
SCONEKV: A Scalable, Strongly Consistent
Key-Value Store

Jo~ao Gonçalves , Miguel Matos,Member, IEEE, and Rodrigo Rodrigues

Abstract—For decades, relational databases provided a strong foundation for constructing applications due to their ACID properties.

However, distributed applications reached a scale, both in terms of data volume and number of concurrent clients, that traditional

databases cannot accommodate. NoSQL databases addressed this problem by trading consistency for scalability, namely through

horizontal scalability schemes supported by optimistic replication protocols, which only guarantee eventual consistency. In this paper,

we explore a novel design between the two extremes, which is able to scale to large deployments while still offering strong consistency

guarantees in the form of serializable transactions. Our key insight is to leverage recent advances in membership services that provide

strongly consistent views at scale. Those assurances from the membership layer simplify building efficient and consistent storage

protocols. Our evaluation of the resulting system, SCONEKV, in a realistic scenario shows that it scales and performs better than

CockroachDB while being competitive with Cassandra.

Index Terms—Consistency, distributed systems, scalability, storage

Ç

1 INTRODUCTION

DISTRIBUTED systems began at a much smaller scale than
today. Initially, these systems were comprised of a few

client nodes connected to a centralized database for storage.
Relational databases provided a dependable foundation,
offering transactional support and strong consistency for
client operations. Today, this paradigm has changed and
users demand highly scalable systems that are always avail-
able. Traditional relational databases were able to scale ver-
tically, but now systems require databases that scale
horizontally, with low latency, worldwide.

Early approaches to distributed scalable storage lever-
aged peer-to-peer distributed hash tables (DHTs) [1], [2],
[3], [4], [5], which provide the location of objects at a large
scale, but only replicate immutable data or provide very
weak consistency guarantees. Modern key-value stores
leverage the same principles as DHTs but offer more robust
guarantees. For instance, Apache Cassandra [6] combines
high availability and reliability with low latency, and allows
for custom quorum sizes to control the consistency proba-
bility. However, its consistency guarantees are much
weaker than those in relational databases. Moreover, and
despite scaling to a large number of nodes, the semantics of
Cassandra are brittle in the presence of churn and faults [7],
which are the norm rather than the exception as the system

grows. At the other end of the consistency spectrum, Cock-
roachDB [8], [9] is a distributed database with ACID proper-
ties, built on top of a transactional and strongly consistent
key-value store. However, CockroachDB cannot scale above
a few tens of nodes (around 20), as we show in Section 6.2,
and the same applies to systems that follow similar
approaches. This limitation stems from the use of consen-
sus, which is an expensive primitive, known to scale poorly
with the system size.

This state of affairs leaves modern application develop-
ers with a conundrum: either one sacrifices consistency for
scalability, resulting in applications that are harder to pro-
gram and maintain, or one chooses strong consistency but is
limited to a small-scale system.

In this paper, we aim to show that programmers do not
necessarily have to choose between consistency and scal-
ability. To this end, we present SCONEKV, a scalable transac-
tional key-value store with strong consistency guarantees
that provides serializable transactions. Our key insight to
address this tension is that it is possible to simplify the pro-
tocols required for strong consistency, and minimize the
amount of synchronization they impose, by layering them
on top of a membership layer that offers strong semantics at
scale, effectively pushing the burden of simultaneously
achieving consistency and scalability to the lower layers of
the system. In particular, we build on recent research that
showed, for the first time, how to build a scalable consistent
membership service (e.g., Rapid [10] or PRIME [11]) that
guarantees that all correct nodes share a common view of
the system. Then, with these strong guarantees in place,
other fundamental aspects of a distributed key-value store
such as data partitioning, replication, and transactional
processing can be substantially simplified, resulting in a
leaner and scalable design.

Nonetheless, several challenges need to be addressed by
the design of SCONEKV, such as designing mechanisms for
horizontal partitioning, consistent replication and a

� The authors are with the Instituto Superior T�ecnico (ULisboa), 1049-001
Lisboa, Portugal, and also with the INESC-ID, 1000-029 Lisboa, Portugal.
E-mail: {joao.tiago.goncalves, miguel.marques.matos, rodrigo.miragaia.
rodrigues}@tecnico.ulisboa.pt.

Manuscript received 6 Sept. 2021; revised 18 May 2022; accepted 26 May 2022.
Date of publication 2 June 2022; date of current version 23 Aug. 2022.
This work was supported in part by national funds through FCT, Fundaç~ao
para a Ciência e a Tecnologia, under Grants UIDB/50021/2020, PTDC/CCI-
INF/6762/2020, and Lisboa-01-0145-FEDER-031456 (Angainor).
(Corresponding author: Jo~ao Gonçalves.)
Recommended for acceptance by O. Ozkasap.
Digital Object Identifier no. 10.1109/TPDS.2022.3179903

4164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0131-1324
https://orcid.org/0000-0002-0131-1324
https://orcid.org/0000-0002-0131-1324
https://orcid.org/0000-0002-0131-1324
https://orcid.org/0000-0002-0131-1324
mailto:joao.tiago.goncalves@tecnico.ulisboa.pt
mailto:miguel.marques.matos@tecnico.ulisboa.pt
mailto:rodrigo.miragaia.rodrigues@tecnico.ulisboa.pt
mailto:rodrigo.miragaia.rodrigues@tecnico.ulisboa.pt

coordination protocol, while also handling membership
changes. We show, through our design, how starting from
strong guarantees at the foundational levels allows the
upper levels to be scalable, provide strong semantics, while
also facilitating the reasoning about the system correctness.

In our experimental evaluation, we compare SCONEKV
with Cassandra and CockroachDB, two state-of-the-art pro-
duction systems, using the YCSB [12] and TPC-C [13] bench-
marks. The experimental results show that SCONEKV
outperforms CockroachDB in terms of throughput in write
intensive workloads by up to 15� while being competitive
with Cassandra in all workloads. We also show that SCO-

NEKV scales well in both write and read intensive work-
loads, whereas CockroachDB does not scale even with a
small fraction of writes. Our contributions include:

� a layering of storage protocols on top of a novel class
of membership service protocols, showing that these
new models for group membership can significantly
improve the characteristics of modern key-value
stores;

� the design of SCONEKV, a scalable transactional key-
value store that provides serializable transactions;

� a prototype implementation of SCONEKV, and a com-
parative evaluation with state-of-the-art production
systems.

The rest of the paper is organized as follows. Section 2
presents some background on membership protocols. Sec-
tion 3 discusses related work. Section 4 describes the design
of SCONEKV. Section 5 details the implementation of the pro-
totype and explains some optimizations. Section 6 presents
the experimental evaluation. Section 7 concludes the paper
and discusses future work directions.

2 BACKGROUND

In this section, we provide some background on member-
ship protocols given their importance in the design of SCO-

NEKV. Group membership protocols fall into one of two
categories. Logically centralized services [14], [15] present a
simple solution, using a small group of processes to main-
tain a system view, while the majority of members query it
periodically. Besides the simple design, this approach also
offers strong consistency semantics, assuming that there is
an agreement between this small group of nodes. However,
relying on that small group limits the scalability and avail-
ability of the membership service.

Alternatively, fully decentralized solutions [16], [17] have
been proposed as a means to tackle the aforementioned
downsides of centralized services. These approaches use
gossip-based techniques to disseminate membership
updates, thus achieving amuch higher scale while also being
more resilient. However, this comes at the cost of sacrificing
the consistency of views across large-scale clusters.

