
Optimizing Smart Contract Parallelism via Commutative
Operations

Sidnei David Martins Teixeira

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Paolo Romano
Prof. Miguel Ângelo Marques de Matos

Examination Committee

Chairperson: Prof. António Manuel Ferreira Rito da Silva
Supervisor: Prof. Paolo Romano

Member of the Committee: Prof. João Pedro Faria Mendonça Barreto

October 2024

Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

First, I would like to express my sincere appreciation for the dedication and perseverance I brought

to this work. This thesis is a reflection of my commitment to consistency and integrity in pursuit of the

person I strive to become. By staying true to myself and to my habits, I have ensured that every decision

made during the development of this thesis aligned with the principles I hold. It is through this ongoing

effort that I can confidently say I am moving toward the person I aspire to be.

I would also like to sincerely thank my dissertation advisors, Prof. Miguel Matos and Prof. Paolo

Romano, for their guidance, time, and openness throughout this journey. Their willingness to discuss

any challenges I faced, as well as their insightful suggestions and encouragement to approach problems

thoughtfully, has been far more valuable than simply being handed solutions. Their mentorship has deeply

enriched this experience.

A special thanks to Francisco Rola for his time, availability, and the knowledge he generously shared,

which also contributed significantly to the success of this thesis.

Lastly, I am immensely grateful to all my friends who have supported me throughout my academic

journey. A heartfelt thanks to Afonso Pinto and Ricardo Rocha, whose constant encouragement has

pushed me to grow both intellectually and personally, fostering a more open-minded and tolerant approach

to challenges.

This work was partially funded by Fundação para a Ciência e Tecnologia (FCT), using national funds

as part of the projects INESC-ID UIDB/50021/2020, , Ainur (financed by the OE with ref. PTDC/CCI-

COM/4485/2021) and Composable’s bilateral project ParallelCosmwasm.

i

Abstract

Blockchain technology has emerged as a revolutionary paradigm, enabling decentralized and secure

transactions across various domains. Originating with Bitcoin as a pioneer cryptocurrency system, and

later with the appearance of more versatile systems like Ethereum, which introduced Smart Contracts,

blockchains now host several secure decentralized applications (dApps) governed by immutable contracts

deployed in the ledger. However, these systems fail to exploit the inherent concurrency of today’s

multicore architectures by adhering to the conventional approach of executing transactions sequentially.

As consensus protocol developments introduce new and more efficient algorithms, the new bottleneck

is shifting towards transaction execution speed. Several works have been developed with the aim of

solving this limitation, but they either rely on methods that compromise the security of the blockchain by

appending dependency-tracking graphs in the produced block, lack transparency by imposing alterations

to the system, or do not take into consideration the hot-spot problem - most transactions access only a

few storage locations. We propose a strategy that employs static analysis to detect conflicting operations

as well as operation commutativity to parallelize operations aimed at the same contract keys. Our results

show the proposed solution achieved a speedup of 8.57× for workloads without commutativity support,

and up to 10.1× speedup for commutative intensive host-spot workloads.

Keywords

Blockchain; Smart Contracts; Concurrency; Symbolic Execution;

iii

Resumo

A tecnologia blockchain emergiu como um paradigma revolucionário, permitindo transações descen-

tralizadas e seguras em vários domı́nios. Originando-se com o Bitcoin como o sistema pioneiro de

criptomoedas, e mais tarde com o aparecimento de sistemas mais versáteis como o Ethereum, que

introduziu os smart contracts, as blockchains agora hospedam várias aplicações descentralizadas se-

guras (dApps), governadas por contratos imutáveis implantados no registo da blockchain. No entanto,

estes sistemas não exploram a concorrência inerente às arquiteturas multicore modernas, ao aderirem à

abordagem convencional de execução sequencial das transações. À medida que os desenvolvimentos

nos protocolos de consenso introduzem algoritmos novos e mais eficientes, o novo gargalo tende a ser

a velocidade de execução das transações. Vários trabalhos têm sido desenvolvidos com o objetivo de

resolver esta limitação, mas ou dependem de métodos que comprometem a segurança da blockchain ao

anexar grafos de dependências ao bloco produzido, ou carecem de transparência ao impor alterações

ao sistema, ou não levam em consideração o problema dos hot-spots — a maioria das transações acede

apenas a alguns locais de armazenamento de um número reduzido de smart contracts. Propomos

uma estratégia que utiliza análise estática para detetar operações em conflito bem como a deteção

de operações comutativas de modo a paralelizar operações referentes ao mesmo item. Os nossos

resultados mostram que a solução proposta atingiu um speedup máximo de 8.67× para padrões de

acesso sem suporte para comutatividade, e atingiu um speedup de 10.1× para padrões de acesso de

hot-spots rico em operações comutativas.

Palavras Chave

Blockchain; Smart Contracts; Concorrência; Execução Simbólica;

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Outline . 4

2 Background 5

2.1 Blockchain and Smart Contracts . 5

2.1.1 Ethereum . 5

2.1.2 Cosmos . 9

2.2 Transactional Memory . 14

2.3 Symbolic Execution . 15

3 Related Work 17

3.1 Speculative Execution . 17

3.2 Static Analysis . 21

3.3 Smart Contract Isolation: Intra- vs. inter-SC conflicts . 24

3.4 Discussion . 25

4 COEX-P 28

4.1 Cosmwasm Execution Workflow . 28

4.2 System Architecture Overview . 29

4.3 Commutative Operation Support . 31

4.4 Profile Generation . 33

4.5 Schedule Creation . 37

4.5.1 Eliminating Write-Write Conflicts . 43

4.5.2 Schedule Parallelization . 44

4.6 Schedule Execution . 52

4.7 Persisting the Schedule . 61

4.8 Conclusion . 63

vii

5 Evaluation 64

5.1 Performance Evaluation . 64

5.1.1 Performance Scalability . 66

5.1.2 Performance over Different Workloads . 69

5.2 Resource Utilization . 74

5.3 Discussion . 76

6 Conclusion 78

6.1 System Limitations and Future Work . 78

Bibliography 80

viii

List of Figures

1.1 Different serial equivalence. 3

2.1 Blockchain Workflow. 9

2.2 Cosmos Node. 10

2.3 Cosmos execution workflow. 12

2.4 Smart Contract delegated execution. 14

2.5 Symbolic Execution. 16

3.1 Dependency graph workflow. 18

3.2 OCC with deterministic commit order vs. OCC-DA. adapted from: [1] 19

3.3 Olive [2] stack and storage Single Assignment Log (SSA) generation. 21

3.4 FastBlock Atomic Section identification. 22

3.5 Qi et. al. proposal. adapted from: [3] . 23

4.1 COEX-P workflow . 30

4.2 VM execution workflow. 31

4.3 Operation Commutativity Overview. 32

4.4 Smart contract profile tree structure. 36

4.5 Schedule Creation Example. Red arrows represent explicit dependencies and orange

arrows represent implicit dependencies. Black dashed lines represent the order of opera-

tions following block order. Light grey dashed arrows identify where in the schedule is the

first operation for each transaction in the initial block. 38

4.6 Schedule Creation - Dependency setting for a non commutative read. 42

4.7 Write Versioning. 44

4.8 Parallel schedule creation. 45

4.9 Binary merging tree. Arrows represent to which thread some thread has to send its

schedule to. Colors represent the merging step in which the sending thread will send its

schedule to the receiving thread. 47

ix

4.10 Schedule Merging. Black dashed boxes identify operations from a transaction placed in

QueueReady. Grey dashed boxes identify operations from transactions in QueuePartialReady.

All other representations have the same meaning as in Figure 4.5 49

4.11 Schedule Execution. Red lines in the execution diagram represent waiting for some

operation to complete. 54

4.12 Schedule Persistence - Black dashed borders identify the last writes for each key. 61

5.1 Thread Count - Execution time and speedup. 66

5.2 Thread Count - Absolute and relative per-component execution times. 67

5.3 Block Size - Execution times . 68

5.4 Block Size - Speedup . 68

5.5 Block Size - Execution times . 69

5.6 Block Size - Relative execution time percentage . 69

5.7 Transaction Complexity - Execution time and Speedup . 70

5.8 Transaction Complexity - Absolute and relative per-component execution times 71

5.9 Dense Workloads with Commutativity Support - Execution time and Speedup 72

5.10 Dense Workloads with Commutativity Support - Per-component absolute and relative

execution times for the parallel version without commutativity. 73

5.11 Dense Workloads with Commutativity Support - Per-component absolute and relative

execution times for the parallel version with commutativity. 74

x

List of Tables

3.1 Comparison table of discussed works. *DTs (Dependent Transactions) refers to transac-

tions whose RWS depends on some state value. 26

5.1 Description of Tested Workloads . 75

5.2 CPU Usage (%) per vCPU for Different Workloads . 76

xi

xii

List of Algorithms

4.1 Schedule Creation . 40

4.2 Schedule Creation - Handle Reads . 41

4.3 Schedule Creation - Handle Writes . 43

4.4 Parallel Schedule Creation - Binary Tree Merging . 46

4.5 Parallel Schedule Creation - Merging . 50

4.6 Parallel Schedule Creation - Dependency Update During Merging 51

4.7 Schedule Execution . 56

4.8 Schedule Execution - Queue Management . 58

4.9 Schedule Execution - Operation-Level Control . 60

4.10 Schedule Persistence . 62

xiii

xiv

Listings

4.1 Smart Contract function example. 34

4.2 Symbolic Execution output example. 34

xv

xvi

Acronyms

ABCI Application Blockchain Interface

BFS Breadth-First Search

CVM CosmWasm Virtual Machine

DAG Directed Acyclic Graph

DFS Depth-First Search

EOA Externally Owned Account

EVM Ethereum Virtual Machine

HTM Hardware Transactional Memory

IBC Inter-Blockchain Communication Protocol

OCC Optimistic Concurrency Control

OCC-DA Optimistic Concurrency Control with Deterministic Aborts

PBFT Practical Byzantine Fault Tolerance

PoS Proof of Stake

PoW Proof of Work

SDK Software Development Kit

STM Software Transactional Memory

TM Transactional Memory

WASM WebAssembly

WVM Wasmer Virtual Machine

xvii

1
Introduction

As the interest in secure and decentralized applications intensifies, blockchain has emerged as a central

foundation for diverse applications across domains in recent years. Essentially, blockchains converge

Distributed Systems and Databases, featuring a distributed data structure for recording transactions. This

structure is maintained by nodes in a peer-to-peer paradigm, devoid of a central authority.

Although several popular systems have been developed in recent years, blockchain technology trace

back to 1991, with Haber et. al [4], where the first idea of a chain of signed blocks was originated. The

primary idea was to guarantee no alterations of data items are possible without the system noticing,

by implementing a chain of cryptographically signed items whose signature depends on all previous

items. The concept evolved over the years, defining an immutable data item as a block of transactions. It

gained global attention in 2008 with Bitcoin [5], introduced by Satoshi Nakamoto, marking the launch

of the first decentralized cryptocurrency. Later, with the introduction of runnable code deployed on the

blockchain, commonly known as Smart Contracts, Ethereum [6] elevated the versatility of blockchain

systems. Not only they allow for simple transfers across user accounts, but also enable the development

of complex logic containing conditional statements that serve as immutable and automated decision

making machines running on a decentralized environment.

In the general workflow of blockchain systems, clients submit transactions which are broadcasted to

all nodes participating in the system in a peer-to-peer fashion. These transactions, ranging from simple

transfers to invocations of deployed contracts, may alter the blockchain’s state. When a node accumulates

a sufficient number of transactions, it takes on the role of proposing and executing the transactions to

form a new block. To maintain consistency among all participating nodes, blockchain systems typically

combine a consensus algorithm to agree on the order of transactions and State Machine Replication

(SMR) [7] to ensure that all nodes apply the agreed-upon transactions in the same order, resulting in

consistent state across the network.

Following the proposal of a block by a node, other nodes, acting as validators, verify the correctness

of each transaction within the proposed block. Their goal is to ensure that the results align with those of

the proposing node. If the validators confirm that the transactions and their effects match the expected

1

outcomes, the block is accepted. Else, the block is rejected, and all associated changes are discarded.

Blockchain systems fall into two main categories: Permissioned systems involve identified nodes

with limited trust, using asynchronous fault-tolerant protocols like PBFT [8]. In contrast, Permissionless

systems have no assumptions about node identities, allowing free entry and exit. Blockchains use less

strict consensus algorithms, offering weaker consistency guarantees - Eventual Consistency [9]. While

two nodes in permissionless systems may temporarily append different blocks, they are assured to

eventually converge on the exact same state. Bitcoin [5], Ethereum [6] and Cosmos [10] are well-known

permissionless systems.

1.1 Motivation

The rising popularity of smart contracts is attracting numerous applications to leverage blockchain

characteristics such as auditability, persistency, and decentralization [11]. This surge not only leads

to a growth in Decentralized Applications (dApps) but also drives an increase in their complexity and

performance requirements. Despite being one of the most popular blockchain platforms, Ethereum [6]

currently achieves an average of only 15 transactions per second (TPS) [12].

As new advances in consensus algorithms have been proposed within academia [11], yielding more

efficient solutions for achieving the desired consistency, the bottleneck is shifting from consensus to

transaction execution and validation stages where nodes need to execute every transaction within the

block. While the traditional approach of executing transactions sequentially ensures determinism, it falls

short of fully leveraging the capabilities of current multi-core architectures present in system nodes.

This current limitation presents an open opportunity to explore concurrency in transaction execution.

However, the concurrent execution of smart contract transactions is not straightforward as different

transactions can perform conflicting accesses to shared data. Two transactions conflict if they access the

same object, with at least one performing a write operation. Simply executing these transactions arbitrarily

may lead to data races, resulting in an inconsistent system state. For systems such as Bitcoin [5], shared

data is limited to the sender and receiver accounts, whose address is statically predeclared in the

transaction, easily allowing static determination of the transaction’s Read-Write-Set (RWS) and defining a

concurrent schedule. Contrastingly, in blockchains allowing smart contract deployment, determining the

RWS statically is more challenging, given that contracts use Turing-complete languages. The a priori

analysis may be incomplete due to path explosion [13], and it must also handle RWS that depend on

state.

Although some works [2,14–16] avoid this problem by using speculative execution and determining

the RWS at runtime using instrumentation, achieving equivalence to the same serial execution across all

nodes is challenging. Serializability, a common correctness criterion, ensures only equivalence to some

2

Figure 1.1: Different serial equivalence.

serial execution, allowing miners and validators to have different equivalent serial executions, leading

to distinct states—a fundamental correctness and security concern. Figure 1.1 illustrates this problem,

where both a miner and validator have the exact same pair of transactions to execute (Tx1 and Tx2), but

the miner first writes the value from Tx1 and only then the value from Tx2, while the validator does the

inverse. Each node has a serial equivallence, although different. The miner’s equivallent serial execution

is Tx1 → Tx2, resulting in B’s value to be 2. The validator’s equivallent serial execution is Tx2 → Tx1,

resulting in B’s value to be 1, which is different from the miner’s value.

In addition, nodes may behave maliciously, altering any data. Some works [15,16] propose strategies

that allow for validators to follow the miner execution schedule deterministically, at the cost of security, as

malicious miners may intentionally propose altered schedules that are deliberately slow, but still ensure

serial equivalence.

Furthermore, recent works [1,2,17] emphasize the hot-spot problem in blockchain systems. This

issue arises when a small number of highly popular contracts are invoked by many transactions, resulting

in high contention on a small set of data items. Notably, this pattern often involves commutative operations,

primarily due to the nature of increments on global counters for balances or prices. Such a pattern poses

challenges for classical Optimistic Concurrency Control (OCC) proposals [14,15] due to a high number

of aborts. Thus, more fine grained strategies are needed to minimize the cost of aborts under such

scenarios. Furthermore, current OCC strategies do not take into consideration resource waste resulting

from roll-backs and re-execution, resulting in potentially high number of re-executions of transactions with

only the last execution producing effective work.

1.2 Objectives

The primary objective of this Thesis is to propose a transparent strategy for efficiently handling hot-spot

scenarios by leveraging operation commutativity and employing parallel execution of such operations.

3

This strategy is grounded in findings from previous works [1,2,17], which highlight that hot-spot workloads

frequently involve a small subset of items being altered and also invole commutative operations, such

as increments to shared counters. By identifying and exploiting commutative operations, the proposed

approach aims to parallelize their execution, thereby enhancing overall throughput. Specifically, this work

seeks to demonstrate that, by parallelizing commutative operations, significant performance improvements

can be achieved over baseline strategies that lack commutativity support.

1.3 Outline

The remainder of this document is structured as follows. Chapter 2 introduces some background concepts.

Chapter 3 discusses current state-of-the-art solutions, and their limitations. Chapter 4 provides a detailed

account of the proposed solution, offering a comprehensive breakdown of each component. Chapter 5

specifies the methodology for evaluating the system, as well as the criteria and metrics employed to

measure its effectiveness and performance. Finally Chapter 6 concludes the document, specifying current

limitations, and insights for future work.

4

2
Background

In this Chapter we introduce some background concepts necessary to understand the rest of the document.

We start by describing the blockchain architecture and workflow in Section 2.1, taking emphasis on the

Ethereum blockchain, followed by a description of Cosmos. Then, in Section 2.2 we define Transaction

Memory as it has been used as a common solution on several proposed works. Finally, Section 2.3 briefly

discusses Symbolic Execution.

2.1 Blockchain and Smart Contracts

A blockchain fundamentally operates as a decentralized state machine, processing a predetermined

set of state-transition requests in the form of transactions, storing them in a chain of cryptographically

secured blocks that acts as a tamper-proof, append-only sequence of all verified and accepted state

transitions.

2.1.1 Ethereum

As a state machine, blockchains must have a well defined way of representing its state (implicitly or

explicitly). Ethereum defines its state - knwon as world state - explicitly as a map of addresses to

accounts [18]. This map is replicated and stored locally on each node as a database, containing the

transactions and system state in a serialized hashed data structure called a Merkle Patricia Trie [19]. This

specialized structure allows fast state equality comparison between two states by simply comparing the

root hash of the trie (which by definition captures all the underlying state changes).

Ethereum adopts an account model in its state, serving as state enclosures that keep a domain

logically bounded, i.e., each account contains several state attributes. Each account’s state, e.g., its

balance, is susceptible to changes upon transaction execution, leading to a new state. Ethereum defines

two different types of accounts - Externally Owned Account (EOA), and contract accounts. EOAs

have no code associated with them and have a cryptographic pair of keys which grant the possessor of

the private key control over the account’s funds. On the other hand, contract accounts do not have a

5

private key, as they are owned by the logic of its smart contract code - a compiled program code recorded

on the ledger, and executed by Ethereum’s state machine - Ethereum Virtual Machine (EVM).

In general, blockchain systems allow clients to have accounts associated to a unique cryptographic

key pair composed of a private and a public key. A private key guarantees ownership over the account,

as it is used to digitally sign transactions. As such, it is never transmitted or stored on the system, and

should remain private and never appear in any message passed over the network. Public keys on the

other hand are publicly available, and are used to uniquely identify each account as well as to validate the

signatures of transactions.

In terms of state, an account comprises of the following four fields [18], which capture details at a

particular world state:

• nonce: Number of transactions sent from this address, or number of contract creations made by

this account.

• balance: Monetary amount owned by this address expressed in Wei.

• storageRoot: 256-bit hash of the root node of a Merkle Patricia tree that encodes the storage

contents of the account.

• codeHash: Hash of the EVM code of this account’s contract.

EVM and Smart Contracts

Upon receiving enough transactions from clients, miners batch a defined number of transactions, and

execute those transactions sequentially. All Ethereum nodes run the EVM - a stack-based deterministic

execution environment - for all state-changing operations when executing transactions. Each transaction

is decomposed into EVM bytecode instructions that are executed sequentially, altering state and recording

the new state in a sandbox environment. If the execution finishes successfully, the nonce of the sender is

incremented by one and the new state is written to the ledger, ensuring persistency. Note that nonces are

essential to avoid replay attacks. If the execution encounters any problem, the EVM ensures all changes

are rolled-back and never persisted in state. Ethereum defines three primary types of transactions:

value transfer, which comprises a monetary transfer of ether from the sender to the recipient, contract

creation, used to deploy a new smart contract, and contract call, which invokes the execution of

compiled code associated with the recipient account.

Simply put, a Smart Contract is a Turing-complete program written in a high-level programming

language (such as Solidity [20]), compiled and stored in the blockchain under a specific contract

account. Clients can then invoke any public method of any available contract given they have the

necessary funds.

6

The deployment of smart contracts involves encoding the contract into EVM bytecode and sending

it as a transaction to the network. Miners include this transaction in a block and execute the CREATE

operation on the EVM, which creates a new contract account. The resulting transaction receipt contains

the address of the newly deployed contract.

As part of their complex logic, contracts can invoke other contracts through message calls, enabling

autonomous information exchange. This requires distinguishing between the sender (msg.sender) and

the transaction originator (tx.origin). The sender represents the address initiating the current contract

call, dynamically adapting to the immediate account (either an Externally Owned Account or a contract

account) invoking the function. In contrast, the transaction originator refers to the original Externally

Owned Account that initiated the transaction, remaining constant regardless of the number of contract

invocations in the transaction stack.

