
Towards Robust Distributed Systems

Sebastião Amaro
sebastiao.amaro@tecnico.ulisboa.pt

U. Lisboa & INESC-ID

Abstract—Distributed Systems are an essential part of today’s
modern infrastructure and underlie many critical systems
and services. Given their criticality, we need tools to assess
and improve their reliability which is commonly achieved
by subjecting the systems to faults and observing whether
their behavior still matches the specification. Unfortunately,
the complexity of distributed systems, composed of different
components that can fail in unpredictable ways, either due to
internal faults, unexpected interactions among the components,
or between them and the environment, makes assessing reli-
ability extremely challenging. State-of-the-art tools are either
system-specific (e.g.: PACE), and thus not broadly applica-
ble, or rely on randomized fault injection which hampers
reproducibility (e.g.: Chaos Engineering). In this Ph.D., we
plan to research and develop novel tools and techniques for
assessing the robustness of distributed systems that are black-
box, efficient, and reproducible by leveraging recent advances
in Linux kernel observability and process control.

1. Introduction

Distributed systems are at the core of our modern digital
society and power many of the services and infrastructures
we rely on a daily basis. Unsurprisingly, when those systems
fail, the result is failures and losses that can lead to large
losses in revenue to organizations [1]. Outages occur more
often than we think, and for different reasons. To mention
just a few, these can be due to natural phenomena such as
heat waves [2] and lightning strikes [3], human error [4], or
even unpredictable bugs in the software [5]. It is therefore of
the utmost importance to have tools and techniques to assess
the reliability of distributed systems. Previous work [6] has
demonstrated how software-based fault injection tools have
evolved to achieve fault representativeness, efficiency, and
usability, proving that they are a powerful tool for assessing
distributed systems’ reliability. While conceptually simple,
in practice fault injection is extremely complex in part due to
the inherent complexity and heterogeneity of distributed sys-
tems. Distributed systems’ complexity stems from different
reasons, for example, the complex nature of the algorithms
they employ on uncontrollable environments such as the
network and the physical hardware, which leads to non-
deterministic behavior. Their heterogeneous nature stems
from the fact they employ multiple different frameworks
and libraries, which have distinct dependencies and rely on

different software. These two characteristics make assessing
the reliability of these systems extremely hard since there
are vast amounts of possibilities as to where faults can
appear, not only in the components themselves but in the
interactions between them and with the environment.

Therefore, a lot of tools focus on specific compo-
nents [7], [8], [9], [10], [11], [12], [13], [14], [15]. However,
faults may depend on multiple components which make
these tools not the best to access highly heterogeneous
systems. One approach that has become popular among
leading IT companies is Chaos Engineering [16] which
creates experiments that randomly inject faults into the pro-
duction system and evaluate several key metrics. However,
its randomized nature which does not depend on the system
state, makes it hard to reproduce and often understand the
underlying cause. Given the current limitations of the state-
of-the-art, our main goal is to develop tools and techniques
that meet three main criteria. First, it must be reproducible,
allowing developers to inject faults based on the system
state rather than at random or based for instance on time,
and hence allow to precisely understand and reproduce the
conditions that led to the failure. Second, it must treat the
system as a black-box, so that it can be applied to any system
without requiring system-specific implementations. Third, it
must be efficient to not substantially hinder system perfor-
mance, and hence potentially hiding faults that depend for
instance on specific interleavings. To achieve this goal, we
will leverage recent advances in Linux kernel observability
and process control, namely eBPF [17]. eBPF provides a
safe way to monitor the system state with minimal overhead.
It is safe because all the programs must pass through the
eBPF verifier, and at the same time application agnostic
since it does not depend on what application is running.
Based on these primitives, we plan to research and develop
techniques for efficiently building and maintaining the ap-
plication state and, based on it, allow the developer to inject
faults at arbitrary system states.

2. Overview

We now discuss the key ideas to achieve our goal
of building a reproducible, black-box, and efficient fault-
injection tool. We envision two main components: System
Tracing and Fault Injection.

System Tracing. One of the main challenges of our
approach is to efficiently collect information related to the

different aspects of the system state, such as network, disk
I/O, memory, threading, etc. We intend to leverage eBPF to
achieve this. eBPF provides multiple ways to observe the
kernel with mechanisms such as kprobes, kretprobes
and tracepoints which enables the user to run user-
written code when a certain kernel function, or a certain
event happens in the system. It also provides uprobes
and uretprobes, which allow to hook into userspace
programs and run user code at certain function invocations.