Recently, a novel class of membership protocols has
emerged. PRIME [11] and Rapid [10] are fully decentralized
but manage to offer strongly consistent views at scale.
Essentially, both protocols detect failures by having each
node monitor K other nodes, and require multiple reports
to remove a node from the group. They differ in the way the
updates are processed and disseminated. Rapid [10]
employs multi-process cut detection to combine multiple
node failures in a single membership update, using

leaderless Fast-Paxos [18] to reach a decision in the normal
case, or classic Paxos [19], [20] if it is unable to reach a fast
agreement. PRIME [11] processes failures individually but
uses a probabilistic total order dissemination algorithm [21]
to convey membership updates. This algorithm ensures that
nodes eventually agree on the set of updates received with
high probability and process these updates in a total order,
thus guaranteeing that views progress consistently. In sum,
both approaches offer a scalable membership abstraction
that delivers view updates in a consistent way.

3 RELATED WORK

Early approaches to distributed storage leveraged the rout-
ing mechanisms of distributed hash tables [1], [2], [3] to
scale. For example, OceanStore [5] is a globally persistent
storage service that provides serialized updates on repli-
cated objects on an untrusted infrastructure. It uses Tapes-
try [4] to construct a routing overlay and allows for
concurrent updates without wide-area locking by employ-
ing predicate-based update conflict resolution. OceanStore
resolves conflicts by determining an order for the updates,
evaluating the predicates and applying them atomically.

Dynamo [22] and Cassandra [6] are systems that opted to
weaken their consistency guarantees in order to scale and
be highly available, employing optimistic replication proto-
cols and delegating conflict resolution to the client. Cassan-
dra relies on a membership solution with weak consistency
guarantees, further affecting the consistency the system is
able to provide during view changes. As different nodes
can have conflicting views, nodes can be assigned overlap-
ping token ranges upon joining [7], resulting in inconsistent
client operations. This also impacts system bootstrap -
deploying large clusters takes a long time as nodes need to
be slowly added one at a time [7] to allow the token range
selections to propagate throughout the system.

Causally consistent systems, such as Eiger [23],
COPS [24] or ChainReaction [25], strike a balance between
eventual and strong consistency by guaranteeing the order
between causally dependent updates. Moreover, these sys-
tems remain available and maintain their consistency guar-
antees even in the event of a network partition if the client
remains connected to the same server nodes. However, they
provide weak guarantees regarding write conflict resolu-
tion, specially when involving multiple objects, which
might result in a divergence of replica’s state. These solu-
tions can scale but are limited to applications for which this
level of guarantees is enough.

On the strongest end of the consistency spectrum we
have systems such as Google Spanner [26], which is a highly
scalable SQL database with ACID guarantees. It shards data
across Paxos [19], [20] state machines, and relies on GPS
and atomic clocks to order transactions. It provides strong
consistency at scale but requires specialized hardware and
an infrastructure not generally accessible to smaller players.
CockroachDB [8], [9] is an industry solution that draws
inspiration from Spanner’s design. It is a distributed SQL
database with ACID properties, built on top of a strongly
consistent key-value store. It uses Raft [27] for state machine
replication and replaces Spanner’s atomic clocks and GPS
with a software solution relying on Hybrid Logical Clocks
(HLC) [28]. HLC combine physical time with logical clocks,
offering wait-free transaction ordering and consistent

GONÇALVES ETAL.: SCONEKV: A SCALABLE, STRONGLYCONSISTENT KEY-VALUE STORE 4165

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

snapshots for a specified timestamp. HLC allows for some
clock skew, but CockroachDB still requires replica clocks
to be within a configurable offset (500 ms by default) to
work correctly, shutting down nodes that get out of sync
with 80% of the cluster. Besides this reliance on clock syn-
chronization, which is harder to achieve in a geo-replicated
deployment, CockroachDB is also limited in its scalability,
due to the inherent cost of consensus, as we will show in
our evaluation. Physalia [29] and EdgeKV [30] are exam-
ples of a strongly consistent key-value stores that achieve
scalability through sharding, however neither supports
cross-shard transactions. SCORe [31] leverages vector
clocks to guarantee serializability and abort-free read-only
transactions. This main contribution, i.e., the use of vector
clocks, is orthogonal to SCONEKV’s layered design, in the
sense that, it could be integrated with our proposed trans-
action management and replication layers and guarantee
the same semantics — abort-free read-only transactions.
This problem was also targeted by recent blockchain-based
solutions but with a different fault-model (i.e., byzantine)
and different application scenarios and performance char-
acteristics [32], [33], [34].

4 SCONEKV

In this section, we present the design of SCONEKV, a distrib-
uted key-value store that provides strictly serializable trans-
actions (without opacity). We assume a shared-nothing
architecture and a crash-failure model. We also assume the
partial synchrony model [35]. In this model, there may be
an unstable period, where messages exchanged between
correct processes are arbitrarily delayed. However, there is
a known bound D on the worst-case network latency and an
unknown Global Stabilization Time (GST), such that after
GST, all messages between correct processes arrive within
D. Note that safety is always preserved even in the presence
of asynchrony and the partial synchrony assumptions are
only necessary to ensure liveness.

4.1 Overview

We start by presenting an overview of SCONEKV and discus-
sing its layered design. The key insight is that using a scalable
and consistent membership base layer (Section 2) simplifies
the design of the layers above, particularly when trying to
enforce strong semantics. This lower layer interacts with the
layers above by asynchronously delivering a new view after
each update, consisting of a view identifier and a list of
nodes. Finally, we note that the membership layer is not in
the critical path of the storage protocols, as described next.

The next problem that needs to be addressed is ensuring
consistent replication. For the sake of better scalability and
the flexible reconfiguration, based on balancing data or
processing load, we opted to employ horizontal partition-
ing. SCONEKV’s namespace is an identifier ring divided into
sections we call buckets. Nodes and data items are assigned
to buckets, rather than points in the space, using consistent
hashing [36]. Each data item is assigned to a single bucket
and is managed and replicated by the set of nodes that
belong to that bucket. To ensure consistency within a
bucket, we employ Viewstamped Replication (VSR) [37],
[38], turning each bucket in an independent state machine
following a primary-backup scheme.

In VSR, each update to the state of a bucket represents an
entry in a log, and log entries flow from the primary to the
replicas. Briefly, the algorithm works as follows. To repli-
cate a log entry, the primary issues a PREPARE. Once a replica
receives the message, it processes the entry iff it has proc-
essed all previous entries and replies to the primary with
PREPAREOK. When the primary receives f PREPAREOK’s, the
entry is consistently propagated and can be safely commit-
ted to the log. This ensures safety inside each bucket if no
more than f nodes are faulty at any given moment, pro-
vided that each bucket has at least 2f þ 1 nodes. For full
details on VSR we refer the reader to [37], [38]

Through the use of a consistent membership layer, we
guarantee that all nodes in a bucket agree on its configura-
tion for a given view. Thus, to determine the primary, each
member runs a deterministic function (for instance, selecting
the node with the lowest identifier). This, combined with the
view change algorithm described in the revisited paper [38],
allows each bucket to be abstracted as a single entity that
guarantees linearizable updates and is tolerant to faults.

Finally, SCONEKV needs to coordinate different buckets in
order to provide distributed transactions. For that, we
employ a two-phase commit protocol (2PC) with locking
semantics. Each transaction is decided on by the primaries
of the buckets involved and each phase of the protocol is
consistently replicated inside the respective bucket, as an
entry in the log, before interacting with the other buckets.
This, combined with a retry mechanism, ensures that we
tackle 2PC’s known weak liveness properties [39]. Further-
more, the locking semantics ensure that we guarantee serial-
izable transactions. Since the consistent membership layer
ensures that all nodes agree on the configuration of the sys-
tem as a whole for a given view, and thus agree on the pri-
maries of each bucket for that same view, it does not require
a leader election to determine the coordinator for a given
transaction.