Each smart contract has its own state, and this state is isolated from the state of other contracts. This

means that a contract cannot change the state of another contract directly. A contract can only change

the state of another contract via a message call, making the target contract change its own state. Smart

contracts, just as any account, also have a balance. Smart contracts can receive ether through direct

transfers from EOAs, as well as receiving ether as part of transactions or contract creations. The balance

is then used to cover any costs relative to message calls the contract may invoke as well as the execution

cost itself.

Transactions

For state to evolve over time, there must exist state transitions. Transactions serve as the embodiment

of such transition requests allowing Ethereum accounts to interact with each other. A transaction is a

cryptographic set of signed instructions issued by a Client and consistently includes two fields - sender

and receiver, both identified by their respective public key. Each transaction is executed by the state

machine, recording temporary state changes, which are made persistent upon a successful execution,

marking a new state recorded on the ledger.

Gas and Payment

To handle Turing-completeness and prevent smart contracts from running indefinitely, the EVM assigns a

cost to each bytecode operation, expressed as gas, and evaluated in ether. These operations encompass

a wide range, including arithmetic, control-flow, and crucially, those interacting with memory or state—such

as MLOAD, MSTORE*, SLOAD, SSTORE. MLOAD loads a word from memory, MSTORE* saves a word or a byte to

memory, SLOAD loads a word from storage, and SSTORE saves a word to storage.

When a transaction triggers the execution of a smart contract, its sender must define an amount of

gas - gas limit - that sets the upper limit of what can be consumed running the contract. The gas limit set

7

is, in turn, restricted by the sender’s account balance. If the cumulative execution cost surpasses the

specified gas limit, the computation is abruptly terminated, and any changes made to the state during the

execution are rolled back. Consequently, a client cannot issue an execution with a gas limit higher than

its own balance and anticipate a successful transaction execution. This guarantees there can never be

an infinite execution that halts the entire system. Importantly, the sender does not receive a refund for the

unused gas. In addition to out-of-gas exceptions, executions may also be aborted if transactions fail to

meet require statements, essential for ensuring state consistency. For instance, a simple transfer of a

certain amount X from account A to account B necessitates the verification that A holds at least X ether.

If a transaction does not satisfy such require statements, it is aborted, and the execution cost is refunded

to the sender—whether its an EOA or a contract account.

As part of the broader incentive mechanism, miners play a pivotal role. Miners are rewarded not only

through block rewards but also by collecting transaction fees. The gas used in a transaction is multiplied

by the gas price, which is determined by the transaction sender, resulting in the transaction fee. This fee

serves as an incentive for miners to include a transaction in a block, as they prioritize transactions with

higher fees due to the potential economic benefit. In essence, users compete to have their transactions

processed promptly by offering higher gas prices.

Consensus Protocol

After the execution step, a miner broadcasts a block to be agreed by all nodes using the consensus

protocol mechanism. In permissionless blockchains like Bitcoin, the Proof of Work (PoW) consensus

strategy is used, where nodes compete to solve cryptographic puzzles, with the first successful node

broadcasting the block for validation. In Proof of Stake (PoS), miners prove ownership of currency, and

methods like randomization determine the stakeholder to forge the next block. PoS is more energy-efficient

than PoW, but security concerns may arise due to lower mining costs.

Figure 2.1 illustrates the generic permissionless workflow, spanning from transaction creation and

proposal to execution and final validation. A client initiates a transaction, which is sent to all peers through

the client’s Local Parity Node. Upon reception, nodes add the transaction to the memory pool. Miners,

prioritizing transactions with higher fees, construct a block that is subsequently executed sequentially

by the EVM. If the execution is successful, the new block is appended to the ledger and broadcasted to

all nodes for validation. Validators replay the transactions from the received block, and upon successful

validation, the block is added to the ledger, and the associated transactions are removed from the

transaction pool.

In permissioned blockchains, algorithms that require knowing the number of participating nodes such

as Practical Byzantine Fault Tolerance (PBFT) are used. PBFT tolerates byzantine faults, allowing it to

handle up to 1/3 malicious replicas.

8

Figure 2.1: Blockchain Workflow.

The proposed work is designed to be transparent, adaptable to any blockchain type, and compatible

with various consensus algorithms.

2.1.2 Cosmos

While Ethereum revolutionized blockchain with smart contracts, Cosmos [10] offers a different approach,

shifting from Ethereum’s monolithic architecture to a scalable model called “The Interchain”—a network

of interoperable, sovereign blockchains, called zones.

Cosmos envisions an internet of blockchains, where multiple parallel chains can interoperate while

maintaining their individual security properties. This approach diverges significantly from Ethereum’s

concept of a “world computer” where all decentralized applications share a single blockchain infrastructure.

Cosmos focuses on three principles [10]:

1. Sovereignty: Each blockchain maintains autonomy over its governance and economic models,

9

Figure 2.2: Cosmos Node.

enabling specialization for specific use cases. This contrasts sharply with Ethereum’s model, where

all applications follow the same EVM rules.

2. Scalability: Cosmos’ multi-chain architecture distributes computation across blockchains, avoiding

bottlenecks common in single-chain systems like Ethereum.

3. Interoperability: The Inter-Blockchain Communication Protocol (IBC) [21] enables seamless data

and value transfer across blockchains.

Despite these differences, Cosmos retains core blockchain properties such as the account model,

gas mechanism, and smart contracts, detailed in the following sections.

Blockhain Architecture

Cosmos nodes consist of three components, as shown in Figure 2.2.

CommetBFT At the heart of each independent blockchain is the Tendermint Core [22] - a PBFT-like

consensus engine ensuring agreement on the blockchain’s state even with faulty nodes. Tendermint is

application-agnostic, enabling any deterministic application to run on the blockchain.

ABCI CometBFT (Cosmos’ Tendermint Core) relays transactions to the application layer via the

Application Blockchain Interface (ABCI), which the application must implement, as shown in Figure 2.2.

CometBFT orders transaction bytes but does not interpret them. These ordered bytes are passed to the

application through ABCI.

Cosmos SDK Virtual-machine blockchains like Ethereum introduced the concept of programmability

through the use of virtual machines to interpret Turing-complete smart contracts. These blockchains

provided significant advancements over prior, more rigid platforms, such as Bitcoin. However, virtual

machines, like the EVM, present some limitations for more complex applications [23]:

10

• Smart contracts written for virtual machines are constrained by the capabilities of the underlying

VM. For instance, the EVM requires developers to use a specific, often immature, programming

language and provides limited automation and cryptographic operations.

• All smart contracts on a virtual-machine blockchain share the same resources, which can create

bottlenecks and limit performance. Even with optimizations like sharding, the interpretation of

smart contracts by the virtual machine (VM) introduces inherent inefficiencies.

• Application sovereignty is reduced, as decentralized applications must operate within the gov-

ernance framework of the general-purpose virtual-machine blockchain. Developers have limited

control over their application and are constrained by the overarching rules of the network.

To address these limitations, Application-Specific Blockchains have emerged, offering a flexible and

efficient solution. The Cosmos SDK is designed around this concept, allowing developers to create

blockchain applications that are tailored specifically to their needs,

At the top level is the Application, built using the Cosmos Software Development Kit (SDK), a frame-

work that facilitates the development of secure state-machines on top of CometBFT via a modularized

framework of interoperable modules. Cosmos SDK employs a multistore for state management, with

each module operating in its own key-value store (KVStore). Since KVStores persist only byte arrays,

data must be serialized with a codec like Protocol Buffers. This design allows modules to manage their

state independently, ensuring clear compartmentalization and minimal coupling.

The SDK provides several foundational modules that cover essential blockchain functionalities [24]:

• x/auth: Manages accounts and authentication processes.

• x/bank: Supports token creation and transfers.

• x/staking: Facilitates Proof-of-Stake consensus mechanisms, including staking operations.

• x/slashing: Imposes penalties on validators for misbehavior.

These core modules can be used directly or extended with additional functionality. Custom modules

can also be built to define specific application logic. Modules within the Cosmos SDK interact through a

well-defined security model based on object capabilities. Each module exposes access to its internal state

via a keeper, which encapsulates the module’s state and defines methods for reading and writing data.

These keepers are passed between modules to authorize state access, ensuring that no unauthorized

operations occur. This mechanism guarantees modular security without the need for complex access

control lists.

Cosmos SDK applications are extensions of BaseApp, which provides core logic for transaction routing

and message processing. A representation of the overall workflow is depicted in Figure 2.3. When a

11

Figure 2.3: Cosmos execution workflow.

transaction is received, BaseApp directs it to the appropriate module based on the transaction type. Each

module in the Cosmos SDK integrates lifecycle hooks, which execute at various stages of the block

lifecycle. This allows modules to define logic to be executed at the start of a block and at the end of a

block.

IBC The IBC enables secure and permissionless data and asset transfers between blockchains, facili-

tating cross-chain communication and interoperability. IBC is consensus-agnostic, functioning across

various networks and operating in two layers: the transport layer for secure connections and authenticated

data transmission, and the application layer for processing and interpreting data packets.

IBC meets the crucial need for communication among independent, application-specific blockchains.

In the Cosmos ecosystem, it standardizes ordered, exactly-once delivery of packets for exchanging

state data, tokens, or assets, allowing interoperability without intermediaries. For instance, IBC allows a

Cosmos blockchain to accept tokens or transfer state information securely. Modules across blockchains

communicate via channels defined under a connection, with each connection supporting multiple

channels.

To facilitate cross-chain communication, IBC relies on relayers that monitor the source blockchain,

package relevant data, and transmit it to the target chain. Each blockchain maintains a light client of the

12

other chain to verify incoming messages’ validity without needing the entire history. The protocol supports

multiple relayers for redundancy, ensuring secure message transmission across the network.

CosmWasm

CosmWasm is a WebAssembly (WASM)-based smart contract platform integrated with the Cosmos SDK,

allowing the addition of smart contract functionality to application-specific blockchains. It utilizes a Wasmer

Virtual Machine (WVM) for executing Turing-complete programs, typically written in Rust, in a sandboxed

environment that ensures smart contracts run independently of the core blockchain application.

With CosmWasm, decentralized logic can be incorporated into applications without altering the

underlying blockchain infrastructure. The CosmWasm module, x\wasm, serves as an intermediary that

integrates smart contract execution into the modular Cosmos architecture.

Adhering to the object-capability model of the Cosmos SDK, CosmWasm contracts use keepers

to interact with other SDK modules (e.g., x\bank) in a controlled manner. This ensures that contracts

can access functionalities without directly modifying the state of other modules, preserving security and

modular integrity. Figure 2.3 illustrates the workflow from block creation to byte data interpretation via

ABCI, leading to the execution in the CosmWasm Virtual Machine (CVM) module.

The x\wasm module maintains a key-value store (KVStore) for persistent storage of smart contract

bytecode and state, essential for managing operational data across blocks.

CosmWasm is also fully compatible with the IBC protocol, enabling smart contracts to communicate

with other blockchains in the Cosmos ecosystem, thereby enhancing the flexibility of Cosmos-based

decentralized applications.

CosmWasm Execution Workflow As discussed earlier, Cosmos blockchains utilize CosmWasm as the

execution platform for smart contracts. Unlike a single, monolithic execution environment, the CVM acts

as a wrapper around the WVM. It intercepts smart contract calls at designated entry points and delegates

the execution of contract logic to the WVM.

The CVM manages crucial external operations such as storage access, cryptography, and other

functionalities needed by smart contracts. When a contract call is initiated, the WVM executes the

business logic, while the CVM handles interactions with the blockchain’s state (i.e., reads and writes from

storage) through external calls defined in the smart contract’s WASM bytecode. This design allows the

WVM to concentrate solely on smart contract execution, with the CVM synchronizing data and managing

interactions with the underlying blockchain infrastructure. From the CVM developer’s perspective, the

smart contract operations act as a black box, with synchronization points between the smart contract

logic and the CVM occurring solely through these delegations.

This architecture limits execution control, rendering strategies such as those proposed by Lin et al. [2],

which rely on stack-level operation control, impractical. Such fine-grained control is abstracted away from

13

Figure 2.4: Smart Contract delegated execution.

the CVM and only available within the WVM. In response, we propose a system, as outlined in Chapter 4,

that achieves operation-level control by synchronizing execution at the points where reads and writes are

delegated from the WVM. Figure 2.4 illustrates the communication flow between the CVM and the WVM

for a basic workload.

2.2 Transactional Memory

Transactional Memory (TM) serves as a concurrency control mechanism simplifying concurrent program-

ming by enabling groups of load and store instructions to execute atomically, diverging from traditional

lock-based synchronization methods. TM facilitates communication between concurrent threads within

an application through the execution of lightweight, in-memory transactions. Similar to its database

equivalent, a transaction represents a finite sequence of instructions that must observe certain properties

such as Serializability and Atomicity. Serializability ensures that instructions from different transactions

are executed without interleaving, while Atomicity mandates that a transaction either commits all changes

or aborts them. During a transaction, shared data is accessed, and the transaction subsequently either

commits or aborts. In the event of a conflict, one of the conflicting transactions is compelled to abort

14

and roll back. Otherwise, it commits, and its operations are applied to the shared state atomically. The

primary goal is to provide programmers with an abstraction, namely the transaction, making concurrency

easier. TM proves beneficial in addressing common issues encountered in lock-based approaches,

such as priority inversion, deadlocks, and reduced concurrency [25]. Transactions are speculatively

executed across different threads and processors, yet only one transaction can commit in a single step.

Transactional Memory can be implemented in hardware, software, or a combination of both.

Hardware Transactional Memory

Hardware Transactional Memory (HTM) operates by integrating the transaction construct and concurrency

control directly into the processor unit. Within HTM systems, it monitors how memory is accessed at the

physical level and manages conflicts using hardware cache hierarchies and coherence protocols. Notably,

critical sections in HTM can run concurrently unless the system identifies the need for serialization to

ensure smooth execution. The specific nature of HTM introduces extra rules about how transactions

might fail, classifying these systems as ”best-effort” approaches.

Software Transactional Memory

Software Transactional Memory (STM) systems furnish Transactional Memory capabilities through

software runtime support, employing instrumentation code and software data structures. STM frameworks

are compatible with prevailing hardware and offer greater flexibility compared to HTM. They serve as a

more portable solution than HTM, albeit incurring overhead due to the tracking of a transaction’s memory

access, which can slow down each thread up to 40% [26].

2.3 Symbolic Execution

Symbolic execution is a technique aimed to facilitate the analysis of programs by determining the classes

of inputs that trigger specific execution paths. Unlike concrete execution, where a program runs on actual

inputs, symbolic execution employs symbolic values for inputs, generating expressions and constraints

that describe program behaviour. The exploration of multiple paths under different symbolic inputs enables

a comprehensive analysis of a program’s potential outcomes.

Within symbolic execution, an interpreter traverses a program, maintaining a first-order Boolean

formula for each explored control flow path and a symbolic memory store mapping variables to

symbolic expressions or values, as shown in Figure 2.5. Constraints derived from these symbolic

representations are subsequently solved to pinpoint inputs triggering particular branches. This approach

15

Figure 2.5: Symbolic Execution.

enables reasoning about classes of inputs rather than individual values, thereby overcoming limitations

linked to random concrete input generation used in unit testing.

Despite its theoretical soundness and completeness in identifying the classes of inputs for each

possible output, exhaustive symbolic execution faces scalability challenges in real-world applications [13]:

• State Space Explosion: Language constructs like loops can exponentially increase execution

states, making exhaustive exploration infeasible.

• Constraint Solving: Efficient constraint solving, particularly in the presence of constructs like

non-linear arithmetic, is crucial. Satisfiability Modulo Theories (SMT) solvers demonstrate scalability

but face challenges in certain scenarios.

Due to the high practical cost of exhaustively enumerating all program paths, SE engines adopt

heuristic strategies for path prioritization, such as Depth-First Search (DFS), Breadth-First Search (BFS),

or Random Path Selection. While these strategies contribute to the formulation of a more efficient search

approach, the Path Explosion problem persists due to the exponential growth of states. Two common

strategies employed include pruning unrealizable paths by employing constraint solvers at each branch to

eliminate paths whose conditions are guaranteed to never be true, and state merging, a technique that

combines different paths arriving at the same symbolic store. The converged path is then represented by

a disjunction of the formulas describing individual states [13].

16

3
Related Work

In this chapter we provide an exploration on current state-of-the-art solutions. Emphasis will be placed

on identifying inherent limitations, or unique contributions associated with each approach. Finally, we

provide a final discussion.

3.1 Speculative Execution

Various different techniques have been proposed to improve smart contract concurrency over the years,

particularly through the utilization of Speculative Execution. Works that follow this strategy do not rely on

any known-in-advance information, and execute transactions in a best-effort way, hoping for the best case

of reduced conflicts. Upon detecting a conflict the transaction is either delayed, or aborted, rolled-back

and re-executed.

Dickerson et al. [16] introduced a strategy based on Two Phase Locking, where miners acquire abstract

locks when executing transactions concurrently. If a lock acquisition fails, a conflict is detected, and the

transaction is rolled back using an inverse log to undo operations. Miners then mark dependencies as a

happens-before Directed Acyclic Graph (DAG) and include it with the block sent to validators, as shown

in Figure 3.1. Validators follow a fork-join schedule, executing transactions according to the DAG order.

Since the miner’s strategy is non-deterministic, Dickerson et al. use the execution schedule of the block

proposer as the implicit agreement, which validators follow deterministically.

This approach has some drawbacks. First, adding dependencies to the block raises security concerns,

as malicious miners may attempt to propose an equivalent sequential schedule, intentionally slower than

its parallel counterpart. This tactic aims to impede validation by competing miners. Although the authors

suggest incentivizing miners to propose highly parallel schedules, this solution would require systemic

changes, reducing transparency. Second, appending the DAG to the block increases its size, especially

in workloads with many conflicts, such as hot-spot accesses [1,2,17], leading to longer transmission

times and higher latency.

Saraph and Herlihy [17] proposed a simple bin-based speculative approach with two phases. First,

17

Figure 3.1: Dependency graph workflow.

the miner uses locks and tries to execute transactions concurrently, rolling back transactions that lead to

conflicts. Conflicting transactions are then placed in a sequential bin, while non-conflicting transactions

are placed in a parallel bin. After executing all non-conflicting transactions, the miner starts the second

phase, executing all transactions from the sequential bin one by one. Although this approach avoids

the security and space issues of appending the DAG capturing the dependencies in the block, it fails to

harness the maximum concurrency in the block, as some transactions placed in the serial bin could still

be parallelized.

OptSmart [15] provides a similar strategy, relying on Multi-Version Timestamp Ordering Software

Transactional Memory (MVTO STM), which maintains multiple versions for each transactional object

(t-object) reducing the number of aborts. The miner executes transactions optimistically and non-

deterministically under the protection of STM, and when a conflict is detected, it is rolled-back and

re-executed, and the conflict is captured on a Block Graph (BG) using an adjacency list structure.

Transactions that do not conflict are stored in a concurrent bin. The BG and the concurrent bin are sent

piggy-backed in the block, and the validator then runs the transactions in the concurrent bin concurrently,

and only after it executes concurrently the transactions following the captured conflicts in the BG. This

strategy takes the previous idea of separating conflicting from non-conflicting transactions [17], while

improving performance and space. By using a BG to capture dependencies, validators can achieve better

concurrency when executing the transactions in the block. On the other hand, by only storing conflicting

transactions in the BG, the block uses less space as non-conflicting transactions are not represented,

getting rid of unnecessary nodes in the graph. Still, this approach suffers from the same problems

as the previous works. Although theoretically the block may not even include the BG (in the optimal

case there are no conflicts), in practice, this is unlikely, as conflicts are predominant in the blockchain

environment [1,2,17]. Thus, suffering from security issues (high probability of appending the BG in the

block), as well as higher latency to send/receive the block (although with less impact than the previous

works).

BLOCK-STM [14] solves these problems, avoiding the need of a dependency graph sent along

the block, by ensuring deterministic execution at all nodes. Their approach relies on an Optimistic

Concurrency Control (OCC) scheme along with STM execution with deterministic commit order according

to the order transactions appear in the block. Miners execute transactions optimistically, recording the

18

Figure 3.2: OCC with deterministic commit order vs. OCC-DA. adapted from: [1]

RWS at runtime. While a transaction is in progress, its reads can access the storage state corresponding

to the highest transaction that occurred before the current one. After the transaction finishes execution, it

undergoes a validation phase. During this phase, the transaction re-reads the previously recorded RWS to

verify the validity of all the values involved. Successful validation alone does not guarantee commitment;

therefore, a transaction can only be committed once all preceding transactions have undergone validation

and have been committed.

The idea of executing transactions in a predetermined order was first explored in database systems

like BOHM [27] and Calvin [28], where transactions execute deterministically using pre-known write-sets.

However, this approach is impractical in blockchains due to challenges in predicting the complete RWS

for smart contracts. BLOCK-STM captures the RWS at runtime, avoiding the need to know it beforehand.

Although it may incur up to 30% overhead in sequential execution, their solution introduces two new

improvements - deterministic execution and transparency. For the former, since they impose additional

constraints on transaction commit order, they achieve determinism without relying on any additional

structure to force the same equivalent serial order. As a result, their proposal is almost completely

transparent to the current system, only requiring changes in the execution phase. The adoption of

concurrent systems is facilitated by this approach, as it minimizes costs. There is no necessity to modify

other components within the system, and there is no need to redesign existing components to address

any security issues that may arise when employing a DAG.

