
1

KOLLAPS: decentralized and efficient network
emulation for large-scale systems

Sebastião Amaro, U. Lisboa & INESC-ID, Miguel Matos, U. Lisboa & INESC-ID and
Valerio Schiavoni, University of Neuchâtel

Abstract—The performance and behavior of distributed sys-
tems is highly influenced by network properties, i.e., latency,
bandwidth, packet loss, and jitter. When developing a distributed
system, questions like, ”how sensitive is the application’s perfor-
mance to network latency and bandwidth?” commonly arise.
Answering these questions systematically and in a reproducible
manner is very hard due to the variability and lack of control
over the network. Moreover, state-of-the-art approaches are
focused exclusively on the control plane, lack support for network
dynamics or do not scale beyond a single machine or small
cluster, which further aggravates this problem. KOLLAPS is a
distributed, scalable, and efficient network emulator addressing
these limitations by hinging on two observations. First, from
an application’s perspective, what matters are the emergent
end-to-end properties (e.g., latency, bandwidth, jitter) rather
than the internal state of the routers and switches leading to
those properties. Second, this model is amenable to decentralized
management, allowing the emulation to scale with the number
of machines required by the application. This premise allows
for building a simpler, dynamic emulation model that does
not require maintaining the full network state. KOLLAPS is
agnostic of the application language and transport protocol,
scales to thousands of application nodes, and is accurate when
compared against a bare-metal deployment or state-of-the-art
approaches that emulate the full network state. We use KOLLAPS
to accurately reproduce results from the literature and predict
the behavior of complex unmodified distributed systems under
different network dynamics.

Index Terms—Network Emulation, Orchestration, Distributed
Systems, Large Scale

I. INTRODUCTION

Evaluating large-scale distributed systems is hard, slow, and
expensive. This difficulty stems from the large number of
moving parts to control at once: system dependencies and
libraries, heterogeneity of the target environment, network
variability and dynamics, among others.

Such an uncontrollable and poorly specified environment
leads to slow experimental cycles, hardly reproducible results,
and potential downstream costs worth millions of dollars [1].
It is therefore of the utmost importance to have tools that
allow one to precisely describe the environment and control
key parts of the system such as the network.

On the one hand, the advent of container technology (e.g.,
Docker [2], Linux LXC [3]) and container orchestration (e.g.,
Docker Swarm [4], Kubernetes [5]) greatly simplifies the
description and deployment of complex systems and partially
addresses the problem. On the other hand, there is an acute
need for tools that allow to precisely control the network in
complex, large-scale experiments. As a matter of fact, the in-
herent variability of WAN conditions (i.e., failures, contention

 0

 50

 100

 150

 200

 250

26.02 12.03 26.03 09.04 15.01 29.01 09.02
2019 2019 2019 2019 2023 2023 2023In

te
r-

R
e

g
io

n
 L

a
te

n
c
y
 (

m
s
)

eu-north-1 ap-northeast-2 eu-central-1 us-west-2 sa-east-1
Latencies measures from us-east-1 in 2019 and 2023

Fig. 1: Latency variability between five different AWS regions across
the world. We consider 45 days in 2019, and a more recent time
window of 24 days in 2023. Latencies vary on average between 90ms
and 250ms, while spikes occur across all regions.

and reconfigurations), makes it hard to assess the impact of
changes in the application logic. Consider Figure 1: it shows
the average latency between six AWS [6] regions over a large
time window measured by Cloudping1. Even within the in-
frastructure of a major cloud provider, there are significant and
unpredictable variations in latency (e.g., high jitter). Therefore,
when developing and evaluating an application, how can a
developer be sure whether the observed performance are due to
improvements in the application, or rather to a lucky run when
the network was in favourable conditions? How is performance
affected by common network dynamics, such as background
traffic, or link flapping? The very same questions and issues
also arise in the reproducibility crisis currently plaguing the
system’s community [7], [8]. Different results for the same
system emerge not only because systems are evaluated in
different uncontrollable conditions, but also because research
testbeds such as Emulab [9], CloudLab [10], PlanetLab [11],
or EdgeNet [12] used to conduct experiments tend to get
overloaded right before system conference deadlines [13].

We therefore need tools to systematically assess and repro-
duce the evaluation of large-scale applications. One approach
to systematically evaluate a large-scale distributed system is
to resort to simulation, which relies on models that capture
the key properties of the target system and environment [14].
Simulation provides full control of the system and environment
— achieving full reproducibility — and allows to study the
model of the system in a variety of scenarios. However,
simulations suffer from several well-known problems, as there
is a large gap between the simulated model and the real-
world deployment, usually leading to several unforeseen be-

1https://www.cloudping.info

https://www.cloudping.info

2

haviors not captured by the model [15]–[18]. Moreover, even
if the simulated model is accurate, the real implementation
is not guaranteed to faithfully follow it. Moreover, despite
some efforts to model complex systems either through formal
method analysis [19] or simulation, this is, to the best of our
knowledge, seldom the case for large-scale systems.