The cluster topology, as well as the layered architecture
of each SCONEKV node, is depicted in Fig. 1. To summarize,
the design of SCONEKV leverages the strong properties of
the foundational membership layer to reduce the complex-
ity and synchronization costs of the replication and transac-
tion management protocols employed above. In contrast
to traditional databases, that aggregate all responsibilities
(including membership management, replication, and
transaction management) in a single protocol, leading to
complex solutions that are difficult to reason about, deseg-
regating these responsibilities in different layers allows for
the delegation of certain guarantees, which in turn simpli-
fies the design and reasoning about the behaviour of the

Fig. 1. SCONEKV cluster topology and layered architecture of each node.
P represents a primary node, R represents a replica. The red dotted
lines divide the cluster into buckets.

4166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

final protocol. Notably, SCONEKV accomplishes this without
compromising on the properties offered by the system as a
whole, namely scalability, safety, and liveness.

4.2 Client Interactions

SCONEKV exposes the following operations to its clients:
read(key) returns the current value for that key, write
(key, value) inserts or updates the key with the given
value, delete(key) removes the key-value pair from the
store, commit() attempts to apply all the pending modifi-
cations (write and delete operations) to the system, and
abort() discards all pending operations. Values are arrays
of bytes, opaque to the system, and a write to a given key
overwrites the previous value. Each key-value pair is associ-
ated with a version, its own lock and lock queue. Versions
are returned by all operations. They are initially set to zero
and incremented by one with each write operation.

Each operation performed by a client corresponds to a
request to a SCONEKV node belonging to the bucket that
holds the respective key. All operations are performed in
the context of a transaction. The client library locally main-
tains the read-write set for each transaction, containing the
versions for each accessed key. Each transaction has an
identifier (txID), generated by the client library. The txID is
the concatenation of an ascending local counter with the cli-
ent identifier, thus ensuring uniqueness. To externalize the
pending operations, which are stored in the local read-write
set, the client must issue a commit. This operation will be
successful or unsuccessful, depending on whether the ver-
sions observed by the transaction (those in the read-write
set) match the current most up-to-date versions for the
same keys at the time the commit is issued.

SCONEKV offers strictly serializable transactions but with-
out opacity. This means that, at any point in time, the state
of the system as a whole is equivalent to some serial order
of the transactions committed up to that point. Additionally,
this ordering is consistent with real-time, meaning that if TA

is committed before TB begins, then TA precedes TB in the
serial order. Not providing opacity means that aborted

transactions do not necessarily observe a consistent snap-
shot of the database.

Finally, it is worth emphasizing that clients are not part
of the system membership. Upon starting, a client contacts
any node in the system to obtain the current view. This
view is used throughout the client’s lifetime and is only
updated in case of a timeout contacting a node (resulting in
the client requesting a new view to another node) or if the
client sends a request to an incorrect node (wrong bucket
and/or incorrect primary), in which case the contacted
node replies with an updated view of the system.

4.3 Transaction Processing

We now present how SCONEKV processes transactions and
guarantees strict serializability. For simplicity, we present
the algorithm in a fault-free scenario and further discuss
how SCONEKV handles failures in Section 4.5.

As described before, clients operations do not modify
the system state until the client attempts to commit the
transaction. Commit requests are routed to the primary
which then replicates them inside the bucket. Depending
on the keys accessed, a transaction can span multiple
buckets. In that case, the primaries of the buckets
involved need to coordinate to determine whether the
transaction can commit or not, using a two-phase com-
mit protocol with locking semantics. The coordinator of
a transaction spanning multiple buckets is selected deter-
ministically as the primary of the bucket with the lowest
identifier.

Following 2PC’s semantics, transactions are processed in
two distinct phases entailing a local and a global decision.
Fig. 2 shows an example of the messages exchanged during
a transaction that spans multiple buckets. Suppose that a
transaction accesses keys x, y and z assigned to two differ-
ent buckets. The client initiates a transaction and performs a
series of operations by contacting nodes in B1 (steps �1 and
�2) and B2 (�3). The client attempts to commit the transac-
tion by sending to the primaries of each bucket the read-
write subset of keys assigned to their bucket and a list of all
buckets involved (�4a and �4b). Upon receiving the commit
request, each primary locally decides whether the transac-
tion can commit (following Algorithm 1, which we detail
later), and replicates the request and local decision to the
bucket’s replicas (�5a and �5b). Once replicated, the primary
of B2 communicates the local decision to the transaction
coordinator (�6), ending the first phase of the protocol.
Once the transaction coordinator receives the local decisions
of all buckets involved, it starts the second phase of the pro-
tocol by deciding the outcome of the transaction (commit or
abort) and communicates this decision to all the other pri-
maries (�7) which in turn replicate the global decision
within their respective buckets (�8a and�8b). Finally, the coor-
dinator replies to the client (�9).

According to 2PC, a transaction is committed iff all par-
ticipants accept the transaction locally. It is well-known that
two-phase commit has weak liveness properties [39], and
requires a recovery mechanism upon failures. In SCONEKV,
due to our layered design, we are able to reduce this com-
plexity. In particular, upon a failure, all nodes will receive a
new view without the failed node and restart the protocol if
needed (for instance, due to a failure of the coordinator).
This is also the reason why the coordinator does not need to

Fig. 2. Messages exchanged in a transaction involving 2 buckets. Pri-
mary 1 is the transaction coordinator, both primaries accept the transac-
tion locally and commit it. For simplicity, the replicas for each bucket are
represented as a single entity each. The replication and the client inter-
actions (with the exception of the commit request) were omitted from the
algorithms due to space constraints.

GONÇALVES ETAL.: SCONEKV: A SCALABLE, STRONGLYCONSISTENT KEY-VALUE STORE 4167

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

wait for an acknowledgment from all the other primaries
before replying to the client (end of the second phase in
Fig. 2). Since the primaries replicate the request and local
decision before sending the local decision to the coordinator
(�5a , �5b), upon the failure of a primary, the replicas will run
the view change protocol described in [38] and guarantee
that the new primary has the required log entries to apply
the pending transaction. We detail this in Section 4.5.

Algorithm 1. Local Decision - First Phase

1: upon event hINITi do
2: txs ?

"mapwith all transactions, indexedby the transaction ID, con-
taining rwSet (only with keys assigned to that bucket), buckets
involved, current transaction state and local decision responses

3: end event
4: " Triggered by the client issuing the commit request
5: upon event hprimary, COMMITREQUEST j txID, rwSet, bucketsi do
6: txs½txID�:rwSet rwSet
7: txs½txID�:buckets buckets
8: txs½txID�:state received
9: txs½txID�:responses 0
10: trigger hMAKELOCALDECISION j txIDi
11: end event
12:
13: upon event hprimary, MAKELOCALDECISION j txIDi do
14: if txs½txID�:state ¼ received then
15: if CHECKVALIDTRANSACTION(txID) then

" validate the versions used in the tx
16: owners GETLOCKOWNERS(txID)
17: if owners ¼ ? then
18: ACQUIRELOCKS(txID)
19: txs½txID�:state prepare-commit
20: trigger hSMR.PREPARE j txs[txID]i

" PREPARE is triggered in the SMR layer, and once the deci-
sion is replicated it triggers SENDLOCALDECISION

21: else
22: QUEUELOCKS(txID)
23: if txID < MinðownersÞ then

" if txID as a lower identifier than all current lock owners,
it should be executed first to avoid a distributed deadlock

24: for each otherTxID 2 owners do
25: otherCoord GETCOORD(txs[t].buckets)
26: send hREQUESTREVERTLOCALDECISION j otherTxIDi

to otherCoord
27: end for
28: end if
29: end if

30: else
31: txs½txID�:state prepare-abort
32: trigger hSMR.PREPARE j txs[txID]i
33: end if
34: end if
35: end event
36:
37: upon event hprimary, SENDLOCALDECISION j txIDi do
38: txCoord GETCOORD(txs[txID].buckets)
39: if txs½txID�:state ¼ prepare-commit then
40: send hLOCALDECISIONRESPONSE j txID, commiti to txCoord
41: else
42: send hLOCALDECISIONRESPONSE j txID, aborti to txCoord
43: end if
44: end event
45:
46: function CHECKVALIDTRANSACTION (txID)
47: for each ðkey; ; version; Þ 2 txs½txID�:rwSet do
48: currentVersion GETVERSION(key)
49: if currentVersion 6¼ version then
50: returnFalse
51: end if
52: end for
53: return True
54: end function
55:
56: function GETLOCKOWNERS(txID)
57: owners ?