Garamvölgyi et. al [1] raised a concern related to the usage of OCC with deterministic commit order

as we have seen in BLOCK-STM. This strategy, although guaranteeing the same final state on all nodes,

cannot guarantee the same execution process, i.e., cannot guarantee that if T1 aborts at node A, T1

also aborts at all other nodes. Optimistic Concurrency Control with Deterministic Aborts (OCC-DA) [1]

aims to solve this issue. As an illustrative example, refer to Figure 3.2, where two distinct validators

execute the same set of transactions with an equal number of threads. Validator A concurrently executes

T2 with T1, leading to an abort of T2 due to a conflict with T1. T2 is subsequently re-executed. Now,

consider OCC Validator B. In this scenario, T2 is only executed after the completion of T1, influenced

by non-deterministic events on the thread handling T2. Consequently, T2 proceeds without any abort.

This can become problematic in systems that rely on commit/abort decisions to penalize aborts to avoid

DoS attacks [1]. As such, two different nodes may charge different amounts on the same user account

depending on the number of aborts. The proposal aimed to solve this issue is a system based of OCC

19

with snapshot isolation where transactions are committed according to their order in the block, but

further refined to also produce deterministic aborts. This guarantees that if a transaction is aborted

once on one node, it is aborted exactly once on all other nodes. To achieve this, each transaction is

assigned a storage version, which specifies the transaction version up to which the storage writes can

be accessed. Meaning a transaction can only see writes on storage up to the transaction specified by the

storage version. This also means a transaction can only see these values after the corresponding storage

version transaction has committed. If it is not committed yet, the transaction cannot start and must wait.

Upon a conflict, the storage version is set to the highest transaction lower than the one executing. As an

example, consider Figure 3.2. In the traditional OCC with deterministic commit order, Validator A and

OCC Validator B both achieve the same final state, even though their execution differs. On the other

hand, assuming a storage version of 0 was set at transaction 2, OCC-DA Validator B will abort T2 even

if it is executed after T1, as it cannot read the values written by T1, and will detect the conflict when

validating. It is then re-executed and sets the storage version to 1, committing this time. Since the value

of the storage version impacts performance, two strategies are employed to predict the storage version

statically and deterministically: gas limit - transactions with higher gas limit depend on transactions with

lower gas limit in the assumption those with higher gas will finish executing after, and static analysis

to get an approximate dependency graph. Which need not be perfect, but rather deterministic. These

restrictions increase the execution overhead slightly, but solve the non-determinism of aborts, presenting

a good trade-off between performance and security. Furthermore, it also limits wasted resources on

re-execution. Besides OCC-DA, Garamvölgyi et. al [1] also proposed the use of partitioned locks.

The idea comes from the study that shows most conflicts are usually bound to single atomic counters,

used mostly under increment operations. To improve concurrency, the authors propose partitioning these

counters into sub-counters, reducing conflicts on write-intensive workloads. The overhead appears only

on read-intensive workloads, since each read will need to sum all sub-counters, conflicting with all current

writers. Nevertheless, the study shows that the speedup almost doubled when using 2 sub-counters.

The last strategy proposed by Garamvölgyi et. al [1] is devising special cumulative addition operations,

tailored to deal with concurrent read-modify-write operations, and eliminate conflicts on transactions that

issue only increments without using the read value.

So far, all the presented works rely on the same coarse grained concurrency granularity at the

transaction level. Lin et. al. [2], as well as other empirical analysis [1,17] on Ethereum blockchain have

shown that neither this coarse granularity nor traditional concurrency control algorithms are suited for

blockchain workloads. Thus new mechanisms must be developed with finer granularity. Lin et. al. [2]

introduced a strategy that operates at operation level. Nodes execute transactions similarly to any other

OCC scheme, but, at conflicts, only individual EVM operations that depend on conflicts are re-executed.

Their proposal relies on capturing the dependencies of each operation dynamically at runtime, and record

20

Figure 3.3: Olive [2] stack and storage Single Assignment Log (SSA) generation.

them on a Static Single Assignment (SSA) operation log. This log tracks dependencies of operations

related to both stack, memory and storage (mainly related to SSTORE and SLOAD operations, described in

Chapter 2). This is achieved by inserting a new entry for every EVM operation, recording the operation,

the operands, the result, and the log entry from which the operands depend on.

Consider the scenario illustrated in Figure 3.3. Suppose a preceding stack operation, specifically

ADD, had generated the value 30 within the stack (top stack entry). Upon executing a subsequent SLOAD

operation (bottom stack entry), the associated storage location is scrutinized to ascertain any preceding

writes conducted by the ongoing transaction. In this instance, a prior write, denoted by the SSA log

sequence number 9 (highlighted in green), had written a value into the storage item that the current

transaction is presently reading (marked under the first operand, with value 30). Consequently, this log

entry (9) needs to be tracked by the SLOAD operation’s entry - precisely, assigning sequence number 9

under def.storage within log entry 16. Besides this storage dependency, a stack dependency persists,

as entry 16 references the value 30 derived from the previous stack operation with sequence number 15.

Thus, the SLOAD’s log field def.stack is set to 15.

When re-executing, the system relies on special entries created at control-flow operations - constraint

guards - that ensure the same path is taken when re-executing. This strategy is much more tailored to

blockchain workloads, with a much finer granularity that results, on average, on only 0.3% of the total

transaction EVM operations to get re-executed in the redo phase [2]. Just as BLOCK-STM, their approach

is transparent, focusing only on changes related to the actual execution phase, minimizing any efforts

needed to implement such strategies in real-world systems. However, implementing operation tracking

logs at stack, memory and storage level is not trivial in practice.

3.2 Static Analysis

Recent works seem to have an increasing interest on analysing smart contract code statically, to either

instrument it, or to infer the RWS. Works following this strategy have the advantage of building information

21

Figure 3.4: FastBlock Atomic Section identification.

that help scheduling transaction execution based on the contract code. However static analysis can still

be inaccurate. Li et. al [29] proposed a strategy that combines static analysis with concurrent execution

under HTM support. Miners identify Atomic Sections (AS) and their conflicting conditions - statements

specifying, for each method and each input parameter, which ASs conflict - using symbolic execution. The

workflow is shown in Figure 3.4. A smart contract is first decomposed into a Control Flow Graph (CFG)

representing the possible paths the program can take. Then a symbolic execution tree is built following

the CFG, and the RWS is captured while the paths are being parsed. Paths that end up with the same

RWS are considered to be equivalent, and their path constraints are joined as explain in Section 2.3.

Then, the RWS of each of these transactions is compared against each other to identify all possible

conflicts assuming the worst case. Finally, instrumentation primitives are inserted in the contract code.

After the instrumentation, miners execute the transactions and code within an AS is executed under

HTM protection. When conflicts are detected, the corresponding AS is aborted and re-executed. Miners

then produce a commit order based on the CPU recorded timestamps, and broadcast the block. Validators

then produce a graph at AS level from the serial block order, and repeat the same process as the miner.

Note that the instrumentation only needs to happen once, when the contract is first received. This

approach takes advantage from static analysis to produce finer granularity - at the level of ASs, instead

of transaction level. However, relying on HTM comes with some drawbacks. Namely limited support

for diverse architectures, and also no guarantees the AS will ever commit. This requires devising a fair

execution cost charging mechanism, such as considering only the cost of the last execution. However,

doing so, we allow malicious nodes not to be penalized for proposing highly conflicting transactions -

a problem raised by Garamvölgyi et. al [1], as discussed earlier in Section 3.1. Also, the insertion of

additional instrumentation primitives in the contract code raises the total transaction execution cost, as

these have to be also executed under the EVM. Thus, the approach, although performant, lacks portability

and transparency, as it requires specific hardware, and incurs additional costs for the users.

22

(a) Partial State Access Graph (SAG). (b) Dependency tracking with dependent reads.

Figure 3.5: Qi et. al. proposal. adapted from: [3]

Qi et. al. [3] propose using static analysis via symbolic execution to capture all possible RWS for every

input by analyzing each smart contract’s code when it is first received by a node. Upon receiving a new

transaction, nodes use the pre-constructed State Access Graph (SAG) (see Figure 3.5(a)), or compute it

on the fly, to predict the data store items that will be accessed by the transaction, and place the transaction

along with its graph in the memory pool. As some transactions may depend on values from state, some

nodes in the SAG cannot detect the state item to be accessed, and a read to the current blockchain

snapshot may be needed to complete the SAG. Miners then track the access operations (reads and

writes) of each transaction per storage item, keeping the order of transactions that appears in the block, as

depicted in the top side of Figure 3.5(b). This list-like data structure implements multi-versioning, ensuring

no write-write conflicts are possible, thus minimizing conflicts. Transactions with no dependencies are

first picked to execute, and those that need to read from a storage operation from a previous transaction

must wait until all dependent storage items are written. To reduce coarse granularity, an early-write

visibility strategy introduces Release Points in the SAG, allowing transactions to make their written values

visible to others while ensuring correctness. These Release Points ensure that (1) no other write occurs

afterward, and (2) the transaction will not abort by any deterministic abortable statement, achieved by

predicting an upper bound on gas costs of the remaining execution. This strategy increases performance

by refining granularity.

The main drawback of this strategy is notable when the prediction of the RWS is not accurate.

Following the example in Figure 3.5(b), when a transaction is executing, and a RWS that was not captured

by the SAG is detected, the access sequence must be updated, and transactions depending on either

the wrongly predicted state item (Tx4), or on the highest transaction that is lower than the one executing

23

which wrote to the new state item (Tx3) must be aborted. This leads to cascade aborts, recursively

aborting transactions and hurting performance. Besides cascading aborts, the strategy also presents a

less-optimal decision, by computing the SAG upon a transaction is received, and storing it in the memory

pool. Due to the workflow of blockchains, this may lead to long waits in the pool, making the predicted

RWS outdated, as it was computed from an increasingly older state, ultimately leading to an increase in

the number of cascaded aborts.

Both works present improvements in terms of transaction granularity when compared to the majority

of speculative execution’s works.

3.3 Smart Contract Isolation: Intra- vs. inter-SC conflicts

As discussed in Section 2.1.1, smart contract’s storage is isolated from one another. The works on this

section schedule their execution based on this idea of isolation, and assign contracts to threads/nodes

based on the contract’s address, with the goal of minimizing synchronization costs across threads/nodes.

ParBlockchain [30] proposes OXII, an order-execute paradigm for deterministic parallelism. It

consists of orderers to establish transaction order and generate a dependency graph without executing

the transactions, based on prior knowledge of transaction’s RWS, either predeclared, obtained via static

analysis, or speculative execution. Agents then install the corresponding smart contracts based on the

contract’s address, and when executing, only the contracts for which the node is an agent of are executed

by the node. This allows for inter-node concurrency, as different agents can execute different contracts

concurrently. However, when cross-contract dependencies arise, nodes must wait on the result from the

corresponding agent, thus hurting performance, as the inter-node communication is expensive. This

assignment of contracts to specific nodes is possible only in permissioned environments, where the

identity of the participating nodes is known.

FISCO-BCOS [31] tackles performance optimization at two different levels: inter-block and intra-block.

To improve inter-block concurrency, they propose a Block Level Pipelining (BLP) strategy composed of four

stages - Ordering, Execution, Checkpoint, Commit - where each stage may be parsing a different block

concurrently. The proposed BLP dynamically adjusts the number of blocks being proposed depending

on execution speed, and utilizes in-memory states that record the execution of a previous executed

but uncommitted block, such that new executions may start, and rely on previous state. For intra-block

concurrency, FISCO-BCOS devises a similar strategy as ParBlockchain [30], creating a scheduling based

on smart contract addresses, but differently from [30], this is done at the thread level. Smart contracts are

assigned to different thread pools, based on the idea that conflicts are reduced across contracts within

the same pool. Still, cross-contract calls across different pools require synchronization barriers which

incur overhead as it must wait on all other executors to finish processing transactions. Both FISCO-BCOS

24

and ParBlockchain are specific to permissioned environments, limiting their applicability. Furthermore,

although the idea of isolating smart contract execution is intuitive, there may still be conflicts. Even if no

cross-contract dependencies exist, when two contracts change global state such as the balance of the

same user account, they conflict. Such cases have not been explicitly addressed on these works.

SC-CHEF [32] proposes decomposing transactions into multiple sub-transactions that can be executed

independently while respecting their logic dependency. Each sub-transaction corresponds to a call to a

smart contract, and is mapped to a corresponding thread based on the data it accesses. Upon receiving a

new sub-transaction, a new node is created in the local dependency graph captured by the corresponding

thread. After the graphs have been built on all threads, each thread executes the sub-transactions

following the graph’s topological order, and respecting cross-contract call dependencies. Differently from

the previous two works, SC-CHEF can be employed in a permissionless environment, but lacks a devised

strategy on how to construct the RWS. They assume the RWS may be given by the clients, which is

not a practical solution. Also, as in the previous two works, SC-CHEF suffers from slightly increased

cross-thread concurrency due to conflicts on global state, not solved by contract isolation.

All these works provide finer granularity when compared to most of the previous works discussed.

Still, although exploiting the idea of contract isolation to minimize thread/node synchronization, they suffer

from the hot-spot problem. Since a large amount of calls is made to a small number of threads/nodes, this

ultimately leads to specific threads/nodes being overloaded while the others are underloaded, resulting in

an unbalanced utilization of resources.

3.4 Discussion

Several proposed solutions address the problem at hand but often lack optimal design for hot-spot

workloads. Approaches requiring a graph to be sent with the block [15,16] suffer from transparency and

security issues, while being unsuitable for high contention due to coarse transaction granularity, resulting

in significant resource wastage due to their optimistic nature. Solutions using OCC [14] also incur high

costs during transaction aborts. Saraph and Herlihy [17] limit aborts per transaction but do not parallelize

conflicting transactions. Conversely, OCC-DA [1] reduces aborts and allows parallel execution of conflicts,

enhancing security and resource efficiency at low overhead. Olive [2] improves upon this by applying

operation granularity, only re-executing specific operations, which lowers abort overhead but still incurs

costs from constructing the Static Single Assignment (SSA) log even in the absence of conflicts.

We have also seen solutions specific to permissioned environments [30, 31] that introduce finer

granularity at contract call level, but suffer from cross-contract calls across different nodes [30], and

across different thread pools [31]. Due to the limitation of being specific to permissioned, we will not

focus on the ideas of installing smart contracts in specific nodes, nor in devising an execution pipeline

25

Work Abort-Induced
Resource Waste

Roll-back
overhead

Scheduling wait
time overhead

Require Block
Graph

Concurrency
granularity

Requires
RWS known

a priori
Op Comm Support

Fine-grained
State Access

[3]
Dependent on

number of DTs* Very High Medium-High (if last
write is at end of tx) Yes

Last Write /
Transaction

in worst case
No No

FastBlock [29] Potentially High
Low/Medium

(depending on
size of

atomic section
None No Atomic Section No No

Dickerson et. al. [16] High (bounded to
number of txs

Miner-High
Validator-None

Miner - None
Validator - High Yes Transaction No No

BLOCK-STM [14] Potentially high
(unbounded)

Medium
(reading

ESTIMATE) /
High (validation)

None No Transaction No No

OptSmart [15] Potentially high
(unbounded) High None

Yes/No
(if there is
no conflict)

Transaction No No

OCC-DA [1] Low (at most
1 abort per tx) High None No Transaction No No

Olive [2] Potentially low
(unbounded) Very Low None No Operation No No

Speculative bin [17] Low (at most
1 abort per tx) High None No Transaction No No

ParBlockchain [30] None None Medium / Very high
(cross-contract calls) Yes Contract call Yes No

FISCO-BCOS [31] None None Medium / High
(cross-contract calls) No Contract call No No

SC-CHEF [32] None None Medium No Contract call Yes No

COEX-P None None Low-Medium No Operation Yes / No Yes

Table 3.1: Comparison table of discussed works.
*DTs (Dependent Transactions) refers to transactions whose RWS depends on some state value.

as proposed by these works. SC-CHEF [32] takes a similar approach as the previous two works, but is

not limited to permissioned systems. Still, as discussed in Section 3.3 it still suffers from the hot-spot

problem, causing threads responsible for popular contracts to have most of the work assigned to them,

causing an unbalanced resource utilization.

Fastblock [29] uses SE to detect ASs, but causes the cost of transaction execution to increase, while still

suffering from potentially high resource waste due to AS re-execution, as HTM cannot guarantee it will

commit. Qi et. al. [3] proposes a less-constrained and more transparent solution, with low resource waste,

but still suffers from cascading aborts upon RWS mispredictions. It also suffers from path explosion, which

need to be solved. One solution is to read the part of the transaction that could not be fully predicted, but

this leads to overhead as reading state is expensive. Still, the solution improves concurrency granularity.

Many of the suggested strategies operate at a transaction granularity, which may not be ideal. In

scenarios with substantial contention, common in typical workloads, this approach leads to costly aborts

or prolonged waiting times, depending on the chosen strategy. Works that provide contract call granularity

also suffer from the hot-spot problem as discussed above.

Table 3.1 provides a comprehensive comparison of the discussed solutions alongside our proposed

approach. The assessment involves a comparison of abort-induced resource waste, indicating the extent

of resource waste attributed to aborts throughout the entire execution. It’s important to note that this

26

metric depends not only on the overhead of a single roll-back but also on the total number of roll-backs.

Roll-back overhead is the overhead associated with individual roll-backs, where coarser granularity results

in higher roll-back costs. Scheduling wait time overhead quantifies the time wasted while waiting for

another transaction to complete without contributing useful work. This is particularly relevant in scheduled

executions. Solutions are further classified based on their dependency on a block graph for tracking

dependencies and their assumption about the knowledge of abort-induced resource waste in advance.

Finally, Operation Comm. Support refers to the ability to support and benefit from commutative operations

in the workload.

Additionally, we categorize the granularity of transactions in the system into five levels: Transaction,

Atomic Section, Last Write, Operation, and Contract Call. Our approach aims low to medium

scheduling wait time overhead during execution, ensuring efficient handling of high-contention scenarios.

By addressing the hot-spot directly, integrating commutative operation support, we propose a scalable

strategy that optimizes performance for workloads involving frequent conflicts, particularly those with

numerous commutative operations across a small number of smart contracts.

The solution leverages granular concurrency control at the operation level to further enhance par-

allelism. Notably, for the RWS known a priori entry, we have designated the value as Yes / No. This

reflects that, although our system supports the prediction of RWS based on a symbolic execution tree

for a given smart contract, we do not currently support dynamic changes to the RWS during runtime. In

essence, we either assume that the RWS of a smart contract is independent of its state—allowing us to

parse the symbolic execution tree to predict the RWS—or we receive the RWS information beforehand.

27

4
COEX-P

This Chapter presents COEX-P (Commutative Operation EXecution in Parallel), a framework for par-

allelized smart contract execution implemented in CosmWasm execution environment for the Cosmos

ecosystem. The solution is designed to address the inherent performance limitation of current serial

execution environments under hot-spot workloads by leveraging symbolic execution for conflict detec-

tion and operation commutativity identification, and an optimized scheduling approach for transaction

parallelization.

Although developed for the Cosmos ecosystem, using CosmWasm as the default VM, the solution is

not environment-specific and can be adapted to other architectures, such as Ethereum.

The rest of this Section is structured as following. Section 4.1 details the execution model and some of

its limitations. Section 4.2 provides an overview of the overall architecture, and its workflow. Section 4.3

describes commutative operations and how they are supported by the system. Section 4.4 details the

inputs for the system provided by symbolic execution, and how they are parsed and utilized by the

system. Section 4.5 describes thoroughly the process for creating the schedule, and how it addresses the

optimizations described in the preceding section. In Section 4.6 we detail the runtime updates made to

the schedule during execution, and how synchronization is achieved. Finally, Section 4.7 describes how

the final schedule is persisted into the storage, and how it ensures this persistence respects the block’s

transaction order.

4.1 Cosmwasm Execution Workflow

As previously described in Section 2.1.2, the CosmWasm execution model delegates the execution of

smart contract logic to the WVM while handling critical external operations such as storage access and

cryptographic functions within the CVM. This separation allows WVM to focus solely on business logic,

whereas CVM manages the contract’s interaction with the blockchain state through external calls.

This limits the control over the execution, as strategies such as the ones proposed by Lin et. al. [2],

taking advantage of stack-level operation control, become unfeasible to implement as this granularity

28

is abstracted from the CVM, and only available within the WVM. As such, the proposed solution works

with these read/write delegations to the CVM, using the information passed within those methods to

synchronize the actual execution with the predicted schedule as we describe in the following sections.

4.2 System Architecture Overview

We first briefly describe the key system requirements, and then present a top-level overview of the system.

The proposed solution presents a novel approach to parallelizing smart contract execution based off

of three base requirements:

• Transparency: Our approach preserves the existing blockchain security model by avoiding modifi-

cations to its core infrastructure. This minimizes the risk of new vulnerabilities and ensures that the

original security guarantees remain intact, maintaining the system’s integrity and trustworthiness

while optimizing smart contract execution.