At the network level, we can precisely track things such
as active connections and network usage at specific times,
among others. At the disk level, we can trace the latency of
I/O operations, how much I/O processes are doing, as well
as the cache miss/hit ratios. System calls are another major
point of observation, which offers us the ability to track
process and thread lifecycles, among others. This plethora
of information allows us to precisely track process state and
construct a deterministic state at any point in time. Because
this state can quickly balloon to a very large size, we will
also research techniques to efficiently represent the process
state.

Fault Injection. For fault injection, we aim to leverage
the primitives discussed above but rather than tracing we
plan to skip the behavior of certain system calls which
allow us to model and emulate a large class of faults and
failures. We also aim to model resource constraint faults
and gray faults (faults that may lead to gray failures) which
are essential to assess the reliability of performance sensi-
tive systems, among others. To this end, we will leverage
cgroups (control groups) functionalities which allow us to
group processes and limit their resource usage in different
aspects such as file system cache, I/O bandwidth limit, CPU
quota limit, or CPU set limit. These faults can be triggered
based on the state of the system, as dictated by the System
Tracing component. This enables a vast and diverse set of
faults and scenarios, such as: limiting the CPU quota of a
machine after a process reaches a certain state to emulate
a noisy neighbor, limit the I/O of a process after reading
a file from disk, to emulate a disk problem, dropping all
packets outward, when the system creates a certain amount
of threads to emulate a network partition when a protocol
reaches a certain stage, among many others.

While Tracing and Fault Injection can be done in kernel
space, the control logic is likely to reside in userspace. Given
that transitioning from one to the other is expensive, we will
research techniques to minimize the transitions needed.

3. Preliminary results

We have preliminary work and results on systems ob-
servability and control leveraging kernel functionalities.
More specifically, we have extended and redesigned Kol-
laps [18], a scalable network emulator, as follows. We have
replaced the existing monitoring system with a novel eBPF-
based system, specifically one based on socket filters [19],
and perf [20] resulting in a reduction in CPU usage up to
90%. Using kernel functionality, we can also inject faults in
the target system, such as packet loss or connection losses.

The resulting work is currently under submission. While
restricted to the network subsystem, this work allowed us
to gain intimate knowledge and experience with key tech-
nical and technological subjects and hence laid the basic
foundations for the work to be conducted during the rest of
the Ph.D.

4. Work to be done

Status: I am at the beginning (first year) of my Ph.D.
program, which is expected to last for four years.

During the first year and a half, we will research and
develop the System Tracing component, namely how to
efficiently represent information and bring it to userspace.
For the next eighteen months we will focus on the Fault
Injection component and for the final year we will develop
the interface and a domain-specific language to express the
experiments. Given that the work on the main components
is of independent interest, we plan to publish a paper on
each one of them, and a final paper describing the system
as a whole, evaluated using real industry-grade open-source
systems as target applications.

5. Related Work

We now present the current approaches to Fault Injection
in distributed systems.

Specific-system tools. PACE [11] is a crash exploration
framework. PACE explores correlated crash vulnerabilities
in distributed filesystems by systematically generating per-
sistent states that exist in the execution in the presence
of correlated crashes. Sieve [7], is an automatic reliability-
testing tool for cluster-management controllers. MEPFL [8]
is an approach for latent error prediction and fault localiza-
tion of microservice applications. FCatch [9] aims at auto-
matically detecting bugs, specifically, Time-of-Fault (TOF)
bugs, in cloud systems. CrashMonkey [10], automatically
simulates faults at different points of a given workload
and tests the correctness of the file system after each fault
injection. Peter Alvaro et al. [15], developed an approach
to fault injection called Lineage-driven Fault Injection. It is
based on the concept of data lineage, used in database liter-
ature. This lineage can be seen as the model of a particular
execution of a process Generic tools. Faultsee [21], is a
toolkit composed of (1) Faultsee Domain System Language
(FDSL), a configuration language based on YAML to con-
cisely describe the experiment, and (2) a Faultsee platform to
deploy and automatically execute the experiments specified
in FDSL. Jepsen [22] is research that makes analyzes of
real world and modern distributed systems and checks for
bugs with the usage of fault injection. Chaos Engineering.
Chaos Monkey [23], is a tool that randomly terminates
virtual machine instances and containers in a production
environment.
Acknowledgments This work was supported by Fundação
para a Ciência e a Tecnologia (FCT) under grants
UIDB/50021/2020 and PTDC/CCI-COM/4485/2021
(Ainur).