58: for each ðkey; ; ; Þ 2 txs½txID�:rwSet do
59: lockOwner GETLOCKER(key)
60: if lockOwner 6¼ NULL ^ lockOwner =2 owners then
61: owners owners [lockOwner
62: end if
63: end for
64: return owners
65: end function

We now detail the life cycle of a transaction from when it
is submitted by the client until it is committed or aborted.
Fig. 3 outlines the general flow, and Algorithm 1 and Algo-
rithm 2 show the pseudocode for the first and second
phases, respectively. In detail:

1) The client issues commit to each primary involved in
the transaction. Each request includes only the subset of
keys that are assigned to that specific bucket. Once a pri-
mary receives the request, it sets the transaction state as
received and triggers MAKELOCALDECISION(Fig. 3, step �1 , and
Algorithm 1 lines 13–35). Each local decision is processed
independently by the primary of each bucket involved by
verifying the following:

a) Guarantee that each operation inside the transaction
was performed on the most recent version of that key (Algo-
rithm 1 line 15 and lines 46–54), otherwise the transaction is
locally rejected, eventually leading to an abort because it
does not respect serializability (Algorithm 1, lines 31–32).

b) Check if all locks of the keys accessed by the transac-
tion inside that bucket are available. If that is the case, they
are acquired (Algorithm 1 lines 16–18). If any lock acquisi-
tion fails, all lock acquisitions are queued (Algorithm 1 line
22) to reduce contention and, possibly, allow other transac-
tions to commit.

Note that, to simplify the presentation, the pseudocode
assumes that events are not processed concurrently. In

Fig. 3. Sequence of events to commit a transaction. Red arrows indicate
the event was triggered in a remote node.

4168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

practice, to ensure correctness, the lock must be acquired
before checking the version of a key.

Algorithm 2. Global Decision - Second Phase

1: upon event coordinator, hLOCALDECISIONRESPONSE j txID,
responsei do

2: if response ¼ abort ^ txs½txID�:state =2 faborted; to-abortg
then " transaction was rejected locally but not yet
globally

3: for each bucket 2 txs½txID�:buckets do
4: primary GetPrimaryðbucketÞ
5: send hGLOBALDECISION j txID, aborti to primary
6: end for
7: else " transaction was accepted locally
8: txs½txID�:responses txs½txID�:responsesþ 1
9: if txs½txID�:responses ¼ #txs½txID�:buckets then
10: for each bucket 2 txs½txID�:buckets do
11: primary GetPrimaryðbucketÞ
12: send hGLOBALDECISION j txID, commiti to primary
13: end for
14: end if
15: end if
16: end event
17:
18: upon event hprimary, GLOBALDECISION j txID, decisioni do
19: if decision ¼ commit then
20: txs½txID�:state to-commit
21: else if decision ¼ abort then
22: txs½txID�:state to-abort
23: end if
24: trigger hSMR.PREPARE j txs[txID]i
25: end event
26:
27: upon event hprimary, COMMIT j txIDi do
28: for each ðkey; value; version; typeÞ 2 txs½txID�:rwSet do
29: if type ¼WRITE then
30: newVersion versionþ 1
31: Putðkey; value; newVersionÞ
32: else if type ¼ DELETE then
33: DeleteðkeyÞ
34: end if
35: end for
36: txs½txID�:state committed
37: if IsCoordinatorTxðtxIDÞ then
38: send hTXRESULT j txID, commiti to txID.client
39: end if
40: ReleaseLocksðtxIDÞ
41: end event
42:
43: upon event hprimary, ABORT j txIDi do
44: txs½txID�:state aborted
45: if IsCoordinatorTxðtxIDÞ then
46: send hTXRESULT j txID, aborti to txID.client
47: end if
48: ReleaseLocksðtxIDÞ
49: end event
50:
51: function RELEASELOCKS(txID)
52: restartTx ?

53: for each ðkey; ; ; Þ 2 txs½txID�:rwSet do
54: if UnlockKeyðkey; txIDÞ then
55: nextInQueue GetNextInLockQueueðkeyÞ
56: if nextInQueue 6¼ ? ^ nextInQueue =2 restartTx then

57: restartTx restartTx [nextInQueue
58: end if
59: end if
60: end for
61: for each tx 2 restartTx do
62: trigger hMAKELOCALDECISION j txi
63: end for
64: end function
65:
66: function UNLOCKKEY(key, txID)

" If txID holds the lock associated with key, the lock is
released and returns true, otherwise returns false.

67: end function
68:
69: function GETNEXTINLOCKQUEUE(key)

" Returns the lowest txID in the queue for the lock associ-
ated with key, if one exists.

70: end function

2) If the transaction failed to acquire all locks, it will wait
in a queue for the conflicting transaction(s) to conclude and
trigger MAKELOCALDECISION to restart the process. Otherwise,
the transaction state is set to prepare-commit and the local
decision is replicated inside the bucket (�2 ,�3 ,�4a, Algorithm 1
lines 19–20).

3) Once replicated, the local decision is sent to the trans-
action coordinator (�5 and�6 , Algorithm 1 lines 37–44).

4) The coordinator reaches a global decision and informs
all participants (�7 , Algorithm 2 lines 1–16).

5) Upon receiving the global decision, each primary
changes the transaction state to to-commit or to-abort, as appro-
priate, and replicates it (�8 ,�9 ,�10 , Algorithm 2 lines 18–25).

6) Once the global decision is consistently replicated
inside each bucket involved, and according to it, each node
commits or aborts the transaction and sets its final state as
committed or aborted (�11a or�11b , Algorithm 2 lines 27–41 or 43–
49, respectively).

7) The transaction coordinator responds to the client.
8) Finally, each primary releases the locks of the transac-

tion, and triggers MAKELOCALDECISION to process the remain-
ing transactions that have queued locks, if any (Algorithm 2,
lines 51–64).

4.4 Avoiding Distributed Deadlocks

This design, like any lock-based protocol, may lead to a dis-
tributed deadlock, e.g., when transactions, TA and TB concur-
rently acquire locks on keys that belong to two different
buckets, B1 and B2, and the primary of B1 (P1) receives TA

first, whereas the primary of B2 (P2) receives TB first. We
address this problem by giving priority to the transaction
with the lowest identifier. Fig. 4 illustrates the example above
with two conflicting transactions TA and TB. Primary P2 that
locally accepted transaction TB (Fig. 4, �1) upon receiving a
conflicting transaction TA, informs the transaction coordina-
tor (P1) that P2’s decision for TB should be reverted as TA has
a lower identifier and hence higher priority (Fig. 4,�2). This
request is granted (Fig. 4, �3) iff the transaction coordinator
(P1) has not yet issued a global decision for TB.

This logic is triggered during MAKELOCALDECISION (Algo-
rithm 1). If a transaction fails to acquire the locks, the pri-
mary queues the locks and determines if that transaction
should be processed before all other transactions that

GONÇALVES ETAL.: SCONEKV: A SCALABLE, STRONGLYCONSISTENT KEY-VALUE STORE 4169

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

currently own any of those locks (Algorithm 1, lines 14–21).
If that is the case, that primary will request to revert its local
decision for those transactions. For each transaction with a
lower priority, the respective transaction coordinator
accepts the request to revert the local decision iff it has not
issued a global decision for that transaction. Upon that, the
requesting node replicates the reversion of the decision
inside its bucket, then it releases the locks and allows the
other transactions to proceed.