• Performance: By leveraging conflict-aware parallel execution of smart contract transactions, the

system can achieve higher throughput.

• Hot-spot awareness: By relying on commutative operation identification via symbolic execution,

the execution can further parallelise commutative operations aimed for the same smart contract

storage item.

COEX-P mainly operates within the smart contract execution phase of the blockchain process, right

after a block has been constructed from a set of transactions waiting in the memory pool. It does not

introduce changes into the consensus, nor the block itself as some of the previously discussed works did.

Figure 4.1 describes the high-level overview of the system - The system works with two distinct entry

points at two slightly different levels - smart contract deployment, and smart contract invocation. Smart

contract deployment involves the deployment of WASM bytecode which is to be saved in the node. At this

point, COEX-P relies on a symbolic execution engine to parse the received code to produce a profile

for that contract. This profile is an in-memory structure that stores all possible execution paths of the

contract, enabling the extraction of a concrete execution path based on specific inputs. It evaluates the

relevant conditions at runtime, returning the RWS for the parsed path.

The specific implementation of this symbolic execution engine is beyond the scope of this Thesis;

instead, we focus on defining an interface that captures the expected output from such an engine.

The other entry point is related to the block execution. When the node receives enough transactions

either invoking a method from an already-deployed contract, or instantiating a brand new smart contract

from a previously deployed WASM bytecode, a block is built, and sent to the VMManager, which controls

the overall execution phase, as shown in more detail in Figure 4.2. For each transaction in that block, we

29

Figure 4.1: COEX-P workflow

compute its RWS from the smart contract’s profile, and use this information to schedule the transactions,

and execute them in parallel.

The execution phase itself can be further divided in three sub-phases, as we describe in more detail

in the following sections:

• Schedule Creation: This phase is concerned with gathering all RWS information, and using it to

detect the conflicts between transactions, and schedule them accordingly in a way that ensures

deterministic execution.

• Schedule Execution: Given a schedule, this phase is concerned with executing the transactions

following the input schedule. It is at this phase that thread management and runtime concurrency

control are ensured, making sure threads do not execute conflicting operations, execute balanced

workloads, and that they update the schedule accordingly.

• Schedule Persistence: After the execution phase has taken place, this phase runs over the final

schedule and uses its information to persist the results of execution in the smart contract’s storage.

Figure 4.2 illustrates all three execution phases in more detail. As explained earlier, the CVM works as

a wrapper around the WVM, and stores the execution context from the blockchain application perspective.

This means in practice that it is the CVM that keeps the schedule data structure, the RWS information,

as well as the smart contract storage. Once a thread starts executing, it delegates the execution to the

WVM, which in turn may invoke CVM functionality. The two most relevant imported calls in the WASM

bytecode are db read, which reads from storage, and db write, which writes to storage. In practice, each

of these calls needs access to the three data structures held by the CVM, as we will describe later on.

Once the execution is finished, the WVM is discarded, and the thread will be assigned another transaction

to execute, with the corresponding context for the associated smart contract at hand. It is important to

also refer that each CVM is responsible for a single WVM, and ech WVM needs a bytecode as input.

This means there will always need to be at least one CVM for each smart contract, initialized using that

contract’s bytecode.

When all transactions have been executed, the final schedule is iterated over, and the last written

30

Figure 4.2: VM execution workflow.

values for each storage item are persisted into the smart contract’s storage, which is then persisted into

the node’s persistent storage.

In our proposed solution, we make a key assumption to simplify implementation and focus on

showcasing the benefits of commutative operations: we assume that the RWS of each smart contract

is determined once during the scheduling phase and remains unchanged throughout execution. This

means that once the RWS is predicted, the smart contract cannot issue any new read or write

operations that were not anticipated. In essence, the system operates under the assumption that there

are no dynamic updates to the RWS, even if the actual workload could vary based on the current state of

the contract’s storage. We will discuss the consequences of this limitation later on Section 4.4.

4.3 Commutative Operation Support

Before delving into the solution’s components in more detail, we first introduce the concept of operation

commutativity and its impact on the system’s design. Later, in Section 4.6, we explain in more detail how

exactly the system parallelizes commutative operations.

Operation commutativity refers to the property of certain operations where the order of their execution

does not alter the final state. Formally, two operations O1 and O2 are said to commute if applying them

in different orders yields the same result, i.e., (O1 ◦O2)(x) = (O2 ◦O1)(x). This concept plays a crucial

role in concurrent systems by allowing operations to be executed in parallel without violating correctness,

thereby improving performance by reducing the need for strict serialization.

Commutative operations can practically be decomposed into basic read and write operations. For

31

Figure 4.3: Operation Commutativity Overview.

instance, consider an incremental commutative operation such as A = A + 1. This operation can be

expressed in terms of reads and writes as W (A) : R(A) + 1, where a read is performed on item A,

followed by a write of the incremented value. We rely on the symbolic execution engine to identify the

read and write operations associated with any abstract commutative operation (e.g., increment)

allowing the system to perform those operations in an order-independent manner.

This commutative property is especially useful when performing parallel execution, as illustrated in

Figure 4.3. Operations that commute can be applied concurrently in any order, and their effects captured

as deltas — incremental changes that each operation makes to the shared state. For instance, consider

a counter A: multiple increments on A can be treated as deltas (e.g., +1) rather than requiring immediate

updates to the shared variable. Similarly, in data structures like sets, additions or removals can be

handled as deltas without needing to directly modify the structure until the final merging phase.

As previously mentioned in Sections 2.1.2 and 4.1, the system synchronizes execution based on read

and write operations. As such, we must define commutativity in terms of these operations. Commutative

read refers to a read operation associated with an incremental write (such as adding a delta to a value).

Unlike typical reads, a commutative read does not require the most up-to-date value of the storage

32

item. Instead, it captures an initial reference value, which will later be used to calculate the effect of the

incremental write. This process will be explained in more detail in Section 4.6, when we explain how,

during execution, we support parallel execution for commutative operations. Take as an example the

following incremental write W (A) : R(A) + R(B) that needs to perform a read on A, and a read on B.

We define R(A) as commutative since it is directly associated with the incremental write in the sense

that it reads the exact same key being incremented. As such, this read does not require to read most

recent state, but can read any previous value for the purpose of computing the increment. R(B), on the

other hand, is a non-commutative read, as it is part of the increment on item A, and as such, requires

reading the most recent value from B. Writes are also characterised in a similar manner. In the previous

example, W (A) is said to be a commutative write since the written value is an increment over A’s

previous value. If, on the other hand we had the operation W (A) : R(B), the write would be classified as

a non-commutative write.

The performance benefit emerges when merging these commutative operations. After running in

parallel, the system efficiently combines the deltas into a final result, merging all the deltas to the initial

value. The only synchronization point is now at the final state, after having all deltas.

This approach avoids the complexity of handling conflicts in commutative operations, which would

otherwise require more rigorous synchronization and strict ordering.

4.4 Profile Generation

As outlined in Section 4.2, the first phase of the proposed solution is initiated upon the deployment of a

smart contract. During this phase, the SE engine performs an in-depth analysis of the contract’s WASM

bytecode, producing a structured output that encapsulates all potential execution paths, conditional

branches, and the corresponding RWS operations for each path. This output is critical as it provides a

detailed representation of the contract’s possible behaviors and associated state modifications.

Listing 4.1 shows an example of the Execute entry point of a simplified CosmWasm smart contract.

The entry point is declared in lines 1-10, and the inputs of the entry point, which will be used later for

parsing the contract’s profile are declared in lines 2-5. CosmWasm contracts follow a convention of

matching the received message (msg) against all possible enum variants. The example also follows this

practice, and we can see the matching in lines 7-9, where we extract a field user within the message,

and use it to call the add() function. This function is also simple. It fetches a user given its identifier, and

increments its balance by one.

33

1 pub fn execute(
2 _deps: DepsMut ,
3 _env: Env ,
4 _info: MessageInfo ,
5 _msg: ExecuteMsg) -> StdResult <Response > {
6 use ExecuteMsg ::*;
7 match _msg {
8 AddOne { user } => execute ::add(_deps , user),
9 }

10 }
11 ...
12 pub fn add(deps: DepsMut , user: String) -> StdResult <Response > {
13 COINS.update(deps.storage , user , |bank: Option <i64 >| {
14 match bank {
15 Some(value) => value + 1,
16 None => Err(StdError :: generic_err ("Value doesnt exist ")),
17 }
18 })?;
19 Ok(Response ::new())
20 }
21 ...

Listing 4.1: Smart Contract function example.

Upon receiving the compiled contract, the SE engine processes the bytecode and generates a

serialized output, which follows a structured format. Given that CosmWasm contracts are organized into

distinct entry points (e.g., Instantiate, Execute), the output produced by the SE engine will be similarly

segmented. This ensures that the behavior of each entry point is captured independently.

The format generated by the SE engine follows a predefined structure, as we describe next. This

format is segmented by contract entry points (e.g., ’I’ for Instantiate, ’E’ for Execute), and within each

section, variables relevant to the transaction are explicitly listed. Additionally, path conditions (e.g., PC 1,

PC 2) identify execution branches, accompanied by storage operations such as GET and SET, which may

be dependent on transaction inputs (e.g., GET(=AARiYW5r @ msg.user), where AARiYW5r stands for

the base key bytes in base64, msg.user is the value from the transaction input, and @ appends the

right side to the left). We rely on the SE engine capabilities to annotate each read and each write with

a flag indicating its commutativity status (Inc for commutative, Non-Inc for non-commutative). This

differentiation is essential for enabling parallelization during transaction execution.

1 ...
2 E ----------------------------
3 _deps: DepsMut
4 _env: Env
5 _info: MessageInfo
6 _msg: ExecuteMsg
7 > AddOne:
8 - user: string
9

10 [PC_1] Type(_msg) == AddOne
11 => GET(= AARiYW5r @ _msg.user): Inc
12 => SET(= AARiYW5r @ _msg.user): Inc
13 <- None
14 ...

Listing 4.2: Symbolic Execution output example.

Continuing our example, Listing 4.2 demonstrates the corresponding output from the SE engine for

34

the previously discussed smart contract. The output begins by specifying the Execute entry point (line 2),

followed by the expected inputs deps, env, info, msg (lines 3-6), and the message types supported

(lines 7–8). Each different message type appears after the > sign. As we can see, only one message

type is supported, with an argument user of type string.

Line 10 in the output identifies the path condition PC 1, which asserts that the input variable msg must

be of type AddOne. Below this condition, the GET (representing a read) and SET (representing a write)

operations are listed, along with the storage keys they access. The commutativity identifier is set to Inc,

indicating that the operations are commutative. Following the profile, right arrows (=>) indicate the positive

branch, when the condition returns true, and left arrows (<-) indicate the negative branch, when the

condition returns false.

This textual output is then converted into an in-memory tree structure, referred to as the contract’s

profile, representing the SE-generated symbolic output. This profile is stored persistently within the

node’s storage and linked to the smart contract’s bytecode. Notably, the profile is static throughout the

blockchain’s lifetime; it remains immutable and is used to predict the RWS of transactions based on their

inputs, and possibly on storage. This static profiling occurs, as explained, at contract deployment, and the

profile remains unchanged, allowing it to be parsed when necessary to retrieve execution path predictions

without requiring modification during the contract’s execution.

Figure 4.4 illustrates the resulting in-memory profile structure resulting from parsing the SE output

from Listing 4.2. The parent node in the symbolic tree is a ConditionNode, representing a conditional

expression that is composed of three elements: a left-hand side (lhs) expression, a relational operator

(rel op), and a right-hand side (rhs) expression. Expressions can be further decomposed into sub-

expressions, which may involve arithmetic operations, identifiers, transaction inputs, and more. For

example, the condition shown in the figure (top-left purple node) checks if the input message type is

AddOne. In this case:

• The lhs expression refers to the message type.

• The relational operator is Equal.

• The rhs expression is the custom type AddOne.

When parsing this profile, the condition is evaluated based on the transaction input captured in msg. If

the condition evaluates to true, the system follows the pos branch; otherwise, it follows the neg branch.

Each node type in the symbolic execution tree illustration is represented by a distinct color, with blue

nodes indicating one of two possible types:

1. ConditionNode: Represents a conditional check (as explained earlier), which evaluates expres-

sions involving transaction inputs, storage values, or other dynamic factors.

35

Figure 4.4: Smart contract profile tree structure.

2. RWSNode: Represents a leaf node containing the ordered sequence of read/write operations for a

specific execution path.

In the example, once the condition is evaluated as true, the system follows the pos branch and

retrieves the corresponding list of RWS operations (illustrated by the indices 0 and 1 under rws). The

unique identifier for this sequence is stored in the rws id field under the pos branch.

The rws id is a unique ID generated based on the sequence of reads and writes, as well as the

keys that these reads/writes operate on, and also on the commutativity of that operation. Two execution

paths with the same ID will always have the same operation type and commutativity type in case both

operations are aimed at the same item. This is used by the system to possibly reorder transactions to

improve performance of the system when commutative operation support is enabled, as we discuss in

Section 4.6.

Once the profile tree structure has been created and stored, the resulting output is a sequence of

structures known as TxRWS. Each TxRWS contains the following fields:

• profile status: Specifies if the parsed profile is complete or incomplete. Profile completeness is

defined as the total coverage of the possible execution paths and its respective RWS. If for some

reason, as explained in Section 2.3, the engine is not able to cover all possible execution paths,

then this field is set to Incomplete. Else, it is set to Complete. Although this field, since we assume

we always know the exact RWS we do not use this field, since it provides context on the limitations

of the SE engine, it can be useful for future improvements, as discussed in Chapter 6.

36

• storage dependency: Specifies whether any conditions in the predicted execution path depend

on storage values, meaning that the actual RWS may differ during execution based on the state of

storage at that time.

• rws id: The unique identifier for the predicted execution path.

• rws: The ordered sequence of read/write operations along the execution path.

This sequence of TxRWS structures is then encapsulated within another structure that records the

transaction position within the block. This composite structure serves as the input for the subsequent

execution step: Schedule Creation.

4.5 Schedule Creation

After having parsed the contract profiles for every transaction in the block, we enter the schedule creation

phase. We start by explaining the single-threaded process, and then we introduce the parallelized version

of it.

Given the inputs from the previous phase, the goal of schedule creation is to efficiently produce a

schedule capable of supporting concurrent execution of transactions, providing an execution framework

capable of both concurrency control support and performant execution.

The idea is similar to what Qi et. al [3] proposed, where we have a set of storage items per smart

contract, and each captures the sequence of operations, each represented by an operation node, aimed

at that item, following the order transactions appear in the block.

Running Example Let’s start by showing an example of the high-level logic for the schedule creation,

and then we delve into the details of the algorithm. Figure 4.5 shows an example of schedule creation.

At the top half we have the block outputted from the previous phase as explained earlier. At the bottom

half we have the final schedule form. At the left of the schedule stands the keys (Key 1, Key 2) of some

smart contracts (SC 1, SC 2). The colored boxes at the bottom half illustrate the nodes representing the

respective operations. Colors were used to differentiate different transactions. Dashed lines (with no

arrow) represent the order of operations following block order, and filled arrows represent dependencies.

We differentiate between two types of dependencies:

• Explicit Dependency: Represents a dependency between a non-commutative read and a non-

commutative write. This type of dependency is captured by the operation node. Each node has,

as will be explained in a moment, a dependency field that points to an operation the current node

depends on. If this field is set, then we call that an explicit dependency, as it is explicit represented

in the dependent node. Explicit dependencies are more easily thought as a barrier marking the

37

Figure 4.5: Schedule Creation Example. Red arrows represent explicit dependencies and orange arrows represent
implicit dependencies. Black dashed lines represent the order of operations following block order. Light
grey dashed arrows identify where in the schedule is the first operation for each transaction in the initial
block.

base value from which all following commutative operations will be merged into. In Figure 4.5, an

explicit dependency is marked between the green read at SC2, Key1 to the orange write at that

same key. This dependency marks that, as we will explain in Section 4.6, the commutative merging

will use the orange node’s value as the starting point, and will merge the purple commutative write

at the right, returning the merged value to the green non-commutative read.

• Implicit Dependency: Represents a dependency between a non-commutative read and one or

more commutative writes. This type of dependency is not captured by the operation node in the

schedule, but by an in-memory structure. As such it is not visible from the schedule point of view,

but it is still marked as a dependency, and the dependent operation will only be able to execute after

this dependency has been met. This represents a dependency between a non-commutative read

and any commutative write.

Explicit dependencies are represented by red arrows, and implicit dependencies are represented by

orange arrows. Dashed arrows identify the first operation and the corresponding schedule node for each

transaction.

38

The algorithm starts with the block of ordered transactions and their respective RWS, as represented

in the top half of the illustration. We run over each operation of each transaction sequentially, following

the transaction order in the block, and if it is the first operation for the specified smart contract, and the

specified key, then we create an entry on the schedule, and create a brand new linked-list with only one

node representing the current operation. For each operation there will be an operation node which will

be created with the following information:

• dependency: Pointer to the explicit dependency of the node, if any.

• next: The next operation, either from the same transaction, or from another, following the transaction

order of the input BLOCK.

• prev: The previous operation, either from the same transaction, or from another, following the

transaction order of the input BLOCK.

• tx id: The transaction index in the input BLOCK.

• value: The value read or written. This field is only set during execution.

• first op: Boolean specifying if this is the first operation of transaction tx id.

• comm: Describes the operation’s commutativity. It is set to Comm if the operation is commutative,

and NonComm otherwise.

After having created a brand new entry for the first operation of Tx0, we proceed iterating over all

operations, and insert them one at a time. If we look at the yellow nodes, representing Tx0’s operations,

we see no dependencies between them. We set no dependencies for nodes belonging to the same

transaction, as the serial execution of a transaction itself guarantees no intra-transaction concurrent

operations are ever performed. We only set the prev and next fields accordingly when appending a new

operation node in such cases. After inserting both operations, the read’s next field would point to the

write node on the right, and the write’s prev field would point to the read’s node on its left.

The complexity arises when inserting a node in an already initialized linked-list containing operations

from other transactions. Take for example Tx1’s first read from Figure 4.5. Since we already added a

write from Tx0, the blue read will depend on it. This dependency is marked by the red arrow as an explicit

dependency. In a more general sense, all NonComm reads must have an explicit dependency on the latest

previous NonComm write if, and only if the prev field of that read operation points to an operation from a

different transaction. We can also see this rule apply for the second read from Tx2 (orange operation for

SC 1, Key 2), as it has a dependency on the highest previous non-commutative write operation aimed for

that same key.

39

Algorithm 4.1: Schedule Creation
Input: BLOCK of transactions
Output: QueuePartialReady, QueueReady, Schedule, Deps, DependentTxs, PartialReadyTxs

1 Schedule← ∅
2 Deps← ∅ // txId -> txs which it depends on

3 DependentTxs← ∅ // txId -> txs dependent on txId

4 PartialReadyTxs← ∅ // txId -> txs with first operation dependent on txId

5 QueuePartialReady ← ∅ // txs with first operation free of dependency

6 QueueReady ← ∅ // txs with all operations free of dependencies

7 foreach Tx ∈ BLOCK do
8 first operation← true
9 foreach Op ∈ Tx do

10 if Op is Read then
11 HandleRead(Tx, Op, first operation) // Algorithm 4.2

12 else if Op is Write then
13 HandleWrite(Tx, Op, first operation) // Algorithm 4.3

14 first operation← false

15 if Deps[Tx] = ∅ then
16 QueueReady ← QueueReady ∪ {Tx}
17 QueuePartialReady ← QueuePartialReady \ {Tx}

18 return QueuePartialReady, QueueReady, Schedule, Deps, DependentTxs, PartialReadyTxs

Commutative reads represent somewhat an exception to this rule, since, due to their commutativity

properties, such reads do not require reading the most recent value. These reads, by definition, are

guaranteed to ensure correctness for the entire operation (which includes both the commutative read as

well as the following commutative write) they are part of. As a result, these read operations can access

the initial smart contract storage directly. During execution, the value read, along with the subsequent

commutative write, is used to calculate the increment’s delta. This delta is then stored in the value field

of the node, as further explained in Section 4.6.

Writes, on the other hand, never conflict, as each has its own version, implicitly set to its transaction

ID. An example of this is the write from Tx4 aimed at SC1,Key2. As we can see from the illustration, there

is no dependency set between that write node, and the previous operation (the orange node to the left).

This guarantees correctness since that previous orange read will read from the blue write on its left, which

can only be set by the thread executing Tx1. The schedule is then ready for execution.

Schedule Creation We now detail more formally the schedule creation process, with Algorithm 4.1.

