the scope of our paper.

Hybrid-consistency replication. The dichotomy between weak and strong consistency
is well studied in the context of traditional geo-replicated systems [9]. It is well established
that one needs to forfeit strong consistency to obtain the high availability, low latency,
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partition tolerance and high scalability that geo-replicated systems demand [9]. It is also
known that many geo-distributed applications do not require strong consistency for every
operation [44] and that many such applications are dominated by operations that are correct
even if executed over a weakly-consistent view. This observation has motivated the advent
of geo-replicated systems supporting hybrid (or mixed) consistency models [43, 50]. To the
best of our knowledge, NimbleChain is the first to introduce hybrid consistency models to
permissionless environments.

9 CONCLUSIONS AND FUTURE WORK

This paper proposes NimbleChain, which extends standard permissionless blockchains
with a fast path that delivers partially ordered promises of commitment. This fast path
supports cryptocurrency transactions and only takes a small fraction of the original commit
latency, while providing consistency guarantees that are strong enough to ensure correct
cryptocurrencies. Since today’s general-purpose blockchains also support smart contract
transactions, which typically have (strong) sequential consistency needs, NimbleChain
implements a hybrid consistency model that also supports strongly-consistent applications.
To the best of our knowledge, NimbleChain is the first system to bring together fast partially
ordered transactions with totally ordered, consensus-based transactions in a permissionless
setting.
Our evaluation conducted in a realistic geo-distributed environment with 500 processes

shows that the average latency to promise a transaction is an order of magnitude faster
than consensus-based commit. Furthermore, our empirical evaluation of fragmentation
attacks show that, even considering very favourable conditions for the attacker, an attacker
cannot achieve any tangible benefits in exploring this kind of attack. A formal analysis of
fragmentation attacks is out of the scope of this paper, and left for future work.
Overall, we believe that our approach of bringing fast transactions to permissionless

blockchains as an extension to existing blockhains, rather than proposing a new system
from scratch, is a step in the direction of bringing these results closer to adoption by de
facto blockchain systems such as Ethereum or Bitcoin, thus benefiting both the academic
and industry communities. Our work unveils new research avenues. Although this paper
focuses on cryptocurrencies as the obvious application to benefit from the promise fast
path of NimbleChain, our proposal can also provide important benefits to smart contracts
which have (a subset of) transactions with weaker consistency needs. As an example, smart
contracts that employ the ERC20 Token Standard [69] to transfer some asset may have
weaker consistency needs. However, providing a hybrid consistency model to smart contract
programs requires a careful integration of this model into smart contract execution runtimes,
as well as providing programmers with the adequate abstractions to help them build smart
contract methods that can safely run with weaker guarantees.
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[2] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid Reyzin.

2017. Beyond Hellman’s Time-Memory Trade-Offs with Applications to Proofs of Space. , 357-379 pages.
https://doi.org/10.1007/978-3-319-70697-9 13

[3] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal

Memory: Definitions, Implementation, and Programming. Distrib. Comput. 9, 1 (mar 1995), 37–49.
https://doi.org/10.1007/BF01784241

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De
Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralid-
haran, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti,

Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger
fabric: a distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018, Rui Oliveira, Pascal Felber,

and Y. Charlie Hu (Eds.). ACM, 30:1–30:15. https://doi.org/10.1145/3190508.3190538

[5] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich, Ronen Tamari, and David
Yakira. 2018. Helix: A Scalable and Fair Consensus Algorithm Resistant to Ordering Manipulation.

Cryptology ePrint Archive, Paper 2018/863. https://eprint.iacr.org/2018/863 https://eprint.iacr.org/
2018/863.

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. 2019. Prism: Decon-

structing the Blockchain to Approach Physical Limits. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 585–602. https://doi.org/10.1145/3319535.3363213

[7] Tobias Bamert, Christian Decker, Lennart Elsen, Roger Wattenhofer, and Samuel Welten. 2013. Have
a snack, pay with Bitcoins. In IEEE P2P 2013 Proceedings. 1–5. https://doi.org/10.1109/P2P.2013.

6688717

[8] Stefano Bistarelli, Ivan Mercanti, and Francesco Santini. 2018. An Analysis of Non-standard Bitcoin
Transactions. (2018), 93–96. https://doi.org/10.1109/CVCBT.2018.00016

[9] Eric A. Brewer. 2000. Towards Robust Distributed Systems (Abstract). In Proceedings of the Nineteenth

Annual ACM Symposium on Principles of Distributed Computing (Portland, Oregon, USA) (PODC ’00).
Association for Computing Machinery, New York, NY, USA, 7. https://doi.org/10.1145/343477.343502

[10] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. 2017. On security analysis

of proof-of-elapsed-time (poet). In International Symposium on Stabilization, Safety, and Security of
Distributed Systems. Springer, 282–297.