Our objective with this ordering policy is to ensure liven-
ess without compromising safety. Note that in an extreme
scenario this might lead to some starvation. However, this is
unlikely since clients generate txIDs in ascending order, and
thus any transaction that experiences momentary starvation
will eventually have the lowest identifier. Nevertheless, this
ordering policy and/or identifier generation procedure
could be replaced by others that further reduce the potential
for starvation (e.g., assigning ranges of identifiers to clients).

4.5 Fault Tolerance

We now discuss how SCONEKV handles failures and, generi-
cally, any membership changes. Recall that, although all
nodes in the system belong to a single membership group,
each bucket effectively works as an independent state
machinewith linearizable semantics.

As discussed before, the membership layer monitors
nodes and provides a consistent view to all correct pro-
cesses even in the presence of failures. This by itself does
not guarantee that our system exhibits correct behaviour in
the presence of faults. For example, if the primary of a
bucket participating in a transaction fails before externaliz-
ing its local decision, all other primaries would wait indefi-
nitely for its response without reaching a global decision
nor releasing the locks they acquired. To address this, we
once more leverage Viewstamped Replication’s [37], [38]
view-change algorithm with minor adaptations that do not
affect the main protocol logic (the algorithm details were

omitted due to space constraints). First, since buckets work
as independent state machines, view-changes are restricted
to the buckets of their respective nodes, i.e, if a node n is
added or removed from bucket i in a membership update,
this does not affect any bucket j, where j 6¼ i. Second, the
dedicated membership layer allows to remove the failure
detection logic from the state machine replication layer.
Third, as the membership layer provides consistent views
across all members, we do not need a leader election to
determine the primary of the bucket. We simply require a
deterministic function such that any node from inside or
outside the bucket or a client can determine the primary of
a bucket by knowing its participants. This eliminates the
need for leader-election and facilitates communication with
the client. In fact, the client has a copy of the view which
provides one-hop access to all the buckets without the need
for extra synchronization between client and server nodes.

Finally, inside a given bucket, a view change results in
one of three scenarios. First, the simplest scenario is when a
replica failed and was removed from the membership. If it
happens, the primary remains the same and the bucket
remains available, assuming there are at least 2f þ 1 nodes
in the bucket. Second, if a new node joins the bucket, but
the primary remains the same, then this new node becomes
a replica and requests a state exchange to bring it up to
date. Third, the view change results in a change of the pri-
mary for that specific bucket. This can happen either
because the previous primary failed and was removed from
the membership group or because a new node joined the
bucket and the deterministic function that selects the pri-
mary determines that the new node should be the primary.
In either case, we execute the view change algorithm pre-
sented in [38]. This guarantees that the new primary has the
most up-to-date log from all replicas, and thus guarantees
that the bucket remains consistent. During the view change,
a bucket can be temporarily unavailable, as a stable bucket
(meaning it is not undergoing a view change affecting its
primary) is required to ensure serializability.

The safety of 2PC is ensured as follows. The primaries
keep information about each ongoing transaction (Algo-
rithm 1 in lines 6–9). More precisely, the read-write set and
the set of buckets involved in the transaction are replicated
before the local decision is externalized, while the transac-
tion state is replicated upon each modification as described
earlier. After a view change that results in a change of pri-
mary for a specific bucket, and before the bucket becomes
available for new requests, the new primary checks all cur-
rently active transactions involving that bucket (meaning
transactions whose state is not committed nor aborted),
acquire all the necessary locks (when appropriate), and
determine whether its bucket should act as the coordinator
of that transaction or not. If so, it requests local decisions
from all other buckets, after which it performs the second
phase of 2PC as normal. Otherwise, the new primary asks
the coordinator if the system reached a global decision dur-
ing the view change, and acts accordingly.

4.6 Correctness

We sketch a correctness proof for the system, which follows
from the correctness of its individual building blocks.

In particular, as far as safety is concerned, the upper
layer consists of a classical 2PC protocol, which was

Fig. 4. Messages exchanged during two concurrent transactions that
need to acquire locks for the same keys. (1) Primary P2 begins by lock-
ing key b for transaction TB, (2) later receives transaction TA (which also
requires the lock for b and has a lower identifier) and thus asks to revert
the first decision, in order to release the lock. The request is accepted
(3) and TA commits, after which TB aborts. Replication was omitted for
simplicity.

4170 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

proven [39] to ensure that all participants in a transaction
agree on its outcome and this outcome can only be a commit
if all participants agree to commit (i.e., that the reads and
writes of the transaction are compatible with a serialization
of all transactions). The participants of this protocol are the
buckets. The state of the buckets is maintained by View-
stamped Replication which ensures linearizable semantics
and implies that each bucket behaves as a single centralized
node with correct behavior even across changes to the
bucket replicas [37], [38]. However, VSR requires the partici-
pants to receive a consistent set of views, with the property
that all nodes agree on the contents of each view. That safety
property, in turn, is ensured by the design of the member-
ship layer [10], [11]. Note that there is an inevitable delay
between a view change and that change being conveyed to
the upper layers but such discrepancies between real instan-
taneous state and what is perceived by nodes still exist in
tightly coupled systems. Although this could be exacer-
bated in a layered system, such delays never compromise
safety as explained above.

A similar analysis applies to liveness. In particular, the
termination property of 2PC states that all processes eventu-
ally decide if there are no failures [39]. This is enforced by
the lower layer, since VSR is able to mask individual node
failures and ensure that the replicated system as a whole
makes progress, as long as the system moves between views
until a view containing a set of non-faulty nodes with net-
work links that meet synchrony bounds is reached. This
condition is met by the properties of the membership layer
that enables it to replace faulty nodes [10], [11], and by our
partial synchrony assumptions, which are required for any
system that can be used to solve consensus with a single
faulty node [40].

Finally, it is important to clarify that none of the modifi-
cations we introduce in these protocols break any of their
safety and liveness properties. This is true because the only
modification to VSR was to replace its fault detection mech-
anism with the membership layer, and using the latter’s
view identifiers as VSR’s view numbers. This does not affect
the correctness of VSR, as the protocol itself is unchanged.

5 IMPLEMENTATION

SCONEKV is implemented in Java 13 and Kotlin, following an
event-based architecture. Every time an event is triggered, it
is added to an event queue and processed by worker
threads. This allows the implementation to closely follow
the algorithms and rationale presented in Section 4. The
communication is done via TCP using ØMQ which pro-
vides the abstraction of an asynchronous message queue,
and Cap’N Proto is used for message serialization. To pro-
vide durability, in the event of a catastrophic failure,
updates are batched and persisted to disk using RocksDB
with a configurable time period, following an approach sim-
ilar to Cassandra [6]. For the membership layer we rely on
PRIME [11] but other scalable and consistent implementa-
tions such as Rapid [10] could be used. The full implementa-
tion of SCONEKV consists of 5500 lines of code. We now
discuss some implementation optimizations.

Fast Aborts. The algorithm presented in Section 4.3 can
lead to long lock queues on frequently accessed keys, espe-
cially when running workloads with skewed key access dis-
tributions. All transactions on the queue for a key expect a

specific version. If a write on that key occurs, the version is
incremented and therefore all transactions waiting in the
queue for that key can be immediately aborted.

Read-Write Locks. To mitigate potential long lock queues
for popular keys, we use read-write locks, which allow for
greater parallelism in read-intensive workloads.