As input, we expect the BLOCK of transactions containing, for each transaction, both the transaction’s

index in the block, as well as the ordered list of reads and writes. The Schedule structure will map

smart contract’s addresses to storage items, each mapping to a linked list of operations (this is what

was represented in Figure 4.5). The Deps structure will map a transaction Tx to a set containing the

transactions IDs transaction Tx depends on. DependentTxs will map a transaction ID to a set of all

transactions depending on it. PartialReadyTxs will map a transaction ID to all other transactions that

have their first operation depending on it. QueuePartialReady will contain all transaction IDs that have

their first operation free of any dependency. This is because transactions need not wait for the dependent

40

Algorithm 4.2: Schedule Creation - Handle Reads
Context: QueuePartialReady, QueueReady, Schedule, Deps, DependentTxs, PartialReadyTxs

1 procedure HandleRead(Tx, Op, first operation):
2 Schedule← Schedule ∪ Tx.ScAddress
3 Schedule[Tx.ScAddress]← Schedule[Tx.ScAddress] ∪Op.item
4 if Op is Commutative then
5 Op.dependency ← ⊥
6 else
7 latest non comm write← Schedule.getLatestNonCommWrite(Op.item) // O(1)

8 head← ⊥ // stores head node if no latest non comm write available

9 node← latest non comm write
10 if latest non comm write = ⊥ then
11 Op.dependency ← ⊥
12 head← Schedule.getHead(Op.item) // O(1)

13 node← head

14 latest write← ⊥
15 while node ̸= ⊥ ∧ node.Tx ̸= Tx do
16 // Set dependencies for each write, be it commutative or not

17 if node is Write then
18 new entry ← DependentTxs[node.Tx] ∪ {Tx}
19 DependentTxs[node.Tx]← new entry // Set Op as dependent on node

20 Deps[Tx]← Deps[Tx] ∪ {node.Tx} // Set node as a dependency of Op

21 latest write← node

22 node← node.next

23 if latest write ̸= ⊥ then
24 if latest non comm write ̸= ⊥ ∧ latest non comm write.Tx ̸= Op.Tx then
25 Op.dependency ← latest write // explicit dependency

26 if first operation then
27 // Set Tx as partial ready transaction for the last write

28 PartialReadyTxs[latest non comm write.Tx]← Tx

29 else if first operation then
30 QueuePartialReady ← QueuePartialReady ∪ {Tx}

31 Schedule[Tx.ScAddress][Op.item]← Schedule[Tx.ScAddress][Op.item] ∪Op

transaction to finish executing, but rather for the specific dependent operation of that transaction to

finish executing. So a transaction in QueuePartialReady will be able to start executing, but with the

possibility of needing to wait upon some operation, as only the first operation of this transaction is free of

dependencies. This provides a finer concurrency control granularity, allowing transactions to execute as

soon as possible. QueueReady will hold all transaction IDs that have no dependencies. As explained in

the example earlier, we start by running over each transaction in the block, and over each operation of

the current transaction (lines 7 and 9).

We will explore first the case of read operations (Algorithm 4.1 lines 10-11) described by Algorithm 4.2.

If the operation is a commutative read, then we mark no dependency (lines 4-5), meaning this operation

will read from the initial storage at runtime. This is because, as explained earlier, these reads do not

require reading the most recent value. If the read is non-commutative, then we fetch the most recent

non-commutative write up to the current operation being inserted (line 7). This operation is O(1), as the

last write nodes are cached during schedule building. If no such write exists, then we fetch the head of

the chain of operations for that state item, and set it as the starting node (lines 10-13). The goal here is to

41

Figure 4.6: Schedule Creation - Dependency setting for a non commutative read.

iterate all nodes to the right, starting from the latest non commutative write, or from the start of the linked

list if no non commutative write is available (lines 15-22). For each iteration, we are only concerned with

write operations (line 17) as these are the only type of operation that conflicts with a non-commutative

read. Upon matching one, we update the dependencies both for the non-commutative read’s transaction

and for the write’s transaction. Note that, since we start iterating on the last non-commutative write (if

any), that, by definition, is the latest one, then only the first write of this iteration is non-commutative, or

none is. All following writes will always be commutative.

After iterating, if we did find any write before our non-commutative read (line 23), then it could be either

a non-commutative write, or a commutative one, in case we used the head of the list as a starting point.

Thus, we check if we have the latest non comm write set, and if that write is from another transaction

(line 24). If true, we set it as an explicit dependency for the current non commutative read being parsed

(line 25). Recall that we do not set dependencies between operations from the same transaction. If the

latest write is defined and we are parsing the first operation of the current transaction , then we set the

current transaction as a partial ready for latest write (lines 26-28).

If there is no previous write and it is the first operation, then we insert it into the QueuePartialReady

set. This is possibly a temporary insertion, since if later on, if all operations from this transaction are free

of dependencies, we remove it from the QueuePartialReady, and insert it into the QueueReady.

42

Algorithm 4.3: Schedule Creation - Handle Writes
Context: QueuePartialReady, QueueReady, Schedule, Deps, DependentTxs, PartialReadyTxs

1 procedure HandleWrite(Tx, Op, Schedule, Deps, PartialReady, first operation):
2 Schedule← Schedule ∪ Tx.ScAddress
3 Schedule[Tx.ScAddress]← Schedule[Tx.ScAddress] ∪Op.item
4 Op.dependency ← ⊥
5 Op.first operation← first operation
6 if first operation then
7 QueuePartialReady ← QueuePartialReady ∪ {Tx}
8 if Op not Commutative then
9 Schedule.setLastNonCommWrite(Op)

10 Schedule[Tx.ScAddress][Op.item]← Schedule[Tx.ScAddress][Op.item] ∪Op

Figure 4.6 shows an example on how the schedule structures are updated with the insertion of a new

non-commutative read illustrated by the grey node on the right. The tables on the right side represent

the Deps and DependentTxs present in the previous algorithms. At timestamp T’0 we fetch the latest

non-commutative write. In this example there was one (the orange node), so we set it as the dependency,

illustrated by a red arrow. Since the transaction ID of the node being inserted is 3, we place 3 in the key

0 of DependentTxs to specify the orange transaction (transaction 0) has a dependent transaction on it.

We also place 0 in the key 3 of Deps to specify the inverse. Note that, in the image, these updates are

only visible at the start of the next timestamp - T’1. Then we go to the next node, and do the exact same

thing, but without setting any explicit dependency, since now the (purple) node represents a commutative

operation. The same goes for the blue node. At T’3 we can see all the dependencies are marked.

4.5.1 Eliminating Write-Write Conflicts

For write operations (Algorithm 4.1 lines 12-13), the procedure is much simpler, as shown in Algorithm 4.3.

When a transaction writes to a particular data item, it does not overwrite previous values. Instead, it

creates a new version of the data, marked by its tx id. This allows multiple versions of the same data to

coexist, with each transaction effectively writing to its own isolated version. Consequently, writes from

transactions that follow in the block do not need to depend on earlier writes, as they will be writing to their

own separate version. As such, write nodes never have dependencies.

Similarly, read-write conflicts, where one transaction reads data while another attempts to modify it,

are also resolved through write versioning. Since the system respects the transaction ordering of the

block, reads followed by writes from different transactions no longer result in conflicts. This is because

each write operation is applied to its own version of the data, ensuring that the read operation remains

unaffected by subsequent modifications. Specifically, a write that occurs after a read will always have a

higher version number than the one the read operation accesses, preventing any interference.

Figure 4.7 illustrates this scenario, where multiple transactions issue operations, with a read-write

conflict indicated by the red arrow. The arrows represent dependencies, and the dashed line shows the

43

Figure 4.7: Write Versioning.

sequence of operations following the block order. With write versioning enabled, the green write operation

no longer conflicts with the red read, as the read accesses a lower version. As a result, transaction 5

can execute immediately, without waiting for the preceding three transactions to complete, significantly

increasing parallelization.

Going back to the algorithm, if it is the first operation of the transaction, we insert in QueuePartialRead

(lines 6-7). Finally, if the write is non commutative, then we update the last non commutative write in the

Schedule (lines 8-9).

4.5.2 Schedule Parallelization

Having discussed the sequential scheduling algorithm, we now shift our focus to the parallelized version,

which is essential for ensuring efficiency with larger blocks.

The parallelized scheduling algorithm builds upon the serial version, but introduces a merging

mechanism to combine schedules from multiple threads. The idea is to divide the block into N subsets,

where N represents the number of available threads. Each subset contains transactions that are

sequential in the block’s order; for instance, thread 0 processes transactions 0 through N − 1, thread 1

processes transactions N through 2N − 1, and so forth.

This strategy allows each thread to maintain a partial view of the block. By applying the serial

scheduling algorithm locally, each thread builds a partial schedule for its subset. Importantly, since

transactions within each subset respect block order, merging two partial schedules only requires updating

the dependencies at the frontier between the two schedules.

Once each thread has completed constructing its partial schedule, a binary tree merging strategy

is employed to combine these schedules. In this process, threads are paired, and their schedules are

44

Figure 4.8: Parallel schedule creation.

merged recursively in a pairwise manner. With each merge step, the number of schedules is halved,

reducing the total number of required merges at each level. This process continues until all schedules

are merged into a single final result, completing in log(N) rounds. The key advantage of this approach is

that it limits the number of merge operations, which keeps the total merging overhead manageable.

Running Example Figure 4.8 illustrates the parallelized schedule creation process. At the top, we

observe the same block used in previous examples. Initially, the block is divided among the available

threads, where each thread sequentially constructs its own partial schedule. At T’0, as represented by

the vertical lines terminating in squares, the first merge occurs: Thread 0 merges with Thread 1, while

Thread 2 merges with Thread 3. Following this initial merge, Thread 1 and Thread 3 complete their

execution. The merging process may introduce new dependencies between the partial schedules at the

merge frontier, which is marked by the dotted line ending in circles—separating the schedule with lower

transaction IDs (on the left) from the schedule with higher transaction IDs (on the right).

After Merge T’0, we can observe that Thread 0 introduces a new dependency, represented by the

circled red arrow. The same color scheme from Figure 4.5 is maintained: red arrows indicate explicit

dependencies, while orange arrows denote implicit dependencies.

Similarly, during the merge between Thread 2 and Thread 3, a new dependency emerges between

transaction 4 and transaction 2. Note that this dependency is not strictly positioned at the frontier with

respect to the right-side schedule. Dependencies are not necessarily drawn between the first transaction

of the right-side schedule and the last transaction of the left-side schedule. Instead, they form between

45

Algorithm 4.4: Parallel Schedule Creation - Binary Tree Merging
Input: transactions - block of transactions

1 procedure BuildScheduleFromTransactions(transactions, n threads):
2 if #transactions = 0 or n threads = 0 then
3 return

4 n threads← min(#transactions, n threads)
5 tree levels← ⌈log2(n threads)⌉
6 txs per thread← ⌊#transactions/n threads⌋
7 deps← InitDeps(n threads)
8 thread states← InitStates(n threads)
9 for id← 0 to n threads− 1 do

10 deps[id]← ⟨ ⟩ // empty queue

11 // Get the thread to which ’id’ should send to. Each thread only sends data once.

12 receiver id← GetReceiverThread (id, tree levels)
13 if receiver id ̸= ⊥ then
14 deps[receiver id].push(id)

15 for id← 0 to num threads− 1 do
16 txs subset← GetSubsetOfTxs(transactions, txs per thread)
17 ExecuteThread(id, thread states, txs subset, dependencies[id])

18 // Thread 0 will contain final merged state

19 WaitForCompletion (thread states[0])
20 return thread states[0]

21 procedure ExecuteThread(thread id, thread states, txs subset, dependency list):
22 schedule← BuildSchedule(txs subset) // serial schedule

23 while dependency list ̸= ⊥ do
24 dep id← dependency list.pop()
25 Wait (thread states[dep id])
26 schedule.merge(thread states[dep id].schedule)

27 thread states[thread id]← schedule
28 FinishThread ()

29 procedure GetReceiverThread(thread id, tree levels):
30 for level← 0 to tree levels− 1 do
31 step← 2level

32 if ⌊thread id/step⌋%2 ̸= 0 then
33 return thread id− step

34 return ⊥

the first non-commutative reads from the right-side schedule and both the last non-commutative

writes and last commutative writes from the left-side schedule, as we will explain later.

Finally, Thread 0 and Thread 2 merge at T’1, introducing another dependency, this time at SC1,Key2,

from transaction 2 to transaction 1. The resulting schedule is identical to the one produced by the

sequential approach, as shown in Figure 4.5.

Binary Tree Parallel Execution Algorithm 4.4 describes the parallel binary tree merging. The number

of threads is set to the minimum between the total transactions in the block, and the number of desired

threads (line 4) as it does not make sense to have more threads than transactions. Next we define the

number of levels for the binary tree as the ceiling of the logarithm base 2 of the total number of threads.

This defines the upper bound for the total leaf nodes covered by the tree with ⌈log2(n threads)⌉ number

of levels. We also get the number of transactions per thread, taking into account uneven distribution.

46

Figure 4.9: Binary merging tree. Arrows represent to which thread some thread has to send its schedule to. Colors
represent the merging step in which the sending thread will send its schedule to the receiving thread.

We could take the simple approach, and assign ⌊#transactions/n threads⌋ to each thread, leaving the

rest to the last thread. But this becomes problematic as the thread number increases. As an example,

assuming all transactions take the same time to execute, if we set n threads to 64, and assume 1000

transactions, then each thread would be assigned ⌊1000/64⌋ = 15 transactions, and the last thread would

be assigned 15 + (1000− 15 ∗ 64) = 55 transactions. This means in practice that the last thread would

delay the entire parallel execution by 55/15 ≈ 3.67 times! Instead, we assign the first threads one more

transaction than the 15 until the total remaining transactions is multiple of 15. This way the longest

execution will be only around 16/15 ≈ 1.07 times longer, which is much more acceptable.

We rely on two basic structures: deps (line 7) represents a mapping from some thread A to the

threads it has to wait upon, in the correct order. Each thread only sends its local schedule at most once

to another thread, and only even threads receive a schedule from other threads, but the receiving threads

can receive a schedule from more than one thread; thread states (line 8) is also a mapping from a

thread ID to its partial schedule. This is used to share a thread’s state with another thread for the merging

operation.

We then start by running over each thread A, initializing the queue of transactions that thread A will

need to wait upon (line 10). We then compute, for thread ID, to which thread this needs to send to. This is

done by the GetReceiverThread procedure, which takes into account all levels. As an example, consider

thread 12 in a system with a total of 16 threads, organized into a binary tree with 4 levels. To determine

which thread, thread 12 must send its schedule to, then the only x in {0, 1, 2, 3} (line 30) such that ⌊12/2x⌋

results in an odd number (lines 31-32) is x = 2, translating to step = 22 = 4 (line 31). Thus, we get that

thread 12− 4 = 8 (line 33) is the thread to which thread 12 will need to send its schedule to. This will only

happen at the third merging step, but is marked before starting the execution. Figure 4.9 illustrates the

messages that need to be sent between any two threads, represented by arrows, each with the same

47

color of the merge step in which they will happen - orange refers to merging step 1, green to merging

step 2, purple to merging step 3 and blue to merging step 4. As we can see, thread 12 will only send a

message to thread 8, at merging step 3 (purple color).

Since we call GetReceiverThread in sequential thread order (line 12, Algorithm 4.4), the

sender thread IDs for each receiver thread are correctly set in this sequence. For example, as il-

lustrated in Figure 4.9, the receiver thread 0 will have its first sender as thread 1 (orange arrow: 1 → 0),

followed by thread 2 (green arrow: 2 → 0), thread 4 (purple arrow: 4 → 0), and finally thread 8 (blue arrow:

8 → 0). Thus, the deps entry for thread 0 will be ⟨1, 2, 4, 8⟩.

After setting the deps for each thread (in practice, only even threads will have an entry), we assign a

subset of the block to each thread as described previously, and begin building the partial schedule over

that subset (lines 15-17).

The work performed by each thread, encapsulated in the ExecuteThread procedure (lines 21-28), is

conceptually simple except for the merging step. Each thread first constructs its partial schedule following

Algorithm 4.1 from its assigned subset of transactions, then waits for the schedules from other threads

(line 25) it is designated to receive from. It follows the correct merging order and combines the received

schedule with its own. When a thread no longer needs to wait for any other schedules (i.e., it exits

the while loop at line 23), it writes its completed schedule to thread states (line 27) so that the next

dependent thread (waiting at line 25) can access it. The thread then signals that its execution is complete

(line 28).

Meanwhile, the main thread waits for thread 0 to finish merging all schedules (line 19). It is sufficient

to wait only for thread 0, as this thread is guaranteed to hold the final merged schedule. Once thread 0

completes, the resulting schedule is returned.

Schedule Merging We will now take a closer look at how the merging process itself is done. The

definition for dependencies is still the same as before, meaning there will be only dependencies from non-

commutative reads on both commutative and non-commutative writes preceding it. Since Algorithm 4.1

captures all dependencies, both schedules being merged are complete with respect to dependency

tracking. Meaning the only work to be done at merging, is to try and find possible new dependencies

between both schedules.

We shall refer to self schedule as the schedule from the thread receiving the message, and to other

schedule as the schedule being sent by the sending thread (note that schedules are not really being

sent in the sense of message passing, but rather written into memory). One interesting property is that

since transactions in the block are ordered, and we assign a subset to a thread following the threads IDs

in increasing order, threads with higher IDs get a sequence of contiguous transactions with higher IDs

than the ones from threads with a lower IDs. This allows us to only have to look for dependencies from

48

Figure 4.10: Schedule Merging. Black dashed boxes identify operations from a transaction placed in QueueReady.
Grey dashed boxes identify operations from transactions in QueuePartialReady. All other representa-
tions have the same meaning as in Figure 4.5

the other schedule to the self schedule. This is also enforced by the fact that we respect transaction

ordering in the merging steps, i.e., for any two transactions’ merge, there is no other transaction that has

a schedule with transactions in between the ones both of the two merging transactions have. As before,

we will run first through an example, and then we discuss the algorithm.

Figure 4.10 illustrates the merging steps. This figure depicts the exact same merging step T’1

from Figure 4.8, but now in more detail. Black dashed borders represent operations from transac-

tions in the QueueReady, while grey dashed borders represent operations from transactions in the

QueuePartialReady. All other representations have the same meaning as in Figure 4.8. As a starting

point, we assume both schedules from thread 0 and 1 have finished building. As we can see from Thread

0’s schedule, Tx0 is placed in the QueueReady since it has no dependencies, and Tx1 is not in any queue

since neither its first operation (blue read) has no dependencies, nor all operations are free. As for Thread

1’s schedule, only Tx2 is free of any dependencies, thus it is placed in QueueReady.

We will now go over each SC key at a time, trying to find possible new dependencies from the merging

at the frontier between the two schedules. Starting at SC1,Key1, we can see that Thread 1’s schedule

has no entry for that key, thus the resulting schedule from the merging at that item will just be the original

one from Thread 0 without any alteration. Next, for SC1,Key2 we can see that Thread 1’s schedule has

two operations from transactions with higher IDs. Thus, we will append these operations (orange and

green) at the end of Thread 0’s SC1,Key2 entry. We now search for the first non commutative read from

the right schedule. In this case, it is the orange read from Tx2. Then we will find the last write from the

49

Algorithm 4.5: Parallel Schedule Creation - Merging
Input: self - current schedule, other - schedule to be merged
Context: starting tx id - ID of the first tx in the self schedule

1 procedure MergeSchedules(self , other):
2 // Extend vectors for dependencies, transactions, and other relevant data

3 self.Deps← self.Deps ∪ other.Deps
4 self.DependentTxs← self.DependentTxs ∪ other.DependentTxs
5 self.PartialReadyTxs← self.PartialReadyTxs ∪ other.PartialReadyTxs
6 Merge(self , other)
7 // Merge the queues after having updated the txs from the ’other’ schedule’s queues

8 self.QueueReady ← self.QueueReady ∪ other.QueueReady
9 self.QueuePartialReady ← self.QueuePartialReady ∪ other.QueuePartialReady

10 procedure Merge(self , other):
11 foreach sc other ∈ other do
12 foreach key other ∈ sc other do
13 linked list other ← other.GetLinkedList(sc other, key other)
14 linked list self ← self.GetLinkedList(sc other, key other)
15 last write self ← self.GetLastWrites(sc, key other)
16 if linked list self exists then
17 // Joins linked lists by setting the .next and .prev fields of the frontier nodes, and also updates

the .tail of self linked list.

18 join linked lists(linked list self , linked list other)
19 if last write self ̸= ⊥ then
20 first non comm read other ← other.GetF irstNonCommRead(sc other, key other)
21 SetFrontierDependency(last writes self.non commutative, node ref)
22 if last write self is NonCommutative then
23 node.dependency ← last writes self.non commutative

24 else
25 // If no operations in self, initialize the list with other’s operations

26 self.Schedule[sc address][key]← self.Schedule[sc address][key] ∪ linked list other

self schedule. Since this write is non-commutative (we assume the same operation commutativity as in

Figure 4.5), then we have to mark a new dependency between the orange and blue operations as circled

in Figure 4.10. Also, since Tx2 was in QueueReady before the merge, and now has a new dependency

on a node that is not the first, we take it out of QueueReady, and push it to QueuePartialReady, as it can

still have its first operation free of conflicts. Finally, for SC2,Key1, we see that Thread 0’s schedule had

no entry for that key, so Tx2’s first operation remains without dependencies, meaning it will remain in

QueuePartialReady. The merging is finished by now, and we end up with Tx0 in QueueReady, and Tx2 in

QueuePartialReady, as well as a new dependency from Tx2 to Tx1.

Algorithm 4.5 describes the steps in detail. As inputs we receive both the self and other schedules.