The alternative is to resort to network emulation. As such,
the real system is run against a model of the network that
replicates real-world behavior by modeling a network topol-
ogy together with its network elements, including switches,
routers, and their internal behavior. Emulation has been used
for decades [20] to help reason about the behavior of the
real system in a concrete scenario rather than its model.
Unfortunately, state-of-the art network emulators suffer from
several limitations. MiniNet [21] is limited to a single physical
machine and therefore cannot be used to emulate a large-
scale resource-intensive system. MiniNet-Hifi [22] addressed
the high resource usage of MiniNet, however, it is still
limited to one machine. MaxiNet [23], the multi-host version
of MiniNet supports distributed clusters but scales poorly.
ModelNet [24] and alike rely on a dedicated cluster of nodes
to maintain the emulation model to which the application
nodes must connect. However, accuracy is highly dependent
on application traffic patterns and can quickly degrade with
a modest increase in the number of application nodes [25].
CrystalNet [26] accurately emulates the control-plane of large-
scale networks (e.g., routing tables, software switch versions,
or device firmwares) but cannot be used to emulate the
data-plane (e.g., latency, bandwidth), and hence evaluate the
behavior of large-scale distributed applications. SEED [27]
is an Internet emulator aiming to emulate the fundamental
infrastructure components of the Internet such as autonomous
systems, BGP routing, and others. However, and similarly to
CrystalNet, SEED lacks support to emulate network properties
such as bandwidth or latency and does not provide dynamic
behaviors. While emulation testbeds (e.g., Emulab [9]) provide
a semi-controlled environment and network, they cannot model
network dynamics and thus one cannot assess their impact
on application behavior. In summary, existing approaches are
focused exclusively on the control plane, lack support for
network dynamics or do not scale beyond a small cluster.

In this paper, we detail the design, implementation and
evaluation of KOLLAPS, a decentralized, scalable and efficient
network emulator. KOLLAPS overcomes the limitations of
state-of-the-art solutions through two key insights. First, from
the perspective of a distributed application, the observable end-
to-end properties, e.g., latency, jitter, bandwidth and packet
loss, are more relevant to its behavior than the underlying
state of each networking element leading to these proper-
ties. This enables us to build a simplified model that does
not require emulating the full-state of the internal network
elements (e.g., routers, switches), while providing equivalent
behavior. Second, it is possible to accurately maintain this
emulation model in a fully-distributed fashion thus allowing
the emulation to scale with the application nodes without
sacrificing accuracy. Moreover, the simplified model lends
itself to quick changes, enabling the emulation of dynamic
events such as link removals and additions or background

traffic in a timely manner (i.e., milliseconds).
Finally, KOLLAPS can run in two modes: managed and

unmanaged. In the former, KOLLAPS controls the whole
lifecycle of the application under test, similarly to the other
state-of-the-art tools (i.e., KOLLAPS deploys and starts the
application, runs the experiment, and so on). In the latter,
KOLLAPS can be attached to an already running system and
bring its emulation capabilities to it. This allows, for instance,
to subject an already running system to controlled network
faults (e.g., packet loss) or bandwidth constraints, and opens
the door to a wider range of experiments. Overall, KOLLAPS
is agnostic of the implementation language, transport protocol
and supports multiple (heterogeneous) deployment units (i.e.,
container, virtual machine or physical machine) within the
same experiment. For clarity, and when it is not clear from the
context, we use the term application node, or node for short,
to refer to an application running in a single deployment unit
in the emulated network, and we use the term machine to refer
to the physical hardware host, possible part of a cluster, which
supports the experiment.

Previous Work. This paper extends an earlier version of
Kollaps [54] with a more efficient and scalable architecture and
implementation, and adds support for the unmanaged mode.
We discuss the improvements in more detail in §VII.

Contributions. Our main contributions are:
1) KOLLAPS, a network topology emulator that enables the
evaluation of large-scale applications in dynamic networks
2) We integrate KOLLAPS with Docker Swarm [4] and Ku-
bernetes [5], to deploy and evaluate unmodified containerized
(distributed) systems, and showcase both managed and unman-
aged deployment modes;
3) A comparison of KOLLAPS’s emulation accuracy versus
bare-metal deployments and state-of-the-art approaches. Our
evaluation scenarios include static and dynamic topologies,
various workload patterns (i.e., short and long-lived data
flows), and different TCP congestion models (i.e., TCP Reno
and Cubic);
4) A showcase of the new types of experiments that KOL-
LAPS enables. Namely, we reproduce results from published
papers [55], [56], and assess how Apache Cassandra [57], [58]
is affected by different network characteristics as-if it were
deployed on AWS;

Roadmap. §II provides background information on network
emulation and also on the key technologies used in KOLLAPS’s
design. Related work is surveyed in §III. The design and
system architecture of KOLLAPS are described in §IV, with
implementation details presented in §V. §VI present our in-
depth evaluation, §VII discusses some lessons learned, §VIII
the limitations, and finally §IX concludes the paper.