References

[1] “Google lost $1.7m in ad revenue dur-
ing youtube outage,” accessed: 2023-1-27. [Online].
Available: https://www.foxbusiness.com/technology/google-lost-ad-
revenue-during-youtube-outage-expert

[2] “Google’s london data center outage during
heatwave,” accessed: 2023-1-27. [Online]. Available:
https://www.datacenterdynamics.com/en/news/googles-london-
data-center-outage-during-heatwave-caused-by-simultaneous-failure-
of-multiple-redundant-cooling-systems/

[3] “Lightning in belgium disrupts google cloud
services,” accessed: 2023-1-27. [Online]. Available:
https://www.datacenterknowledge.com/archives/2015/08/19/lightning-
strikes-google-data-center-disrupts-cloud-services

[4] “Data center backup failure blamed on 1
person,” accessed: 2023-1-27. [Online]. Avail-
able: https://www.datacenterknowledge.com/manage/data-center-
backup-failure-blamed-1-person-not-nyse-leadership

[5] “Google dashoard bug incident,” accessed: 2023-1-27. [Online].
Available: https://status.cloud.google.com/incident/zall/20013

[6] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Comput. Surv., vol. 48,
no. 3, feb 2016. [Online]. Available: https://doi.org/10.1145/2841425

[7] X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan, M. Gasch,
L. Suresh, and T. Xu, “Automatic reliability testing for cluster
management controllers,” in 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). Carlsbad, CA:
USENIX Association, Jul. 2022, pp. 143–159. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/sun

[8] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He,
“Latent error prediction and fault localization for microservice
applications by learning from system trace logs,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 683–694. [Online].
Available: https://doi.org/10.1145/3338906.3338961

[9] H. Liu, X. Wang, G. Li, S. Lu, F. Ye, and C. Tian, “Fcatch:
Automatically detecting time-of-fault bugs in cloud systems,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 419–431. [Online]. Available:
https://doi.org/10.1145/3173162.3177161

[10] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram,
“Finding Crash-Consistency Bugs with Bounded Black-Box Crash
Testing,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2018). Carlsbad, CA: USENIX Associ-
ation, 2018.

[11] R. Alagappan, A. Ganesan, Y. Patel, T. S. Pillai,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Cor-
related crash vulnerabilities,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
16). GA: USENIX Association, 2016, pp. 151–167. [On-
line]. Available: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/alagappan

[12] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram,
“Finding crash-consistency bugs with bounded black-box crash test-
ing,” in Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’18. USA: USENIX
Association, 2018, p. 33–50.

[13] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
“Dcatch: Automatically detecting distributed concurrency bugs in
cloud systems,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 677–691. [Online].
Available: https://doi.org/10.1145/3037697.3037735

[14] K. Kingsbury and P. Alvaro, “Elle: Inferring isolation anomalies
from experimental observations,” CoRR, vol. abs/2003.10554, 2020.
[Online]. Available: https://arxiv.org/abs/2003.10554

[15] P. Alvaro, J. Rosen, and J. M. Hellerstein, “Lineage-driven fault
injection,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 331–346.
[Online]. Available: https://doi.org/10.1145/2723372.2723711

[16] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein,
L. Kosewski, J. Reynolds, and C. Rosenthal, “Chaos
engineering,” CoRR, vol. abs/1702.05843, 2017. [Online]. Available:
http://arxiv.org/abs/1702.05843

[17] “extended berkeley packet filter.” accessed: 2023-1-27. [Online].
Available: https://ebpf.io/what-is-ebpf

[18] P. Gouveia, J. a. Neves, C. Segarra, L. Liechti, S. Issa, V. Schiavoni,
and M. Matos, “Kollaps: Decentralized and dynamic topology
emulation,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387540

[19] “Linux socket filter,” accessed: 2023-2-1. [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/filter.txt

[20] “Perf wiki.” accessed: 2023-02-06. [Online]. Available:
https://perf.wiki.kernel.org/index.php/Main Page

[21] M. Amaral, M. L. Pardal, H. Mercier, and M. Matos, “Faultsee:
Reproducible fault injection in distributed systems,” in 2020 16th
European Dependable Computing Conference (EDCC), 2020, pp. 25–
32.

[22] “Jepsen,” accessed: 2023-2-1. [Online]. Available:
https://github.com/jepsen-io/jepsen

[23] “Chaos monkey github,” accessed: 2023-1-27. [Online]. Available:
https://github.com/netflix/chaosmonkey