We start by extending all the dependencies marked in self with the ones from other (lines 3-5). This is

true for both Deps and DependentTxs, which, as we described earlier, track all the implicit dependencies

between any two nodes in both directions. We also merge the PartialReadyTxs, the mapping of a

transaction to all other transactions whose first operation only depends on it. We then do the schedule

per-key merging, as expressed by the Merge procedure in lines 10-26.

We iterate over keys of all smart contract addresses in the right schedule, and fetch the linked list

holding the chain of operations to that key from both schedules (lines 13-14). If the self schedule does

50

Algorithm 4.6: Parallel Schedule Creation - Dependency Update During Merging
Input: self - current schedule, other - schedule to be merged
Context: starting tx id - ID of the first tx in the self schedule

1 procedure SetFrontierDependency(node self , node other):
2 self.Deps[node other.tx]← self.Deps[node other.tx] ∪ node self.Tx

3 self.DependentTxs[node self.tx]← self.DependentTxs[node self.tx] ∪ node other.Tx

4 ready tx← ⊥
5 if node other.Tx ∈ other.QueueReady then
6 ready tx← node other
7 other.QueueReady ← other.QueueReady \ node other.Tx

8 node← node self
9 while node ̸= ⊥ ∧ node.tx ̸= node other.Tx do

10 if node is Write then
11 self.Deps[node other.tx]← self.Deps[node other.tx] ∪ node self.Tx

12 self.DependentTxs[node self]← self.DependentTxs[node self] ∪ node other

13 node← node.next

14 if node other is FirstOperation then
15 other.QueuePartialReady ← other.QueuePartialReady \ node other.Tx
16 self.PartialReadyTxs[node self.Tx]← self.PartialReadyTxs[node self.Tx] ∪ node other.Tx

17 else if ready tx ̸= ⊥ then
18 self.QueuePartialReady ← self.QueuePartialReady ∪ ready tx

not have such entry, we just append the right’s entry, and the job is done for that key (line 26). Else, if the

self schedule has an entry for that key, then we join both linked lists together (line 18), appending the

other ’s one at the end of the self ’s. This is done by setting the self ’s tail next pointer to the other ’s head,

and the other ’s head prev pointer to self ’s tail. We also update self ’s tail pointer to other ’s tail node.

We then proceed to finding new dependencies. We fetch the last write from the self schedule (line

15), and if there is such write, we fetch the first non commutative read from the right schedule (line 20).

Since the last write operation can be commutative or non-commutative, and we only set the dependency

field in a node if it captures an explicit dependency, i.e, a dependency from a non-commutative read to

a non-commutative write, we need to check this before setting that field (lines 22-23).

Having the self ’s last write and the other ’s first non commutative read we then update all possible

dependencies (line 21, Algorithm 4.5) as described in Algorithm 4.6. We start by setting the implicit

dependencies both ways (lines 2-3), and pop the non commutative read if it was in QueueReady (lines

5-7). This is because a transaction ready to be executed cannot have any dependency. Since we are

setting a new dependency, that transaction can no longer be ready. It can, although still be partial ready,

if its first operation still remains free of conflicts, as we will see in a moment.

We then iterate over all nodes from the self ’s last write to the end of the list (lines 9-12). The

rational is that since node self, i.e., the starting node is either the last non-commutative write, or a

commutative write, then by definition, there can be never a non-commutative write afterwards. Only reads

and commutative writes. Since commutative writes still incur dependencies with non-commutative reads,

we have to find all of such writes that come afterwards the last non-commutative write and mark them as

dependencies (lines 11-12). Care must also be taken not to go over the other transaction id (line 9) as the

51

linked lists have already been merged. Finally we need to check if this was the first operation of other’s

transaction. If so, since it now has at least one new dependency, it is inserted into that dependencie’s

PartialReadyTxs set, and removed from the QueuePartialRead (lines 14-16). Finally, if the transaction

responsible for the non-commutative read of the right schedule was previously marked as ready, and this

non-commutative read is not its first operation, then this means its first operation is still free of conflicts,

and we push it to QueuePartialReady (lines 17-18).

After merging all schedules, the resulting schedule will need to be converted to a concurrent

schedule which introduces some concurrency control features. Namely, for both QueueReady and

QueuePartialReady, we need to ensure correctness when pushing and popping from both queues, and

we also need to introduce a vector that keeps track of the execution state of each transaction. Each

transaction can be in one of three states:

• NotExecuted: Default state. All transactions start with this state set.

• Executing: Set for transactions that are currently executing.

• Executed: Set for transactions that have already finished execution.

We will see in the next section when and how exactly these states change over execution. Besides

this state tracking, we also improve the Deps map. Instead of just storing the set of transactions that are

dependencies of the transaction whose ID is the key for that entry, we now also store an atomic counter

initialized with the size of the set. This will become useful to track transaction’s dependencies at runtime.

The schedule is ready to be fed to the next step: Schedule Execution.

4.6 Schedule Execution

Upon constructing the execution schedule with all dependencies tracked, the system is prepared to

initiate the transaction execution phase. Concurrency control is implemented at two distinct levels: the

transaction selection level (queue level) and the operation execution level (operation level). These

mechanisms ensure the orderly and conflict-free execution of transactions in a parallel environment.

At the queue level, two specialized structures manage the transaction execution readiness:

• QueueReady: This queue holds transactions that are entirely free of dependencies, meaning they

can immediately start executing without waiting for any prior operations to complete.

• QueuePartialReady: This queue contains transactions whose first operation is independent of

other transactions, allowing them to start execution. However, these transactions may need to

suspend execution at some later point to wait for specific operations from other transactions to

complete.

52

The queue-based concurrency control governs the initiation of transaction execution. It ensures

that only transactions that are either fully independent - QueueReady - or partially independent -

QueuePartialReady - are eligible for execution. This level of control focuses on determining which

transactions can be selected for execution at any given time based on their dependency status.

In contrast, once a transaction has been dequeued and its execution has started, a second level

of concurrency control occurs at the operation level. At this stage, individual operations within the

transaction are subject to locks, ensuring that non-commutative operations do not conflict with concurrent

transactions. Specifically, non-commutative read operations must wait until the corresponding write

operations have fully completed, ensuring data consistency. For commutative operations, the concurrency

control becomes more nuanced, as we will discuss in subsequent sections. Nevertheless, the core

principle remains the same: non-commutative read operations must wait for the associated write

operations to finish before proceeding with execution.

It is important to note that this operation-level concurrency control is only relevant for transactions

from QueuePartialReady. Transactions from QueueReady, which have no dependencies, can execute

without delay, as their operations are free of conflicts. This allows us to be more flexible in their execution

- the order in which these transactions are pushed into the queue does not need to be respected during

execution meaning they can be popped in any order. This introduces the possibility for mechanisms

that allow parallel popping of transactions from QueueReady, further enhancing execution throughput by

enabling multiple transactions to be processed concurrently without dependency conflicts.

Running Example We will first go through a practical example to clarify the workflow, and then we delve

into the algorithm details. We will refer to Figure 4.11 throughout this example. The top half represents

the initial schedule. As before, we use black dashed borders around the first node of ready transactions,

and a grey dashed border around the first operation of partial ready transactions. We have also included

the field op idx on each node to represent the order of the operation within that transaction, just to make

clear the order the operations should be executed within a transaction. This is field has no practical

use besides helping with the explanation. The bottom half represents a timeline of execution marked

via dashed vertical lines with timestamps T’0, T’1 and so on, for ease of reference. We assume three

threads for this example.

For this schedule, both Tx0 (yellow) and Tx3 (purple) are free of conflicts, so they are placed in

QueueReady. As for Tx1 (blue) and Tx4 (green), since their first operation is free of conflicts, but still have

other operations with conflicts, they are placed in QueuePartialReady. As we can see, at T’0, before

starting executing, QueueReady is initialized with < 0, 3 > and QueuePartialReady with < 1, 4 >. We also

represent the Executed counter that tracks the number of executed transactions, which is used for the

termination condition.

53

Figure 4.11: Schedule Execution. Red lines in the execution diagram represent waiting for some operation to
complete.

The first step of execution is for all threads to try popping a transaction from QueueReady. As we

can see, Thread 0 and Thread 1 popped all available transactions from that queue. In such cases,

when QueueReady is empty, threads try popping from QueuePartialReady, which is the case for Thread

2. At T’1 both Thread 0 and Thread 1 have finished executing their transaction. When this happens,

each thread will go though its DependentTxs map and fetch all transactions that depend on the finished

transaction. Taking Tx0 as an example, we can see from the schedule in Figure 4.11 that there is a

read from Tx1 aimed at SC 1, Key 1 that depends on a write from Tx0. Thus Thread 0 will decrease

the counter of dependencies for Tx1. Since that was the only dependency, the transaction could be

pushed to QueueReady. But since Thread 2 is already executing it, Tx1’s state has already been changed

to Executing, meaning we do not push it to any queue. Thread 1 does the same for its finished

54

transaction Tx3 - finds dependencies, and decreases the dependency counter. In this case it decreases

the dependency counter of Tx4. Since Tx4 has two dependencies, decreasing one will leave it still with

one. So we cannot push it to the QueueReady. Besides decrementing the dependency counter, there can

sometimes be cases where the first operation of a dependent transaction depends on the transaction

finished executing. In these cases the dependending transaction is pushed to the QueuePartialReady

instead. If, later on, we end up freeing all of its dependencies, then we move it from QueuePartialReady

to QueueReady.

Referring back to our example, besides Thread 0 and Thread 1, we can also see that Thread 2 did

not finish executing at T’1. We use dark red to represent waiting states. After finishing the first read of

SC1, Key3, we will go to the second read of Tx1, which is represented as the blue operation aimed at

SC1, Key1. As we can see this operation depends on the yellow write from Tx0, and as such we need to

wait until that write is finished. Because of this, Thread 2 needs to stall execution until T’1, which is when

Thread 0 finished that write operation from Tx0. Only then Thread 2 resumes execution, and can read

the written value. Still in T’1, since both Thread 0 and Thread 1 finished executing their transactions,

each thread will try to pop a new transaction. Since only Tx4 was remaining from T’0, one of the threads

picks it up and starts executing it. Again, since Tx4 depends on the last write of Tx2, as represented by

the red arrown in SC2, Key2, we will need to wait until that write has finished.

At the end of T’1 we end up with one more transaction finished (Tx1), and we increment the Executed

count to 3. Since Tx1 finished executing, we look up again for its dependencies, and find that Tx2 depends

on it with that dependency being its only one. So as we decrease it, we also push it to the QueueReady.

At T’2, since both Thread 0 and Thread 2 have finished executing, one of them pops Tx2 and

executes it. Notice that Thread 1 is still waiting on the write of Tx2. Only at T’3, when Tx2 has finished

writing, we can read the value written. Finally, at T’4, when Thread 1 finished executing Tx4, it increases

the Executed counter to 5 and notifies all waiting threads. Each will then verify that the Executed counter

equals the initial number of transactions, and execution is finished.

Schedule Execution We will now go through the algorithm, specifying more formally the steps involved.

The execution phase (Algorithm 4.7) starts by iterating over all available threads and assign them work

to do (lines 2-8). Each thread loops until all transactions have been executed. For each iteration it

tries fetching a transaction ID, either from the QueueReady or from QueuePartialReady (line 4). If no

transaction ID is returned, then all transactions were executed, and the execution phase is ended.

Otherwise, the thread fetches the transaction of that ID from the block (line 6) and starts executing the

transaction (line 7). The ExecuteTransaction function will, among other things, choose a CVM from

the ones available, and delegate the execution to the WVM, as explained in Section 4.1, which then

invokes db read and db write methods to the CVM, which we use to synchronize execution. Thus, we

55

Algorithm 4.7: Schedule Execution
Input: block - block of ordered transactions, schedule - schedule with all dependencies tracked
Context:

1 procedure ExecuteBlock(block, schedule):
2 for i← 0 to N THREADS do
3 loop
4 tx id← GetNextTransaction(schedule) // Algorithm 4.8

5 if tx id ̸= ⊥ then
6 tx← block[tx id]
7 ExecuteTransaction(tx, schedule)
8 OnTransactionFinish(tx, schedule)

9 else
10 break

11 procedure OnTransactionFinish(tx, schedule):
12 ready txs← ∅
13 partial ready txs← ∅
14 txs excluded from partial← ∅
15 dep txs← schedule.DependentTxs[tx]
16 if dep txs ̸= ⊥ then
17 foreach t ∈ dep txs do
18 no dependencies left← schedule.Deps[t].RemoveDependency(tx)
19 if no dependencies left then
20 ready txs← ready txs ∪ t
21 txs excluded from partial← txs excluded from partial ∪ t

22 partial ready txs← schedule.PartialReadyTxs[tx]
23 if partial ready txs ̸= ⊥ then
24 foreach t ∈ partial ready txs do
25 if t /∈ txs excluded from partial then
26 partial ready txs← partial ready txs ∪ t

27 PushAndSignal(ready txs, partial ready txs, tx) // Algorithm 4.8

will only focus on the functionality implemented upon these two events. After executing the transaction

the thread needs to update the queues with any new transactions that might be free of conflicts (line 8).

The process is straightforward - Upon finishing a transaction, threads will run through all transactions

depending on the finished one (lines 16-17), and will decrease the dependency counter for each of those

transactions (line 18). If the counter of a transaction reaches 0, then add it to the ready txs, and add

to the local set txs excluded from partial (lines 19-21). Next, we run over all transactions whose first

operation depends on the finished transaction (lines 22-24), and if this transaction was not yet added to

ready txs, then add it to partial ready txs. Finally we call PushAndSignal, which will push ready txs

into QueueReady and partial ready txs into QueuePartialReady in a controller manner, and will notify

threads waiting on a new transaction.

We will now focus on the transaction popping and pushing mechanisms (lines 4 and 27), which are

represented in Algorithm 4.8. The idea is simple - threads try to pop first from QueueReady. For that,

threads acquire a lock for the queue, and try to pop a transaction ID from it. If any, then the status of that

transaction is set to Executing, and this ID is returned, unlocking the queue (lines 3-6). If however the

queue is empty, threads try popping from the QueuePartialReady, set the popped transaction’s status

56

if any, and return, unlocking the queue (lines 8-11). In case no transaction is available from any of the

queues, then transactions will have to check for the termination condition (line 14) and wait if there are

still transactions left to be executed. Note that a transaction may pass through the condition in line 14, if

the schedule.executed transactions counter is still less than schedule.total txs, but the remaining

transactions are already being executed by some other transaction. In such cases threads will still wait,

and be notified by the final thread. This is why the lock from lines 13-16 and 33-37 is needed. We need to

ensure only one thread at a time is either checking the termination condition and waiting upon it or is

altering the termination condition. Else, it could happen that a thread A could pass the condition at line

14, and before falling into the wait state, thread B, responsible for executing the last transaction would

execute lines 35-40, notifying all waiting threads. Since thread A was not waiting yet, it would wait only

after the notification, missing the notification, waiting forever. The lock solves this issue. While popping

happens before starting executing a new transaction (line 4, Algorithm 4.7), pushing on the other hand

happens at the very end of execution.

As seen earlier, upon finishing execution, threads enter the OnTransactionFinish function in Algo-

rithm 4.7, and at the very end (line 27), they invoke PushAndSignal represented in Algorithm 4.8 lines

18-45. The goal is to insert the passed ready txs and partial ready txs in the respective queues and

signal any waiting transactions. Ready transactions are pushed to the QueueReady by acquiring a lock

on the queue (lines 20-25) and partial ready transactions are pushed to QueuePartialReady also by

acquiring a lock in lines 27-31. There are however a few nuances to keep into account. For both cases,

we only push if the transaction has not started executing yet (lines 22 and 29). In the case of pushing

ready transactions we also need to remove the transaction from QueuePartialReady (line 25).

After having pushed the transactions threads acquire the schedule.executed txs lock. As explained

earlier, this is essential to ensure termination of the algorithm. The counter under that lock is incremented

by one (line 35), and finally threads go over the termination condition. If all transactions have been

executed, then notify all waiting txs so that they re-evaluate the termination condition and exit execution

(lines 39-40). Else, if only two transactions were added, then the current thread will pick up one of those,

and also wakes one more thread for the other transaction. If more than two transactions are added, then

wake all waiting threads.

Notice the holding of the locks from popping from a queue to updating the transactions status (lines

3-5 and 8-10). This is needed to ensure atomicity of transaction status change and popping. Otherwise,

a thread wanting to insert a new transaction would see that the transaction did not yet have its status as

Executing yet, meaning it would assume that transaction was not yet inserted in the queue, and would

insert it again, even though thread 2 had just popped it from the queue. With a lock, either the transaction

is still in the queue, or has its state set to something other than NotExecuted.

57

Algorithm 4.8: Schedule Execution - Queue Management
Context: schedule

1 procedure GetNextTransaction():
2 loop ’try popping
3 ready tx← PopQueueReady (schedule) // Holds a lock for this queue

4 if ready tx ̸= ⊥ then
5 SetTxStatus(schedule, ready tx, TxState.EXECUTING)

6 return ready tx // Releases the lock on return

7 Unlock (ready tx)
8 partial ready tx← PopQueuePartialReady (schedule) // Holds a lock for this queue

9 if partial ready tx ̸= ⊥ then
10 SetTxStatus(schedule, partial ready tx, TxState.EXECUTING)

11 return partial ready tx // Releases the lock on return

12 Unlock (partial ready tx)
13 executed txs← schedule.executed txs.Lock()
14 while executed txs < schedule.total txs do
15 Wait(executed txs) // Releases the lock & waits upon signal

16 continue ’try popping

17 break ’try popping

Context: schedule
18 procedure PushAndSignal(ready txs, partial ready txs, tx finished):
19 total added txs← 0
20 ready lock ← schedule.QueueReadyLock()
21 foreach tx ∈ ready txs do
22 if schedule.tx stats[tx] = TxState.NOT EXECUTED then
23 total added txs← total added txs+ 1
24 PushQueueReady(tx)
25 RemoveQueuePartialReady(tx)

26 Unlock (ready lock)
27 partial ready lock ← schedule.QueuePartialReadyLock()
28 foreach tx in partial ready txs do
29 if schedule.tx stats[tx] = TxState.NOT EXECUTED then
30 total added txs← total added txs+ 1
31 PushQueuePartialReady(tx)

32 Unlock (partial ready lock)
33 executed txs← schedule.executed txs.Lock ()
34 SetTxStatus(schedule, tx finished, TxState.EXECUTED)
35 executed txs← executed txs+ 1
36 has messages to execute← executed txs < schedule.total txs
37 Unlock(executed txs)
38 // Termination condition

39 if ¬has messages to execute then
40 NotifyAll(schedule.waiting txs)

41 else if total added txs = 2 then
42 NotifyOne(schedule.waiting txs)

43 else if total added txs > 2 then
44 NotifyAll(schedule.waiting txs)

45 // If only 1 or none txs are added, then no need to notify - this thread will handle it

58

Supporting Commutative Operations While we have previously examined concurrency control mech-

anisms at the queue level, we now shift our focus to how operation-level concurrency control manages

conflicts. Before delving into the specifics of the algorithm, it is crucial to refine how exactly commutativity

is handled by the system.

We will use the same example from Section 4.3. Consider an incremental commutative operation

such as A = A+ 1. This operation can be expressed as W (A) : R(A) + 1 in terms of reads and writes,

where a read is performed on item A, followed by a write. In this case, the read is marked as commutative

because it is used for the purpose of an increment, and does not require fetching the most recent value

of A but can instead serve solely for delta computation. Specifically, the value obtained by R(A) and the

final value written can be used to compute the difference between the initial and final states, thereby

deriving the delta. In this example, as the operation is additive, the delta is computed by subtracting the

initial read value from the final written value. This delta is stored in the commutative write node. Therefore,

commutative reads, as discussed in Section 4.3, do not depend on the most up-to-date state and can

retrieve values directly from storage. However, the value read must be stored within the corresponding

operation node to allow subsequent write operations to compute the delta.

Interface for Commutative Operations We have mainly been focusing on incremental operations

so far, such as addition, but COEX-P is not limited to this operation type only. It supports any type of

commutative operation, as long as: (1) the SE engine is capable of identifying the commutativity in all

reads and writes associated with the operation from the smart contract’s bytecode, and (2) the system

has access to the operation’s implementation of the following interface:

• Merge(Vinitial, ∆): Merges a delta, ∆, into the initial value Vinitial.

• ComputeDelta(Vold, Vnew): Computes the delta, ∆, given an initial value Vold and a new value Vnew.

• FromBytes(B): Converts a byte representation, B, into its in-memory value representation.

• ToBytes(V): Converts an in-memory value, V , into its byte representation.

• InitAccumulatedDeltas(): Initializes an empty container which is to be used for merging the deltas.