II. BACKGROUND

We describe here the key enabling technologies used by
KOLLAPS to run and maintain an accurate emulation. KOL-
LAPS can be deployed in different deployment units, i.e.,
physical machines, virtual machines and containers, and with
different orchestrators, i.e., Docker Swarm [4] and Kuber-
netes [5]. To abstract the disparities between these deploy-
ment units, our approach relies exclusively on their common

3

TABLE I: Classification of network emulation tools. NetEm [28] uses a different queueing discipline to implement bandwidth shaping.
Dockemu and DockSDN use ns-3 [29] for link-level features. For tools with multiple papers, we put the year of the first and the features
of the most recent one. E: ability to dynamically change this property. P=physical machine, V=virtual machine, C=container.

HW Concurrent Path Link-Level emulation capabilities App. Topology
Name Year Mode ind. Orch deployments congestion BW Delay Packet loss Jitter Agnostic dynamics Unit Type

DelayLine [30] 1994 User ✓ Central ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ P OTHER
Dummynet [31], [32] 1997 Kernel ✓ Central ✗ ✓ ✓E ✓E ✓E ✗ ✓ ✗ P GRAPH

Emulab [9], [33] 2002 Kernel ✗ Central ✗ ✓ ✓E ✓E ✓E ✗ ✓ ✓ V SW+RT
ModelNet [25] 2002 Kernel ✓ Central ✗ ✓ ✓E ✓E ✓E ✗ ✓ ✓ P GRAPH
Nist NET [34] 2003 Kernel ✓ Central ✗ ✗ ✓E ✓E ✓E ✓E ✓ ✗ P GRAPH

NetEm [28] 2005 Kernel ✓ Central ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ P SINGLE
Trickle [35] 2005 User ✓ Decentral ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ P SINGLE

EmuSocket [36] 2006 User ✓ Central ✗ ✗ ✓ ✓E ✓E ✗ ✗ ✓ P GRAPH
ACIM/FlexLab [37] 2007 Kernel ✓ Central ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ V GRAPH

NCTUns [38] 2007 Kernel ✓ Central ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ P OTHER
IMUNES [39] 2008 Kernel ✗ Decentral ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ P OTHER

MyP2P-World [40] 2008 User ✓ Central ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ P OTHER
P2PLab [41] 2008 Kernel ✓ Decentral ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ P SINGLE
CORE [42] 2008 Kernel ✓ Decentral ✗ ✗ ✓E ✓E ✓E ✗ ✓ ✓ P GRAPH

DFS [43] 2009 User ✓ Central ✓ ✗ ✓E ✓E ✓ ✗ ✗ ✓ P OTHER
Mininet [21], [22] 2010 Kernel ✓ Central ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ P SW+RT

SliceTime [44] 2011 Kernel ✗ Central ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ V GRAPH
SPLAYNET [45] 2013 User ✓ Decentral ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ P GRAPH

Distem [46] 2013 Kernel ✓ Central ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ C GRAPH
MaxiNet [23] 2014 Kernel ✓ Central ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ P SW+RT
EvalBox [47] 2015 User ✓ Central ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ P OTHER

Dockemu [48], [49] 2015 User ✓ Central ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ C OTHER
ContainerNet [50] 2016 Kernel ✓ Central ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ V,C SW+RT

NEeaaS [51] 2020 Kernel ✓ Decentral ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ V,C SW+RT
DockSDN [52] 2021 Kernel ✓ Decentral ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ V,C SW+RT

Testground [53] 2022 Kernel ✓ Central ✓ ✗ ✓E ✓E ✓E ✓E ✗ ✓E P,C GRAPH
KOLLAPS 2024 Kernel ✓ Decentral ✓ ✓ ✓E ✓E ✓E ✓E ✓ ✓ P,V,C GRAPH

denominator i.e., the Linux kernel. Next, we briefly introduce
the two technologies that make this possible.

Linux TC provides users with a set of traffic control
(TC) functions to manage the transmission of packets. Before
sending a packet to the network interface, Linux places the
packet into one of multiple possible queues, called queueing
disciplines or qdisc for short.