[11] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej Pavlovic,
Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios Xygkis. 2020.
Online Payments by Merely Broadcasting Messages. In 2020 50th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN). IEEE, 26–38.
[12] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and Beng Chin Ooi.

2019. Towards Scaling Blockchain Systems via Sharding. In Proceedings of the 2019 International

Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for
Computing Machinery, New York, NY, USA, 123–140. https://doi.org/10.1145/3299869.3319889

[13] Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and Aviv Zohar. 2020. SOK:

Cryptocurrency Networking Context, State-of-the-Art, Challenges. In Proceedings of the 15th In-
ternational Conference on Availability, Reliability and Security (Virtual Event, Ireland) (ARES

’20). Association for Computing Machinery, New York, NY, USA, Article 5, 13 pages. https:

//doi.org/10.1145/3407023.3407043
[14] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2019. Perun: Virtual Payment

Hubs over Cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. IEEE, 106–123. https://doi.org/10.1109/SP.2019.00020

[15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. 2015. Proofs of

space. In Annual Cryptology Conference. Springer, 585–605.

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://doi.org/10.4230/LIPIcs.OPODIS.2017.25
https://doi.org/10.4230/LIPIcs.OPODIS.2017.25
https://doi.org/10.1007/978-3-319-70697-9_13
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/3190508.3190538
https://eprint.iacr.org/2018/863
https://eprint.iacr.org/2018/863
https://eprint.iacr.org/2018/863
https://doi.org/10.1145/3319535.3363213
https://doi.org/10.1109/P2P.2013.6688717
https://doi.org/10.1109/P2P.2013.6688717
https://doi.org/10.1109/CVCBT.2018.00016
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3407023.3407043
https://doi.org/10.1145/3407023.3407043
https://doi.org/10.1109/SP.2019.00020


30 Paulo Silva, Miguel Matos, and João Barreto

[16] ETHDEV and the Ethereum community. 2017. Geth. https://github.com/ethereum/go-ethereum/wiki/
geth.

[17] ETHDEV and the Ethereum community. 2019. Ethereum 2.0: Sharding roadmap. https://github.com/

ethereum/wiki/wiki/Sharding-roadmap.

[18] Etherscan. 2021. Etherscan - Ethereum Blockchain Explorer. https://etherscan.io/.
[19] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016. Bitcoin-NG: A Scalable

Blockchain Protocol.. In NSDI. 45–59.

[20] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone protocol: Analysis and
applications. In Annual International Conference on the Theory and Applications of Cryptographic

Techniques. Springer, 281–310.
[21] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The Bitcoin Backbone Protocol with Chains

of Variable Difficulty. In Advances in Cryptology – CRYPTO 2017, Jonathan Katz and Hovav Shacham
(Eds.). Springer International Publishing, Cham, 291–323.

[22] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün Sirer. 2018. Decen-

tralization in Bitcoin and Ethereum Networks. arXiv preprint arXiv:1801.03998 (2018).

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating

Systems Principles. ACM, 51–68.

[24] Paulo Gouveia, João Neves, Carlos Segarra, Luca Liechti, Shady Issa, Valerio Schiavoni, and Miguel Matos.
2020. Kollaps: Decentralized and Dynamic Topology Emulation. In Proceedings of the Fifteenth European

Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing
Machinery, New York, NY, USA, Article 23, 16 pages. https://doi.org/10.1145/3342195.3387540

[25] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-Adrian Seredinschi.
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[49] Vasilios Mavroudis, Karl Wüst, Aritra Dhar, Kari Kostiainen, and Srdjan Capkun. 2020. Snappy:

Fast On-chain Payments with Practical Collaterals. In 27th Annual Network and Distributed System

Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society. https://www.ndss-symposium.org/ndss-paper/snappy-fast-on-chain-payments-with-practical-
collaterals/

[50] Matthew Milano and Andrew C Myers. 2018. MixT: a language for mixing consistency in geodistributed
transactions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation. ACM, 226–241.

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://eprint.iacr.org/2019/676
https://doi.org/10.4230/LIPIcs.DISC.2021.28
https://doi.org/10.4230/LIPIcs.DISC.2021.28
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/978-3-662-47854-7_33
https://doi.org/10.1007/978-3-662-47854-7_33
https://arxiv.org/abs/1805.03870
https://www.usenix.org/conference/atc20/presentation/li-chenxing
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/3341301.3359636
https://doi.org/10.1145/3341301.3359636
https://doi.org/10.1145/2976749.2978389
http://eprint.iacr.org/2018/236
https://www.ndss-symposium.org/ndss-paper/snappy-fast-on-chain-payments-with-practical-collaterals/
https://www.ndss-symposium.org/ndss-paper/snappy-fast-on-chain-payments-with-practical-collaterals/


32 Paulo Silva, Miguel Matos, and João Barreto

[51] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The honey badger of BFT
protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 31–42.

[52] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
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