Having discussed operation commutativity and the interface exposed to the users of the system, we

now proceed to examine the details of operation-level control (Algorithm 4.9). We begin by analyzing

the write operations, as their behavior is simpler to explain. Recall that both db read and db write

events occur during transaction execution (Algorithm 4.7, line 7). Upon receiving a write request from

the WVM, the thread executing the current transaction consults the RWS context retrieved earlier (line 2)

to determine whether the current write operation is commutative. If the operation is commutative, the

thread fetches the corresponding commutative read from the same transaction (line 4) and employs the

59

Algorithm 4.9: Schedule Execution - Operation-Level Control
Input: key - key of storage for current smart contract executing, value - value to write
Context: rws - ordered RWS for current transaction - also maps each operation to its corresponding schedule node

1 upon db write(key, value):
2 operation← GetNextOperation(rws)
3 if operation is Commutative then
4 prev comm read← schedule.GetPrevCommRead()
5 ∆← CommOp.ComputeDelta(prev comm read.value, value)
6 operation.value.SetAndNotify(∆)

7 else
8 operation.value.SetAndNotify (value)

Input: key - key of storage for current smart contract executing
Context: rws - ordered read-write set for current transaction - also maps each operation to its corresponding schedule

node, storage - storage for current SC executing
9 upon db read(key):

10 operation← GetNextOperation(rws)
11 if operation is Commutative then
12 initial val← storage.Get(key)
13 operation.value.SetAndNotify(initial val)

14 else
15 starting node← ⊥
16 starting val← ⊥
17 if operation has dependency dep then
18 starting node← dep
19 starting val← dep.value.WaitForValue()

20 else
21 starting node← schedule.GetLinkedList(operation.sc addr, key)
22 starting val← storage.Get(key)

23 accumulated val← CommOp.InitAccumulatedDeltas(starting val)
24 node← starting node
25 loop
26 if node.Tx = starting node.Tx then
27 return accumulated val

28 // These writes can only be commutative

29 if node is Write then
30 val← node.val.WaitForValue()
31 accumulated val← CommOp.Merge(accumulated val, val)

interface methods to compute the delta, given both the previous commutative read value, denoted as

prev comm read value, and the new value, denoted as value. This computed delta is then stored in the

node (line 6). Conversely, if the write operation is non-commutative, the thread directly writes value into

the node and notifies any waiting threads dependent on this value.

For read operations, a similar procedure is followed, where the operation context is retrieved from the

RWS (line 10). The behavior of the read depends on its commutativity. If the read is commutative, it does

not conflict with any other operations, and the thread simply retrieves the initial value from storage (line

12), writing it into the operation node. This is the only case where a read node defines the value held

by the node. However, in the case of a non-commutative read, it requires the most recent value, which

may have been modified by preceding operations. This is where explicit dependencies come into play.

The approach is to start from the most recent non-commutative write (the node to which the dependency

60

Figure 4.12: Schedule Persistence - Black dashed borders identify the last writes for each key.

field points to), if such an operation exists, or from the beginning of the operation sequence (lines 17-22).

Specifically, the algorithm begins by checking the explicit dependency of the node to obtain the initial

value. If no such dependency exists, it starts from the head of the operation list, using the value from

storage as the base.

Subsequently, the algorithm iterates over all operations, waiting for the values to be written by

preceding write nodes, if necessary, using condition variables. As the iteration progresses, the thread

merges any commutative deltas encountered (lines 29-31). By design, since the iteration begins at the

last non-commutative write with a transaction ID lower than that of the current transaction, or from the

head of the list in the absence of such a write, all subsequent writes must be commutative. Therefore, the

algorithm iterates through and merges all potential deltas into the initial value. This allows the transactions

responsible for those commutative operations to execute those operations in parallel, while ensuring that

a non commutative read comming afterwards will always wait for those deltas before returning the value.

The final result, after all merges have been completed, is then returned to the caller, namely the WVM.

Upon finishing execution, the system enters its final phase - Schedule Persistence.

4.7 Persisting the Schedule

Running Example After all threads are finished executing, the final step is to persist the last written

values from the schedule into the SC’s storage. This step is simple enough to be run single-threaded.

The idea is depicted in Figure 4.12. Black dashed borders represent the last write nodes, which will be

61

Algorithm 4.10: Schedule Persistence
Input: key - key of storage for current smart contract executing, value - value to write
Context: storage manager - manages storage for each contract

1 procedure PersistSchedule(schedule):
2 foreach contract in schedule do
3 sc storage← storage manager.GetContractStorage(contract)
4 foreach key in contract do
5 last write← schedule.GetLastWrite()
6 if last write ̸= ⊥ then
7 if last write is Commutative then
8 val← MergeLastCommutativeWriteChain(last write, sc storage, key)
9 sc storage.SetValue(val)

10 else
11 val← last write.value.WaitForVAlue()
12 sc storage.SetValue(val)

Input: key - key of storage for current smart contract executing, value - value to write
Context: storage manager - manages storage for each contract

13 procedure MergeLastCommutativeWriteChain(last write, sc storage, key):
14 accumulated deltas← CommOp.InitAccumulatedDeltas()
15 node← last write.prev
16 loop
17 if node is Write then
18 val← node.value.WaitForValue()
19 accumulated deltas← CommOp.Merge(accumulated deltas, val)
20 if node is NonCommutative then
21 return accumulated deltas

22 if node.prev ̸= ⊥ then
23 node← node.prev

24 // Reached head of operations without having found a non commutative write - use storage value

25 else
26 val← sc storage.Get(key)
27 accumulated deltas← CommOp.Merge(accumulated deltas, val)
28 return accumulated deltas

iterated over and used to compute the value that is to be persisted into the corresponding SC storage.

Following the example, and going from top to bottom, the first storage key to be persisted would be SC1,

Key1. The last write for this key is the one from Tx0, which has written the value 3 to its node. Since this

write is non-commutative, this is the final value persisted to the SC1’s storage for Key1. Next, for Key2 we

have another non-commutative write as the last write. The process is similar - we persist the value written

by that operation. In this case it would be 5. Next, for Key3, since it has not writes, no modification to the

initial storage is needed.

Finally, for SC2, Key1 the last write is a commutative operation. Since this operation only tracks

the delta, and not the last value, we need to iterate over all nodes to the left until we find the first

non-commutative write, or we reach the head of the list of operations. In this example we would reach the

orange write, fetch its value - 10, and merge the delta 2, which would produce a final value of 10 + 2 = 12.

This would be the value to be persisted for SC2,Key1.

62

Schedule Persistence Upon finishing execution, threads follow the PersistSchedule procedure, as

shown in Algorithm 4.10. They iterate over each SC in the schedule, fetching its storage (line 3). Then

they iterate over all keys of that SC and fetch the last write (line 5). If there is no last write, then that key’s

value was not changed, i.e., no work needs to be done. If there is a last write and it is commutative (line

7), the thread needs to go over all previous deltas and merge them as represented in by the procedure

MergeLastCommutativeWriteChain in line 13. If, on the other hand, the last write for the current key is

non-commutative, the thread only has to persist the value written in that node (lines 10-12).

For commutative writes (line 8) the thread initializes, using the commutative operation’s interface

defined earlier, a base value that will be used to merge the deltas (line 14). Then it loops from right to left

following the linked list of operations. Upon finding a write, it waits for the delta of that node and then

merges it (lines 17-19). Note that this value being merged is only a delta if the write is commutative. If the

write is not commutative, then it has reached the end of the commutative chain. It still merges the deltas

to the value of the first non-commutative write, and then returns the merged value (lines 20-21). If no

non-commutative write is ever found, then the thread reaches the head of the linked-list. In such case it

reads the value from storage, merges the deltas to that value and returns the merged value (lines 25-28).

After persisting the storage, the system ends its work, and is ready to receive a new block, construct a

new schedule for it, and execute the entire pipeline again.

4.8 Conclusion

In this Chapter we introduced COEX-P, a novel approach to optimizing the execution of smart contracts

through parallel execution of commutative operations. By leveraging scheduled execution with commu-

tative operation support, we aim to address several key challenges in smart contract execution. Key

contributions of our approach include:

1. Efficient conflict resolution: By building with write-versioning in mind, we allow conflicting operations

to be processed concurrently in a deterministic way.

2. Scalability: The use of a parallel schedule building together with a parallel schedule execution

allows the system to handle a large number of transactions efficiently.

3. Hot-spot awareness: By relying on operation commutativity support, the system is designed to

perform efficiently under commutative-intensive workloads.

63

5
Evaluation

This section provides a comprehensive evaluation of the proposed solution, focusing on three key aspects:

correctness, performance, and resource utilization. The system is benchmarked against a baseline,

namely, the standard sequential execution, to demonstrate the benefits of parallelization. Additionally, the

base parallel version without commutativity support is compared against the system with commutative

operation support to assess the impact of operation commutativity. The evaluations are designed to

stress-test the system across various scenarios and workload patterns, including the challenging hot-spot

scenario.

Section 5.1 evaluates the system’s performance across different scenarios. Section 5.2 examines

the system’s resource utilization, particularly hardware resources, under varying workloads. Finally,

Section 5.3 concludes with an analysis of the key improvements introduced by the system, as well as a

discussion of the current limitations evaluation results show.

Correctness Evaluation To validate correctness, the system was tested by computing a hash repre-

senting the final state across all smart contract (SC) storages in the vanilla sequential execution, and

comparing it to the final state produced by the proposed solution.

In all following experiments, the resulting state was the same, confirming that the output of the

proposed system is equivalent to that of the serial execution model.

As we will discuss later, the experiments were made using a serial schedule creation. Initial imple-

mentations of the system benefited from the parallel version introduced in Section 4.5, but as of now, the

current version seems to produce lower and more consistent times when building the schedule serially.

5.1 Performance Evaluation

This section addresses the following key performance questions:

1. How does the system’s performance scale with varying workloads and thread counts?

64

2. What are the overheads associated with schedule creation and persistence, and how do they vary

with different workloads?

3. How does the support for operation commutativity compare to the base parallel version?

The evaluation begins by analyzing the system’s performance as the number of threads increases,

comparing it to the sequential baseline, and measuring the time spent on schedule creation and persis-

tence. The following tests explore the impact of varying several workload characteristics, including:

1. Transaction complexity

2. Number of smart contracts (SCs)

3. Number of transactions per SC

4. Block size

5. Presence of commutative operations

Transaction Logic The system processes smart contract transactions, each performing a sequence

of read and write operations to storage. For the purpose of this evaluation, a synthetic SC was built to

simulate common operations - an increment on a global counter, and a generic storage set operation that

conflicts with any other read or write to that same storage key. Using synthetic smart contracts allows for

a more controlled and repeatable testing environment. By simulating specific operations, the results show

more uniform behavior across evaluations, making it easier to isolate and analyze system performance

under various conditions. Transactions vary in terms of:

• Complexity: Amount of work done between the reads and the writes. Each of the available SC’s

functions loops over N iterations, simulating transaction computation. This is a variable used to

stress the system on simple vs. complex transactions.

• Commutativity: The synthetic SC constructed for the tests allows calling two functions - one

that increments a global counter, and one that just sets the value of that counter. This means

transactions can be commutative in the case of calling the incremental method or non-commutative

in the case of just setting the storage with some predefined value.

The experiments will also vary the amount of conflicts present, by varying the amount of transactions

to the same smart contract.

To ensure robust results, each test was executed five times, and the mean execution time was

computed for each configuration. The experiment excludes any time spent on instantiating the contracts,

and only captures transactions invoking functionality on already deployed SCs. The experiments were

65

(a) Execution time (b) Speedup

Figure 5.1: Thread Count - Execution time and speedup.

conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 6138 @ 2.00Ghz (single socket

with 20 cores) and 64GB of RAM. The number of threads used in the experiments was varied from 1 up

to 20 to fully utilize the available hardware resources.

5.1.1 Performance Scalability

Thread Count To understand how performance scales with an increasing number of threads, the next

experiment utilized a workload comprising 200 SCs, each containing 10 transactions and a block size of

2000 transactions. Each transaction reads a value from storage, simulates some computational logic, and

then writes the final result non-commutatively to the same storage key from which it was read. Although

transactions within each SC may conflict with one another, since the number of SCs is much larger than

the number of threads, there will always be ready transactions to be executed.

The complexity of each transaction, represented by the number of loop iterations that apply a sum to a

variable, was set to 300, 000. This implies that, between the read and subsequent write operations, each

transaction performs 300, 000 iterations. We measured the execution time for a single transaction with

300, 000 loop iterations and it took well below one millisecond. This level of complexity was intentionally

chosen, as it reflects the most common scenarios in real-world workloads where computational efficiency

is paramount. Note that, as mentioned, later we will present a sensitivity analisys in which the number of

loop iterations varies across a relatively large range.

Figure 5.1 illustrates the execution times on the left, measured in milliseconds, and the corresponding

speedups for each thread count, relative to the sequential execution baseline. The results clearly indicate

a significant reduction in block execution times with each increment in the number of threads, decreasing

from approximately 540ms to only 60ms. Furthermore, the observed speedups continue to increase with

66

(a) Execution time (b) Relative execution time percentage

Figure 5.2: Thread Count - Absolute and relative per-component execution times.

the addition of threads, albeit not in a linear manner. The maximum speedup achieved for this workload

was 8.57×, which is slightly below half of the optimal speedup theoretically attainable with 20 threads.

The following experiments will help explain that this phenomenon can be attributed to various factors,

including the selection of the VM for transaction execution and concurrency overhead at the ready queue

level. Given that transactions have very brief execution times, threads frequently access the queues,

resulting in an higher overhead related to concurrency control.

Figure 5.2 presents a per-component analysis of the system’s performance for the same workload.

As explained in Chapter 4, schedule creation refers to creation of the schedule. Schedule execution

refers to the execution of transactions including all concurrency control. Schedule persistence refers to

iterating over all items and persisting them into each SC’s storage. Figure 5.2 (a) illustrates the absolute

execution times for each phase of the execution pipeline. It is evident that only the schedule execution

phase is decreasing in execution time, while both schedule persistence and creation remain constant.

This observation aligns with the expectations, given that both components operate sequentially and the

workload parameters—including the number of SCs and total operations—remain unchanged. Conversely,

Figure 5.2 (b) showcases the relative execution percentages attributed to each component. Despite

schedule creation and persistence being constant, their relative execution percentages increase as the

number of threads rises, since the schedule execution phase continues to consume a smaller fraction of

the overall execution time, ultimately accounting for less than 80%. In contrast, both schedule creation

and persistence occupy approximately 15% to 17% of the total execution time.

Block Size The next set of experiments aims to investigate how the system performs with different

block sizes. We tested block sizes ranging from 200 to 10, 000 transactions, while maintaining the same

conditions as in the previous experiment: 200 SCs and 300, 000 loop iterations, focusing solely on non-

67

Figure 5.3: Block Size - Execution times

Figure 5.4: Block Size - Speedup

commutative operations. This time, we fixed the number of threads to 20, as this setting yielded the best

performance in our prior tests.

Figure 5.3 illustrates the mean execution time per block as we vary the block size. Notably, while

the sequential version’s execution time doubles each time the block size is doubled, the parallel version

experiences a much slower rate of increase. For instance, with a block size of 10, 000 transactions, the

sequential execution time was around 2.5 s, whereas the parallel execution took just over 200ms. As

shown in Figure 5.4, the speedup tends to increase with block size. This trend occurs because, as the

following plots reveal, the relative execution times for both schedule creation and persistence decrease,

allowing the parallel components of the system to become more significant. As a result, the overall

speedup is primarily influenced by the schedule execution, which efficiently parallelizes and drives the

system’s performance.

Figure 5.5 presents the execution time of each system component as the block size increases. Two

notable observations emerge from the data: first, both the execution phase and schedule creation times

tend to increase, which is expected since more transactions lead to more operations that need to be

scheduled and executed. Second, the schedule persistence time remains constant. This is anticipated,

as the experiment does not alter the number of keys being written but rather changes the number of

68

Figure 5.5: Block Size - Execution times

Figure 5.6: Block Size - Relative execution time percentage

transactions writing to them. Thus, the number of keys that the schedule persistence phase must iterate

over stays the same. Interestingly, for smaller block sizes (ranging from 200 to 1, 000), the combined times

for schedule creation and persistence account for approximately 60% of the total execution time, while

the execution phase comprises only 40%. As depicted in Figure 5.6, this indicates that without further

optimizations to the schedule creation and persistence processes, the system’s speedup is hindered

with smaller block sizes, achieving only about 4.8× the sequential execution speed with 20 threads. If we

could reduce the time taken by schedule creation and persistence to half of their current durations, the

speedup could potentially increase to around 7×. This improvement could stem from simply reducing

the constant time of 8ms each currently takes, which for smaller blocks could significantly enhance the

speedup, possibly by over 2×.

5.1.2 Performance over Different Workloads

Transaction Complexity Transaction complexity controls the time each transaction spends executing.

Consequently, it is expected that higher complexity leads to increased execution times for transactions

69

(a) Execution times (b) Speedup

Figure 5.7: Transaction Complexity - Execution time and Speedup

and decreased time spent on concurrency control. Therefore, speedups are expected to increase with

an increase of complexity. This experiment aims to confirm this expectation while providing additional

insights into current system bottlenecks for lower transaction complexities. The test configurations remain

the same as before: 200 smart contracts (SCs) with 10 transactions each, with a block size of 2, 000

transactions.

Figure 5.7 illustrates the execution times in milliseconds and the corresponding speedups against the

sequential version for different tested transaction complexities. The system was tested from only 10 loop

iterations to over 107 iterations. (The highest complexity value used is not displayed in Figure 5.7 (a) to

avoid scaling the time axis too much, which would hinder readability for lower complexities). However,

since transactions in real workloads tend to be highly efficient and exhibit low instruction complexity, the

block execution time generally remains sub-second. Therefore, complexities around 105 and below are of

particular interest. The parallel version tends to take around 30ms for complexities below 105, while the

sequential version consistently exceeds 100ms. Speedups range from 3.6× to 7.5× at 105 loop iterations,

clearly indicating that the overhead is much more pronounced at such low complexities, and also that

more complex contracts will result in better performance.

Figure 5.8 illustrate this overhead for lower complexities in a per-component basis. In Figure 5.8 (a), it

is evident that for very low transaction complexities, the time spent on schedule creation and persistence

is comparable to that of schedule execution (both around 10ms). This implies that schedule execution

is responsible for only about 40% of the total execution time, clearly highlighting schedule creation and

persistence as bottlenecks for workloads with low complexities, as shown in Figure 5.8 (b). This pattern

was also evident in the previous experiments with varying block sizes, as illustrated in Figure 5.6. However,

as we will discuss next, this pattern tends to disappear when the workload transitions from sparse to

70

(a) Execution time (b) Relative execution time percentage

Figure 5.8: Transaction Complexity - Absolute and relative per-component execution times

dense. Specifically, this transition occurs when the workload shifts from having a significantly larger

number of SCs compared to the number of transactions to having a smaller number of SCs relative to

the number of transactions. This scenario is expected for hot-spot access patterns, where numerous

transactions affect only a few keys.

Dense Workloads with Commutativity Support Although previous experiments show how the system

behaves for sparse workloads, i.e., workloads with a high number of SCs, each with a few transactions,

this next experiment shows how the system performance varies when the workload changes from being

sparse, to dense, as this is the common hot-spot scenario - a large number of calls to only a few SCs,

touching only on a few keys. Furthermore, dense workloads benefit most from commutativity support as

they are inherently conflict-intensive. The experiment assumes a block size of 2, 000 transactions, using

20 threads (the maximum available amount), and fixes the total number of transactions to 2, 000, and

varies the SC-Tx relationship, going from 200 SCs, each with 10 transactions, to a single SC with 2, 000

transactions. The experiment also compares the system’s operation commutativity support by running

all workloads with and without commutativity support. All transactions are assumed to commute when

operation commutativity is enabled, and to conflict when it is disabled.

Figure 5.9 (a) plots the execution times of four different tested cases:

1. Sequential Execution: Represented as the red line, represents the sequential execution times. As

shown, the execution times decreases when the workload switches to from sparse to dense. One

possibility is due to cache’s principle of spacial and temporal locality. Since there are less SCs for

dense workloads, threads will re-use the VMs of the same small set of SCs, whereas with sparse

workloads, threads need to constantly fetch different VMs for the different SCs.

71

(a) Execution time (b) Speedup

Figure 5.9: Dense Workloads with Commutativity Support - Execution time and Speedup

2. Parallel Execution with 20 threads: Represented as the blue filled line, represents the parallel

execution without commutativity support, i.e., every transaction conflicts with the previous one. The

plot shows that execution times tend to increase when the workloads tends to be dense. This is

expected as, since transactions conflict, the number of SCs limits the degree of parallelization. For

1 SC, the maximum parallelization achievable is 1. For 2 SCs, the maximum speedup achievable is

2, and so on. This is the reason why for less than 20 SCs, when using 20 threads, execution times

increase, mainly due to concurrency control. This configuration surpasses the serial version when

all calls are made to a single SC.

3. Optimal Parallel Execution: Represented as the dashed blue line, represents the parallel execution,

but setting the number of threads dynamically with the number of SCs. For 10 SCs, the system runs

with 10 threads. For 5 SCs it runs with 5 threads and so on. This is to get rid of the high concurrency

control for 20 threads, and capture the system’s maximum achievable speedups. Clearly, as shown

in Figure 5.9 (a) this is the reason why the execution times are always smaller than the parallel

version with 20 threads.

4. Parallel Execution with 20 threads and Commutativity Support: Represented as the orange line,

represents the parallel execution with operation commutativity support enabled. This is the most

interesting configuration for this experiment. As shown in Figure 5.9 (a), the execution times with

operation commutativity enabled are mostly constant at around 70ms with a slight increase for less

than 2 SCs. This is because the experiment was set to allow all operations to commute, i.e., they

can be executed in parallel, and the system only needs to merge these deltas at the end.