Request Targets. Clients can select which nodes they wish
to connect to when performing requests. To ensure seriali-
zabilty, commit requests are always sent to the primaries.
However, read, write, and delete requests can be addressed
to either primaries or replicas. Targeting replicas provides a
much better load balance but can increase the percentage of
aborted transactions, depending on the workload, as they
can have slightly outdated versions of the values.

6 EVALUATION

We evaluated SCONEKV and compared it with two other
state-of-the-art industrial systems, Cassandra [6] and Cock-
roachDB [8], [9]. We selected those systems because they
are mature and have a wide usage in the industry, and also
because they represent different points in the consistency
versus scalability spectrum: Cassandra provides eventual
consistency and good scalability, while CockroachDB offers
strong consistency but scales poorly as we will show.

To make a fair comparison with the other systems, Cas-
sandra was configured to use quorums on both reads and
writes, although this change is not enough to consider it
strongly consistent given its optimistic replication protocol.

We selected two benchmarks: YCSB [12], as it is the de
facto standard for evaluating cloud based data stores, and
TPC-C [13], a standard OLTP benchmark. We evaluate each
system according to the following metrics:

� Throughput - the number of operations/transactions
performed per second.

� Goodput - because SCONEKV and CockroachDB are
transactional, not all operations are guaranteed to
commit. Goodput is the fraction of the throughput
which corresponds to the number of committed
operations/transactions per second.

The evaluation is organized as follows. Section 6.1
presents the results for YCSB workloads with an increasing
number of clients with a small cluster of 20 nodes. Sec-
tion 6.2 studies the scalability of the systems running YCSB
benchmarks with an increasing number of servers. Sec-
tion 6.3 details the experiments performed using the TPC-C
benchmark targeting transaction processing. Section 6.4
evaluates the fault recovery capabilities of the systems.

6.1 YCSB - Small Cluster

The first phase of our experimental evaluation was per-
formed using Docker containers on a cluster with 6 physical
machines, with one machine dedicated to running the cli-
ents and the others dedicated to the servers. The machines
were equipped with 40 GB of RAM and 8 Core Intel Xeon
E5506 2.13 GHz processors.

Each system was deployed in a cluster of 20 nodes (con-
tainers) with a replication factor of 4. In the case of SCONEKV
this corresponds to 5 buckets of 4 nodes each. SCONEKV uses
all optimizations presented in Section 5.

GONÇALVES ETAL.: SCONEKV: A SCALABLE, STRONGLYCONSISTENT KEY-VALUE STORE 4171

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

We built an YCSB driver for SCONEKV and extended the
existing CockroachDB JDBC driver to provide transactional
support. In both cases, each transaction corresponds to 5
operations grouped together. We selected the core work-
loads provided by YCSB, in detail: Workload A (50% read,
50% write), Workload B (95% read, 5% write), Workload C
(100% read) and Workload F (read-modify-write). All work-
loads were run using a skewed i.e. zipfian distribution lead-
ing to 80% of the operations being performed on the hotset
(20% of the keys), as this is more representative of real
world workloads [12]. Each experiment (combination of
workload, number of clients and number of servers) was
run three times, with a duration of 300 seconds.

YCSBWorkload A. The throughput and goodput results for
this write-intensive workload are shown in Figs. 5a and 5b,
respectively. SCONEKV performs in between the baselines, as
expected. As it is possible to observe, Cassandra scales well
with an increasing number of clients, while CockroachDB
demonstrates that it does not handle well write heavy work-
loads. This is explained by their design based on classical
consensus which is a costly primitive. As expected, SCONEKV
provides a good compromise between the raw performance
of Cassandra and the strong consistency guarantees of Cock-
roachDB. A closer look comparing the throughput and good-
put of SCONEKV shows a significant transaction abort rate,
around 40% at its highest (256 concurrent clients). This is jus-
tified by the distribution of the requests as the highly skewed
workload inevitably leads to an extremely high number of
concurrent updates on the same keys, which cannot be serial-
ized. Interestingly, CockroachDB reaches an abort rate of
22% with 256 concurrent clients, but by only committing 254
operations per second, thus further illustrating that consen-
sus-based systems scale poorly. In fact, SCONEKV achieves 11
times more goodput than CockroachDB (and 15 times more
throughput). To further study this behaviour in SCONEKV, we
ran an additional workload with an uniform distribution
(writes and reads are evenly distributed across all keys). The
results are depicted in Fig. 6. As it is possible to observe, the
throughput and goodput are almost identical due to the
lowerwrite contention that leads to fewer aborts.

YCSBWorkload B. The throughput and goodput results for
this read-intensive workload are shown in Figs. 7a and 7b,

respectively. The results show that SCONEKV scales, although
at a lower rate than Cassandra. This can be explained by the
fact that, from a transactional standpoint, SCONEKV does not
differentiate writes from reads, applying the same protocol
to decide the transactions’ outcomes. It is noteworthy that
CockroachDB’s performance stagnates after 128 concurrent
clients, demonstrating that even a 5% update rate is enough
to negatively affect its scalability. The abort rate on this
workload is substantially lower than for Workload A due to
the low rate of concurrent updates. Therefore, for all systems,
the achieved goodput is very close to the throughput, as can
be observed in Fig. 7b.

YCSB Workload C. This is a read-only workload and,
therefore, we only present the goodput (Fig. 8), as it is iden-
tical to the throughput since there are no updates. Interest-
ingly, for this workload, CockroachDB exhibits better
performance than Cassandra. This can be explained in two
ways: on one hand, CockroachDB’s does not need to acquire
any locks for read-only transactions, and, on the other hand

Fig. 5. Throughput and Goodput for YCSB Workload A with an increas-
ing number of clients.

Fig. 6. Throughput and Goodput for SCONEKV in YCSB Workload A, with
zipfian and uniform distributions.

Fig. 7. Throughput and Goodput for YCSB Workload B with an increas-
ing number of clients.

Fig. 8. Goodput for YCSB Workload C with an increasing number of
clients.

4172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

Cassandra was configured to use a quorum of reads instead
of a single read, to provide better consistency guarantees.
SCONEKV does not achieve the same raw performance as
either Cassandra or CockroachDB, but it scales with an
increasing number of clients. We attribute this difference to
the fact that the other systems have been highly optimized
over the years, but with additional engineering effort it
should be possible to improve SCONEKV’s raw performance.

YCSB Workload F. This workload selects a key following
the distribution of requests, and reads, modifies, and writes
to it. The results for the throughput and goodput are
depicted in Figs. 9a and 9b, respectively. Once more, we
observe that CockroachDB does not scale with update-
intensive workloads. SCONEKV shows better performance
than Cassandra in terms of throughput. This can be
explained by the fact that SCONEKV is a transactional data
store and thus, if inside the same transaction a client per-
forms multiple operations on the same key, only the first
operation results in an external request to retrieve the ver-
sion (all others will be handled by the client library, without
the need for extra RTTs). However, the highly skewed dis-
tribution of requests leads to a high abort rate as can be
observed in the goodput results (Fig. 9b).

6.2 YCSB - Scalability

Due to resource constraints, and the need for more servers,
we ran the next set of experiments in the Google Cloud Plat-
form rather than in our premises. We used e2-highmem-4

instances (each with 4 vCPUs and 32 GB of memory),
deploying 4 nodes per instance. For each system, we
deployed 20, 40 and 80 nodes using update-intensive
(Workload A) and read-intenstive (Workload B) workloads.
We start with a keyspace of 1 M keys and 256 concurrent cli-
ents for a cluster of 20 nodes (similar to the deployment
used in the previous sections), and increased the workload
proportionately with the size of the system, maintaining a
replication factor of 4.