Looking at Figure 5.9 (b), which plots the speedups relative to the serial version using the execution

72

(a) Execution time (b) Relative execution time percentage

Figure 5.10: Dense Workloads with Commutativity Support - Per-component absolute and relative execution times
for the parallel version without commutativity.

times from Figure 5.9 (a), it becomes clear that:

1. The speedup of the commutative support version falls slightly below the parallel version without

commutative support for sparse SCs (for over 20SCs). One reason for this is that the current

commutativity support implementation currently needs to do extra work at each node everytime the

value is to be written to the node. This work includes deserializing the storage value from a byte

array to the in-memory type defined by the interface in Section 4.6, computing the delta for that

in-memory value, and serializing again the value into a byte array to be stored at the node. The

parallel version without comutativty support avoids all this extra work, and only needs to store the

byte array directly.

2. The speedup of the commutative support version decreases much slower than the parallel version

without commutative support for dense workloads (for less than 20SCs). The reason for this is

that commutative operations are allowed always to execute in parallel. The system initializes a

number of VMs corresponding to the number of threads, and then, when executing, multiple threads

can fetch different VMs and execute the commutative operations in parallel. This shows that, with

commutativty support enabled, the system is able to perform up to 6.6× better than the base parallel

version for the case of multiple calls for the same SC, which confirms the benefits of commutative

support under hot-spot scenarios.

Figure 5.10 and Figure 5.11 show the execution time of each component of the system as well as its

relative execution percentage.

Figure 5.10 (b) and Figure 5.11 (b) plot the relative execution percentages, while Figure 5.10 (a) and

73

(a) Execution time (b) Relative execution time percentage

Figure 5.11: Dense Workloads with Commutativity Support - Per-component absolute and relative execution times
for the parallel version with commutativity.

Figure 5.10 (b) plot the execution times. Figure 5.10 show data from the parallel version with 20 threads

without commutative support, and Figure 5.10 show data from the same parallel version with commutative

operation support enabled. Figure 5.10 (a) shows that the main overhead, as explained earlier is due

to the schedule execution, namely due to concurrency control as there are more threads than SCs the

denser the workload gets. This is still the case for the version supporting commutative operations, but at a

much smaller scale - while without operation commutativity the execution phase tends to keep increasing,

reaching over 600ms, in the version with commutative support the execution phase was always under

70ms. This leads to a less extreme limit on the relative execution time, as shown by Figure 5.10 (b) and

Figure 5.11 (b). Still, both plots show that the execution phase is still dominant, while schedule creation

and persistence have a decreasing trend. This is expected as there will be less SCs, thus less items to

persist. The reason for the decrease in schedule creation time may be related to how it is implemented,

and seems proportional to the number of different keys inserted in the schedule.

5.2 Resource Utilization

Resource utilization was tested in terms of per-CPU and RAM usage. Since all instantiated VMs are

stored in-memory, the system uses a substantial amount of memory. For 200SCs running with 20 threads

the system consumed around 32GBs. Recall that each thread has an associated VM. This means that

in total the system needs 200 ∗ 20 = 4000 VMs to fully support intra-SC concurrency for commutative

operations. Initially, the system used a queue to store VMs such that threads could pop a VM at need.

This allowed having less VMs than threads. Meaning the system could be launched with 20 threads

74

and only have 5 VMs initialized for each SC. This decreases the usage of RAM by a factor of 4x, but it

also impacted performance, sometimes by a factor close to 2x slower. The suspicion is that by having

threads share VMs between each other, when executing transactions aimed at the same SC, threads

could execute two consecutive transactions using two completely different VMs, meaning an entire VM

context would need to be loaded into cache. This behavior affected performance. Furthermore, with less

VMs than threads, the maximum parallelization achievable for commutative intensive workloads is limited

by the number of VMs instead of the number of threads. In practice, this means that if we only have

commutative operations for a single SC, and we execute with 20 threads, but only 2 VMs, the maximum

speedup achievable will be 2×.

Instead, the current solution opts to assign each different thread a different VM, where all transactions

for some SC picked by some thread are executed always under the same VM. This adheres to the principle

of memory locality, improving the overall performance. This way the maximum speedup achievable is set

to the number of threads instead of the number of VMs at the cost of higher memory usage.

As for CPU usage, an experiment was built to stress out the efficiency of CPU utilization. The

experiment comprised of a workload with 30SCs, each with around 8000 transactions to stress out the

system usage. The goals of the system are twofold:

• Utilize all available resources at maximum.

• Be efficient when it is not possible to utilize all resources due to conflicts.

Since the Linux system used so far has 20 cores, it would be hard to visualise and represent per-CPU

usage. As such, this experiment was conducted using a smaller machine with an Intel(R) Core(TM)

i7-9750H CPU @ 2.60GHz (single socket with 6 cores) and 16GB of RAM. Table 5.1 describes each

tested workload.

Workload Description

Workload A 30SCs each with 8000 transactions.

Workload B 4SCs each with 8000 transactions.

Workload C 2SCs each with 8000 transactions.

Workload D 1SC with 8000 transactions.

Table 5.1: Description of Tested Workloads

Each of these workloads used the system configured to use all 6 threads available. Since each

transaction in this workload depends on the previous on the block, each thread, upon finishing executing

a transaction should only be able to free one other transaction. As such, as explained in Section 4.6, this

thread should not notify any other waiting thread, and should continue executing the chain of transactions

by itself. Table 5.2 shows the CPU utilization for each of the workloads. Each entry in the table was

captured using the mpstat tool to capture per-CPU usage every second while the system was running,

75

after all VM initializations until the execution ended. The following table shows CPU percentage as well

as the standard deviation for each CPU.

Workload CPU Usage (%) per vCPU
1 2 3 4 5 6

Workload A 98.75± 0.83 98.48± 2.62 100.00± 0.05 100.00± 0.03 99.00± 1.73 99.75± 0.43

Workload B 99.00± 0.82 100.00± 0.05 100.00± 0.05 0.99± 0.81 2.68± 0.47 100.00± 0.05

Workload C 97.09± 5.56 95.21± 15.28 1.25± 0.92 1.00± 0.58 1.33± 0.94 1.00± 1.15

Workload D 98.00± 0.73 1.62± 1.54 1.60± 0.464 0.80± 0.57 2.91± 0.74 1.70± 0.67

Table 5.2: CPU Usage (%) per vCPU for Different Workloads

As expected, for Workload A, the system fully all 6 cores as there are 30 SCs, allowing a maximum

parallelization of 30, only limited by the 6 hardware cores. For Workload B, since the number of SCs was

4, the systems uses only cores 1, 2, 3 & 6. Similarly for Workload C, since there are only 2 SCs, the

system uses only 2 cores (1 & 2). Finally for Workload D the system uses a single core (1). Again, recall

that since each transaction only frees one other transaction, threads that are put to sleep waiting for a

new push to ready or partial ready queue will never wake up. This is an extreme case used to test out the

best-case scenario of a chain of conflicting transactions, and how the system would behave. Of course, if

commutative operation support was enabled, then the system would use all 6 cores even for Workload D.

5.3 Discussion

The results presented in this study described the performance characteristics of the system across

various workload scenarios. They shows that the system incurs significant overhead when processing

small blocks or executing transactions with low complexity. This overhead can primarily be attributed to

two factors: (A) schedule creation and persistence, and (B) concurrency control mechanisms.

(A) Schedule Creation and Persistence While schedule creation and persistence typically take under

8 ms, their overhead becomes significant when transaction execution times are lower. Parallelization of

these stages could offer optimizations. Early attempts to partition and merge sub-schedules improved

performance, but later system optimizations made the serial version more stable. However, future

iterations could still explore parallelizing these stages to reduce system overhead.

(B) Concurrency Control Overhead Concurrency control adds notable overhead, especially in low-

complexity workloads due to queue-based resource management. Reducing this overhead through more

efficient techniques could improve system performance. Exploring lightweight control mechanisms or

minimizing synchronization points may offer further gains.

76

One of the key insights from this study is the significant impact of operation commutativity support

in dense, conflict-prone workloads, where many transactions target a small set of smart contracts and

keys. In such scenarios, commutativity support improved execution times by up to 6.6× compared to the

baseline parallel version without commutativity. This highlights the role of commutativity in improving

performance for workloads characterized by high transaction contention. Additionally, the inherent locality

of access in hot-spot workloads improves cache utilization, as frequently accessed contract’s VMs remain

in cache.

However, some overhead remains in the current commutativity implementation, particularly when

the number of available parallel tasks equals or exceeds the number of threads. This performance

degradation comes from the need to deserialize, compute deltas, and serialize state changes. A possible

optimization is to store in-memory values directly in the node, rather than as serialized byte arrays,

which would halve the work required during transaction execution. Additionally, deferring the serialization

process to the schedule persistence phase, where in-memory values could be merged and serialized,

would further reduce the overall workload and alleviate the bottlenecks associated with state management

in commutative operations.

Despite these overheads, the system demonstrates a good speedup, especially considering the

lightweight nature of typical blockchain workloads, which generally feature sub-second execution times.

Achieving high levels of speedup under these conditions is challenging, as the relative proportion of

sequential operations increases. Nonetheless, the system achieved a maximum speedup of 8.57× for a

block size of 2, 000 transactions with low transaction complexity under a sparse workload, and a maximum

speedup of 6.9−10.1× for a hot-spot workload touching 1 to 5 SCs with commutativity enabled, indicating

that the parallel execution model is effective within the tested parameters.

The system has also proven efficient in its use of CPU resources. The dynamic thread management

ensures that threads remain idle when no parallelizable transactions are available, thus avoiding unnec-

essary concurrency control overhead. This adaptive thread utilization strategy ensures that available

computational resources are maximized, without introducing excessive overhead from idle threads waiting

on work.

77

6
Conclusion

Blockchain technology has established itself as a fundamental pillar for decentralized applications across

diverse domains, merging the concepts of distributed systems and databases into a cohesive framework

for secure transaction management. The appearence of smart contracts has significantly expanded the

capabilities of blockchain systems, enabling automated and conditional logic to execute in a trustless

environment. However, the increasing complexity and popularity of these applications have exposed

inherent limitations in transaction execution, particularly in high-contention scenarios characterized by hot

spots.

This Thesis addresses the critical challenge of parallelizing transaction execution with a focus on the

hot-spot access pattern - a large number of transactions to a small number of popular smart contracts.

By focusing on the commutativity of operations, we propose a novel strategy that effectively manages

hot-spot scenarios. Our approach capitalizes on the unique properties of commutative operations to

minimize contention and optimize performance in environments where certain items experience high

transaction volumes.

The system is configurable in terms of number of threads, operation commutativity support, and

transaction reordering to achieve the best performance possible. As the experiments have shown, the

system is able to achieve up to 8.57× less time to execute than the sequential version, when executing

without operation commutativity, and up to 10.1× with operation commutativity enabled, while being up to

6.6× faster then the parallel version without commutativity for dense workloads.

6.1 System Limitations and Future Work

Some of the system’s limitations were already discussed in Section 5, when discussing the experimental

results. We highlight them once more:

• Schedule creation and persistence incur significant overhead for low complexity workloads. This

occurs for both small block sizes as well as transactions with low complexity.

78

• Concurrency Control at queue level. Results show that for increasing transaction complexity

speedups increase. As schedule creation and persistence remain constant, and schedule execution

takes over 90% of the relative execution time, this means the lack of further speedup increases is

mostly due to the execution phase. Further timing tests also showed that the average time spent

waiting for other operations to complete is also negligible, meaning the overhead must be tied to

concurrency control at the queue level.

• High RAM usage due to VM management. The current system creates a number of VMs equal

to the number of threads for each SC to allow for performant intra-contract parallelization when

commutativity support is enabled. Although performant, it suffers from high RAM usage, which may

be wasteful in cases where the blockchain lacks hot-spot workloads.

• Reliance on perfect RWS. The system relies on the assumption that either the RWS is given, or

that the predicted RWS by parsing the contract’s profile is always accurate. This limits the system

capability to work with transactions whose execution path depends on some storage item’s value.

To enhance this work, some key points could be improved in future work:

• Improve the schedule creation & validation via light parallelization strategies. Note that a parallel

schedule creation strategy was already proposed, but as explained, it provided slightly higher times

than the serial version, mostly due to the merging step, as well as for the conversion from the

sequential to the parallel schedule version, which must have some of its structures wrapped around

locks to ensure correctness. This overhead is most probably due to implementation inefficiencies,

and further optimizations at this front could provide improved performance.

• Improve VM management. A lock-free stack-based approach could provide as a beneficial tradeoff

between RAM usage and performance. The idea is that threads would push and pop VMs in a FILO

order. This would make threads use the VMs following a Last Recently Used (LRU) eviction policy,

i.e., threads would always try to pop the same first VM. This would respect the principle of locality

as highly-common accessed VMs would be more susceptible to be stored in cache, whereas a with

a queue, each thread would pop some random VM following the order they were inserted in the

queue.

• Improve queue management. Both ready and partial ready queues could use a batch pop instead

of popping one transaction at a time. Currently, queues do not respect FIFO order, as they do not

need to, and are implemented using concurrent Hash Sets. This is because we need to be able to

remove some transaction from QueuePartialReady by the transaction ID. A custom data structure

that allows for efficient pushing and concurrent batched popping as well as removal by value could

provide beneficial.

79

• Improve commutative operation’s representation at operation nodes. As explained earlier, com-

mutative operations currently incur some overhead as they are deserialized, merged and then

serialized again. A better approach would be to deserialize the base storage value only once for

each item, and for each commutative operation, we would use the in-memory value for the merging,

and for storing at the node. Only when encountering a non-commutative write or when persisting

the schedule we would serialize the merged value.

• Support incomplete and inaccurate RWS predictions. As pointed earlier, the system currently

assumes a perfect RWS prediction. One approach to further extend the system’s capabilities would

be to support identification of untracked operations at runtime, and abort transactions according to

the new dependencies, as proposed by Qi et. al. [3]. Another way of solving this issue would be

to employ some sort of OCC strategy for transactions with incomplete or inaccurate RWSs, and

employ scheduled execution only for the transactions with perfectly predictable RWS. Nevertheless,

the system already is equipped with some base support for such improvements. As discussed

in the Profile Generation section in Chapter 4, the current TxRWS structure already comes with a

profile status field, indicating whether the current profile is complete or not. This can be used to

identify transactions with an incomplete RWS prediction, and decide how the transaction execution

is to be handled. Furthermore, we also include the field storage dependency to identify if, when

parsing the profile, we encountered any condition dependent on storage. This provides information

about the RWS, marking it as a possibly wrong prediction, but complete nonetheless. This allows

the system to handle execution of such transactions accordingly.

80

Bibliography

[1] P. Garamvölgyi, Y. Liu, D. Zhou, F. Long, and M. Wu, “Utilizing parallelism in smart contracts on

decentralized blockchains by taming application-inherent conflicts,” in Proceedings of the 44th

International Conference on Software Engineering, 2022, pp. 2315–2326.

[2] H. Lin, Y. Zhou, and L. Wu, “Operation-level concurrent transaction execution for blockchains,” arXiv

preprint arXiv:2211.07911, 2022.

[3] X. Qi, J. Jiao, and Y. Li, “Smart contract parallel execution with fine-grained state accesses,” in 2023

IEEE 43rd International Conference on Distributed Computing Systems (ICDCS). IEEE, 2023, pp.

841–852.

[4] S. Haber and W. S. Stornetta, How to time-stamp a digital document. springer, 1991.

[5] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. [Online]. Available: https:

//bitcoin.org/bitcoin.pdf

[6] V. Buterin et al., “Ethereum white paper,” GitHub repository, pp. 22–23, 2013.

[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” in Concurrency: the

Works of Leslie Lamport, 2019, pp. 179–196.

[8] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OsDI, vol. 99, no. 1999, 1999, pp.

173–186.

[9] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, extensions, and beyond,” Commu-

nications of the ACM, vol. 56, no. 5, pp. 55–63, 2013.

[10] J. Kwon and E. Buchman, “Cosmos whitepaper,” A Netw. Distrib. Ledgers, vol. 27, pp. 1–32, 2019.

[11] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain technology: Architecture,

consensus, and future trends,” in 2017 IEEE international congress on big data (BigData congress).

Ieee, 2017, pp. 557–564.

81

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[12] R. Amir. Understanding an ethereum transaction. Accessed October 12, 2024. [Online]. Available:

https://info.etherscan.com/understanding-an-ethereum-transaction/

[13] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A survey of symbolic execution

techniques,” compsurv, vol. 51, no. 3, 2018.

[14] R. Gelashvili, A. Spiegelman, Z. Xiang, G. Danezis, Z. Li, D. Malkhi, Y. Xia, and R. Zhou, “Block-stm:

Scaling blockchain execution by turning ordering curse to a performance blessing,” in Proceedings

of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming,

2023, pp. 232–244.

[15] P. S. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani, “Optsmart: a space efficient opt imistic

concurrent execution of smart contracts,” Distributed and Parallel Databases, pp. 1–53, 2022.

[16] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding concurrency to smart contracts,” in

Proceedings of the ACM Symposium on Principles of Distributed Computing, 2017, pp. 303–312.

[17] V. Saraph and M. Herlihy, “An empirical study of speculative concurrency in ethereum smart

contracts,” arXiv preprint arXiv:1901.01376, 2019.

[18] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project

yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[19] ethereum.org. Merkle patricia trie. Accessed October 12, 2024. [Online]. Available: https:

//ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/

[20] solidity.org. Merkle patricia trie. Accessed October 12, 2024. [Online]. Available: https:

//docs.soliditylang.org/en/v0.6.1/

[21] ibcprotocol.dev. Ibc protocol. Accessed October 9, 2024. [Online]. Available: https:

//www.ibcprotocol.dev/

[22] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall, vol. 1, no. 11, pp. 1–11, 2014.

[23] cosmos.org. Application-specific blockchains. Accessed October 12, 2024. [Online]. Available:

https://docs.cosmos.network/main/learn/intro/why-app-specific

[24] ——. Cosmos sdk application anatomy. Accessed October 12, 2024. [Online]. Available:

https://docs.cosmos.network/main/learn/beginner/app-anatomy

[25] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural support for lock-free data

structures,” in Proceedings of the 20th annual international symposium on Computer architecture,

1993, pp. 289–300.

82

https://info.etherscan.com/understanding-an-ethereum-transaction/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://docs.soliditylang.org/en/v0.6.1/
https://docs.soliditylang.org/en/v0.6.1/
https://www.ibcprotocol.dev/
https://www.ibcprotocol.dev/
https://docs.cosmos.network/main/learn/intro/why-app-specific
https://docs.cosmos.network/main/learn/beginner/app-anatomy

[26] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper, C. Kozyrakis, and

K. Olukotun, “An effective hybrid transactional memory system with strong isolation guarantees,”

in Proceedings of the 34th annual international symposium on Computer architecture, 2007, pp.

69–80.

[27] J. M. Faleiro and D. J. Abadi, “Rethinking serializable multiversion concurrency control,” arXiv preprint

arXiv:1412.2324, 2014.

[28] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi, “Calvin: fast distributed trans-

actions for partitioned database systems,” in Proceedings of the 2012 ACM SIGMOD international

conference on management of data, 2012, pp. 1–12.

[29] Y. Li, H. Liu, J. Gao, J. Zhang, Z. Guan, and Z. Chen, “Accelerating block lifecycle on blockchain via

hardware transactional memory,” Journal of Parallel and Distributed Computing, vol. 184, p. 104779,

2024.

[30] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Parblockchain: Leveraging transaction parallelism in

permissioned blockchain systems,” in 2019 IEEE 39th International Conference on Distributed

Computing Systems (ICDCS). IEEE, 2019, pp. 1337–1347.

[31] H. Li, Y. Chen, X. Shi, X. Bai, N. Mo, W. Li, R. Guo, Z. Wang, and Y. Sun, “Fisco-bcos: An enterprise-

grade permissioned blockchain system with high-performance,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, 2023, pp. 1–17.

[32] D. Xian and X. Wei, “Sc-chef: Turboboosting smart contract concurrent execution for high contention

workloads via chopping transactions,” IEEE Transactions on Reliability, 2023.

83

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	2 Background
	2.1 Blockchain and Smart Contracts
	2.1.1 Ethereum
	2.1.2 Cosmos

	2.2 Transactional Memory
	2.3 Symbolic Execution

	3 Related Work
	3.1 Speculative Execution
	3.2 Static Analysis
	3.3 Smart Contract Isolation: Intra- vs. inter-SC conflicts
	3.4 Discussion

	4 COEX-P
	4.1 Cosmwasm Execution Workflow
	4.2 System Architecture Overview
	4.3 Commutative Operation Support
	4.4 Profile Generation
	4.5 Schedule Creation
	4.5.1 Eliminating Write-Write Conflicts
	4.5.2 Schedule Parallelization

	4.6 Schedule Execution
	4.7 Persisting the Schedule
	4.8 Conclusion

	5 Evaluation
	5.1 Performance Evaluation
	5.1.1 Performance Scalability
	5.1.2 Performance over Different Workloads

	5.2 Resource Utilization
	5.3 Discussion

	6 Conclusion
	6.1 System Limitations and Future Work

	Bibliography