The results for the write-intensive workload are shown in
Fig. 10. As it is possible to observe, for both Cassandra and
SCONEKV, goodput increseases as number of nodes increases
(albeit SCONEKV does so with a lower slope), whereas

CockroachDB’s performance not only is much worse than
the other two systems but it also degrades as the system size
grows. This stems from the cost of consensus which gets
more expensive as the number of nodes increases. As before,
it is possible to observe a significant abort rate for SCONEKV,
reflected in the goodput results (Fig. 10b) due to the skewed
nature of the workload.

The goodput results for the read-intensive workload are
shown in Fig. 11. We observe the same pattern as before,
Cassandra and SCONEKV are able to scale but CockroachDB
performance degrades as the system grows due to the costly
synchronization primitives.

6.3 TPC-C

Next, we evaluated the 3 systems using TPC-C, the industry
standard OLTP benchmark. Traditionally this is a SQL
benchmark, however, as our system does not support SQL,
we used an in-house implementation that uses read and
write operations following the guidelines of the benchmark
described in [13]. We used the same experimental setup
described in Section 6.2, starting with 256 concurrent clients
and 768 warehouses (3� clients) for a cluster of 20 nodes,
increasing the number of clients andwarehouses proportion-
ately with the size of the system. We maintained the replica-
tion factor of 4 in all experiments. Each experiment was ran 3
times and accounted for 300 seconds (discarding warm-up
and cool-down).

The results are shown in Fig. 12. Similarly to the results
shown in the previous section, we observe that SCONEKV
and Cassandra are able to scale while CockroachDB is not
(achieving negligible throughput with the maximum system
size). It is worth noting that TPC-C transactions are much

Fig. 9. Throughput and Goodput for YCSBWorkload F with an increasing
number of clients.

Fig. 10. Throughput and Goodput for YCSB Workload A with an increas-
ing system size.

Fig. 11. Goodput for YCSBWorkload B with an increasing system size.

GONÇALVES ETAL.: SCONEKV: A SCALABLE, STRONGLYCONSISTENT KEY-VALUE STORE 4173

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

larger than those of our transactional YCSB implementation
(15-30 operations per transaction in comparison with 5 oper-
ations per transaction). Nevertheless, SCONEKV still scales
while also using the completely naive partitioning function
described in Section 4 which frequently results in transac-
tions spanning all buckets. A partitioning function fit for the
TPC-C workload could improve SCONEKV’s performance
even more. Nonetheless, we consider this orthogonal to the
present work.

As a final note, the results shown here for CockroachDB
are not aligned with those published in [9]. The reason for
this discrepancy is twofold. First, the experiments per-
formed in [9] had much lower contention, increasing system
size 5� while increasing the number of warehouses by 10�
. Second, the authors do not specify the number of concur-
rent client threads used in their workload. For those rea-
sons, we do not consider those results comparable to ours.

6.4 Fault Recovery

Finally, we evaluated the fault recovery period of the three
systems. We set up a 20 node cluster with a replication fac-
tor of 4 and submitted them to a light TPC-C workload with
32 concurrent clients. After warm-up, we crashed a primary
node in SCONEKV, or a leaseholder in CockroachDB. We
omit replica failures as they do not visibly affect SCONEKV
or CockroachDB results. In Cassandra all nodes are uniform
as there is no notion of a primary hence we simply crashed
one node at random. Each experiment was run 5 times and
Fig. 13 shows the average throughput over time.

Cassandra is the least affected due to its design as there is
no primary node for a given partition. Both SCONEKV and
CockroachDB’s throughput drops to zero while the mem-
bership layer generates a new view. For SCONEKV, the per-
formance drop is explained by the fact that the system is
small and transactions are large and hence all transactions
are likely to touch all the buckets. In a larger system or with
smaller transactions, the performance impact would be lim-
ited to the set of transactions accessing the faulty bucket. It
is worth noting that this is, purposely, a worst case scenario.
A failure to any replica would have negligible impact in

performance regardless of the time it took for the member-
ship layer to update the view accordingly.

Nevertheless, the majority of the time is spent waiting for
a new view to be propagated throughout the cluster (�16
seconds), after which performance increases to the levels
displayed before the fault occurred. If there was another
membership component that delivered the new view in less
time, it could be integrated into SCONEKV and severely
reduce the impact of faults to primary nodes. CockroachDB
displays a quicker recovery time (�7 seconds), but, as
always, while providing much lower performance.

6.5 Discussion

Overall the conducted experiments reveal that SCONEKV is
able to scale as the load and size of the system increases
while still retaining strong consistency guarantees. This con-
trasts with Cassandra, which scales at the cost of consis-
tency, and CockroachDB, which is not able to scale. In
fairness, neither system scales perfectly. Nevertheless, their
goodput increases as we increase system size and load, pre-
senting a lower-than-perfect slope. In sum, SCONEKV’s
results support our argument that programmers do not nec-
essarily have to choose between consistency and scalability.

Due to space constraints we omit resource usage results.
Briefly, SCONEKV did not exhaust the CPU (in contrast with
Cassandra during the scalability experiments) and its mem-
ory requirements are comparable to CockroachDB (which is
written in Go, typically less demanding in terms of memory
usage when compared to Java). CockroachDB generally
required less resources than the others systems, but also
provided much less performance, especially in the scalabil-
ity experiments.

7 CONCLUSION

In this paper, we aimed at demonstrating that recent advan-
ces in distributed computing can lead to interesting new
trade-offs in the longstanding tension between consistency
and scalability when selecting a key-value store. Our key
insight is that by building on top of recent work on scalable
and consistent membership services, the fundamental data
management aspects of a key-value store, such as data parti-
tioning, replication and transaction processing can be sub-
stantially simplified, resulting in a leaner and more scalable
design. The resulting system, SCONEKV provides a scalable
key-value store with strong consistency guarantees. Our
comparison with two industrial state-of-the-art systems,
Cassandra and CockroachDB, shows that SCONEKV is able
to scale in all workloads, as opposed to CockroachDB, a
database with strong consistency guarantees, and has per-
formance competitive with Cassandra, a database that only
ensures eventual consistency - while still offering strong
consistency to the application.

REFERENCES

[1] I. Stoica et al., “Chord: A scalable peer-to-peer lookup protocol for
internet applications,” IEEE/ACM Trans. Netw., vol. 11, no. 1,
pp. 17–32, Feb. 2003.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,”
Lecture Notes Comput. Sci. (Including Subseries Lecture Notes Artif.
Intell. Lecture Notes Bioinf.), vol. 2218, pp. 329–350, 2001.

Fig. 12. Goodput for TPC-C with an increasing system size.

Fig. 13. Recovery time after a fault running TPC-C in a 20 node cluster.

4174 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 31, no. 4, pp. 161–172, 2001.

[4] B. Y. Zhao et al., “Tapestry: A resilient global-scale overlay for ser-
vice deployment,” IEEE J. Sel. Areas Commun., vol. 22, no. 1,
pp. 41–53, Jan. 2004.

[5] J. Kubiatowicz et al., “OceanStore,” ACM SIGARCH Comput.
Archit. News, vol. 28, no. 5, pp. 190–201, 2000.

[6] A. Lakshman and P. Malik, “Cassandra - A decentralized structured
storage system,”Oper. Syst. Rev. (ACM), vol. 44, no. 2, 2010, pp. 35–40.

[7] Apache. [cassandra-9667] strongly consistent membership and
ownership, Jun. 2015. Accessed: Jun. 6, 2022. [Online]. Available:
https://issues.apache.org/jira/browse/CASSANDRA-9667

[8] C. Labs. Cockroachdb, Feb. 2014. Accessed: Jun. 6, 2022. [Online].
Available: https://github.com/cockroachdb/cockroach

[9] R. Taft et al., “CockroachDB: The resilient geo-distributed SQL
database,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020,
pp. 1493–1509.

[10] L. Suresh, D. Malkhi, P. Gopalan, I. P. Carreiro, and Z. Lokhand-
wala, “Stable and consistent membership at scale with rapid,”
Proc. USENIX Annu. Tech. Conf., 2020, pp. 387–399 .

[11] F. Santos, “Prime : Probabilistic membership – large scale mem-
bership and consistency,” Master’s thesis, Instituto Superior
T�ecnico, Lisboa, Portugal, 2018.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,” in
Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 143–154.

[13] TPC. TPC-C benchmark, 1992. Accessed: Jun. 6, 2022. [Online].
Available: http://www.tpc.org/tpcc/

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for internet-scale systems,” in Proc. USE-
NIX Annu. Tech. Conf., 2019, pp. 145–158 .

[15] LinkedIn norbert is a cluster manager and networking layer built
on top of zookeeper, Dec. 2009. Accessed: Jun. 6, 2022. [Online].
Available: https://github.com/rhavyn/norbert

[16] A. Das, I. Gupta, and A. Motivala, “SWIM: Scalable weakly-con-
sistent infection-style process group membership protocol,” in
Proc. Int. Conf. Dependable Syst. Netw., 2002, pp. 303–312.

[17] A.Dadgar, J. Phillips, and J. Currey, “Lifeguard: Local health aware-
ness for more accurate failure detection,” in Proc. - 48th Annu. IEEE/
IFIP Int. Conf. Dependable Syst. Netw.Workshops, 2018, pp. 22–25 .

[18] L. Lamport, “Fast paxos,” Distrib. Comput., vol. 19, no. 2,
pp. 79–103, 2006.

[19] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, 1998.

[20] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32,
no. 4, pp. 51–58, 2001.

[21] M. Matos, H. Mercier, P. Felber, R. Oliveira, and J. Pereira, “EpTO:
An epidemic total order algorithm for large-scale distributed sys-
tems,” Proc. 16th Annu. Middleware Conf., 2015, pp. 100–111 .

[22] G. DeCandia et al., “Dynamo: Amazon’s highly available key-
value store,”Oper. Syst. Rev., 2007, pp. 205–220.

[23] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Stronger semantics for low-latency geo-replicated storage,”
in Proc. 10th USENIX Symp. Netw. Syst. Des. Implementation, 2013,
pp. 313–328 .

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: Scalable causal consistency for wide-
area storage with COPS,” in Proc. 23rd ACM Symp. Oper. Syst.
Princ., 2011, pp. 401–416.

[25] S. Almeida, J. Leit~ao, and L. Rodrigues, “ChainReaction: A causal
consistent datastore based on chain replication,” in Proc. 8th ACM
Eur. Conf. Comput. Syst., 2013, pp. 85–98 .

[26] J. C. Corbett et al., “Spanner: Google’s globally distributed data-
base,” ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 1–22, 2013.

[27] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Annu. Tech. Conf., 2019,
pp. 305–319 .

[28] S. Kulkarni et al., “Logical physical clocks,” in Principles of Distributed
Systems, vol. 8878, M. K. Aguilera, L. Querzoni, and M. Shapiro,
Eds., Switzerland Cham: Springer Int. Publishing, 2014, pp. 17–32.
[Online]. Available: https://doi.org/10.1007/978-3-319-14472-6_2

[29] M. Brooker, T. Chen, and F. Ping, “Millions of tiny databases,” in Proc.
17thUSENIXSymp.Netw. Syst. Des. Implementation, 2020, pp. 463–478.

[30] K. Sonbol, O. €Ozkasap, I. Al-Oqily, and M. Aloqaily, “Edgekv:
Decentralized, scalable, and consistent storage for the edge,”
J. Parallel Distrib. Comput., vol. 144, pp. 28–40, 2020.

[31] S. Peluso, P. Romano, and F. Quaglia, “SCORe: A scalable one-
copy serializable partial replication protocol,” in Proc. ACM/IFIP/
USENIX Int. Conf. Distrib. Syst. Platforms Open Distrib. Process.,
2012, pp. 456–475.

[32] A. Hentschel, D. Shirley, L. Lafrance, and M. Zamski, “Flow: Sepa-
rating consensus and compute–execution verification,” 2019, arXiv:
1909.05832.

[33] Y. Hassanzadeh-Nazarabadi, A. K€upç€u, and O. €Ozkasap,
“LightChain: Scalable DHT-based blockchain,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 32, no. 10, pp. 2582–2593, Oct. 2021.

[34] Y. Hassanzadeh-Nazarabadi and S. Taheri-Boshrooyeh, “A con-
sensus protocol with deterministic finality,” in Proc. IEEE Conf.
Comput. Commun. Workshops, 2021, pp. 1–2.

[35] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the pres-
ence of partial synchrony,” J. ACM, vol. 35, no. 2, Apr. 1988.

[36] D. Karger et al., “Consistent hashing and random trees: Distrib-
uted caching protocols for relieving hot spots on the world wide
web,” in Proc. Conf. Proc. Annu. ACM Symp. Theory Comput., 1997,
pp. 654–663.

[37] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new pri-
mary copy method to support highly-available distributed systems,”
inProc. 7th Annu. ACMSymp. Princ. Distrib. Comput., 1988, pp. 8–17.

[38] B. Liskov and J. Cowling, “Viewstamped replication revisited,”
MIT, Tech. Rep. MIT-CSAIL-TR-2012-021, Jul. 2012. [Online].
Available: https://dspace.mit.edu/handle/1721.1/71763

[39] N. A. Lynch, Distributed Algorithms. Amsterdam, The Nether-
lands: Elsevier, 1996.

[40] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32,
no. 2, pp. 374–382, 1985.

Jo~ao Gonçalves is working toward the PhD
degree in computer science. He is a teaching
assistant with Instituto Superior T�ecnico, University
of Lisbon, and a junior researcher with INESC-ID
Lisbon. His research interests are distributed sys-
tems, specifically group membership, scalable
storage, and bug detection and reproducibility.
Currently, he is researching persistent memory
with a focus on crash-consistency testing.

Miguel Matos (Member, IEEE) is a professor
with Instituto Superior T�ecnico (ULisboa) and a
researcher with INESC-ID. His research interests
lie in the area of distributed systems, in the sub-
jects of scalability, performance, correctness and
systems evaluation. In particular, he is conducting
research in blockchain and related problems, con-
sistency and scalability in large scale databases,
systems evaluation under faults and experimental
reproducibility. Miguel has been involved in several
EU, national, and industry funded research proj-

ects. He has publications in venues such as SOSP, TPDS, JPDC,
Eurosys, ICDCS, DSN, IPDPS, Middleware, and SRDS.

Rodrigo Rodrigues received the PhD degree
from the Massachusetts Institute of Technology
(MIT), in 2005, under the supervision of prof. Bar-
bara Liskov. He is a professor with the Instituto
Superior Tecnico (ULisboa) and a researcher
with INESC-ID, since 2015. Previously, he held
faculty positions with the Nova University of Lis-
bon, and the Max Planck Institute for Software
Systems (MPI-SWS), where he led the Depend-
able Systems Group. He won several fellowships
and awards, including a Best Paper Award with

SOSP, a special recognition award from MIT’s Department of EECS, an
ERC starting grant, and a Google faculty research Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GONÇALVES ETAL.: SCONEKV: A SCALABLE, STRONGLYCONSISTENT KEY-VALUE STORE 4175

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on September 07,2022 at 13:34:50 UTC from IEEE Xplore. Restrictions apply.

https://issues.apache.org/jira/browse/CASSANDRA-9667
https://github.com/cockroachdb/cockroach
http://www.tpc.org/tpcc/
https://github.com/rhavyn/norbert
https://doi.org/10.1007/978-3-319-14472-6_2
https://dspace.mit.edu/handle/1721.1/71763

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