The kernel offers several qdisc by default - we briefly
discuss the ones relevant for our work. The Hierarchy Token
Bucket (HTB) [59] is responsible for controlling outbound
bandwidth on a given link. The Priority qdisc (prio) [60]
dequeues packets in order of their priority, packets with
higher priority are dequeued before packets with lower pri-
ority. Finally, the Network Emulator qdisc (netem) [28]
allows the introduction of delay, loss, duplication, and other
characteristics in outgoing packets.

TC also provides filters to match specific traffic to a qdisc.
This is necessary because a single network interface may have
multiple qdiscs associated to it. The most relevant filter
in the context of network emulation is the u32 filter [61]
that allows matching traffic against any field in a network
packet. The qdiscs and filters can be managed through the
tc command [62].

Extended Berkeley Packet Filter (eBPF) [63] is a highly
flexible and efficient construct in the Linux kernel that allows
the execution of bytecode at various hook points, such as
system calls, in a safe manner. Systems use eBPF in many
kernel subsystems, most commonly in networking, tracing, and
security.

Even though eBPF has its origins in packet filtering, the
current instruction set is generic and flexible enough to support
many use cases. eBPF also provides an infrastructure and
utilities around its instruction set such as maps with efficient

put/get operations, general-purpose helper functions (such as
getting the current time), tail calls to call another eBPF
program, a pseudo-file system to pin objects such as maps
and programs, and an infrastructure that allows offloading an
eBPF programs to a network device.

In the context of KOLLAPS, we leverage the
SO_ATTACH_BPF function [64] to monitor the application
traffic. Every time the kernel receives a packet, it populates
a structure (sk_buff) with metadata about the packet, such
as origin and destination, or packet size. As we detail later in
§V this data is used to populate our model. The key takeaway
is that because eBPF executes in kernel mode it enables
lightweight fine-grained monitoring.

III. RELATED WORK

We categorize network emulators along several dimensions
(Table I): where the link shaping is executed (user/kernel
mode), independence from the underlying hardware, type of
orchestration across the cluster (centralized or decentralized),
support for concurrent experiments and users, support for
path congestion (i.e., multiple independent flows sharing the
same emulated link), link-level emulation features (bandwidth,
delay, packet loss, jitter), implementation-language restric-
tions for the programs under emulation, ability to dynam-
ically adjust network properties on the fly as well as to
change the topology itself (i.e., add/remove links, switches
and nodes), and the supported orchestration unit (physical
machines, virtual machines, or containers). We also categorize
these tools into four different types: single-link emulators
(SINGLE), Graph of Queues (GRAPH), tools emulating full
network stack including routers and switches (SW+RT), and
other approaches not fitting into any of these criteria.
Due to space limitations, we only detail how KOLLAPS

4

compares with some representative systems, and we consider
simulation-based tools (e.g., ns-3 [29], PeerSim [65]) out of
the scope. A few recent systems cover orthogonal aspects of
network emulation and illustrate the relevance of controlled
experiments. CrystalNet [26] focuses on large-scale emulation
of the control-plane, enabling network engineers to evaluate
changes to the control-plane before production deployment.
Other control-plane approaches [66] are orthogonal to this
work, focusing only on network conditions. Kathara [67]
focuses on data-plane as well but not on emulating network
conditions. KOLLAPS only deals with data-plane, and it is
hence complementary to CrystalNet. To enhance the efficiency
of large-scale control-plane analysis, Bonsai [68] leveraged the
idea of network compression while persevering the network
properties. KOLLAPS’ network collapsing achieves a similar
goal, however, it targets a different set of network properties,
again in the data-plane. Pantheon [69] is used to evaluate
Internet congestion-protocols. It gathers ground-truth data and
compares it with results obtained from several emulators for
a variety of congestion control algorithms. Pantheon demon-
strates that it is possible to approximate the behavior of a
wide range of congestion algorithms by relying only on a
small number of end-to-end properties. We rely on the same
insight to provide a network emulator able to emulate large-
scale topologies with accuracy.

There are other emulation systems dedicated to specific
scenarios. Celestial [70] is a virtual testbed for the LEO (Low
Earth orbit) satellites. It efficiently emulates individual satel-
lites and their movement as well as ground station servers with
realistic network conditions and in an application-agnostic
manner. Instead, we focus on general-purpose network em-
ulators that can be used in any scenario.

User-space approaches. Trickle [35] uses dynamic linking
and preloading functionality of Unix-based systems to insert
its code between unmodified binaries and the system calls
to the sockets API. It performs bandwidth shaping and de-
lay before delegating to the actual underlying socket calls,
based on a simple configuration process. Although multiple
instances of Trickle can cooperate, setting up a multi-physical
machine system to emulate large networks involves tedious
and error-prone manual configuration, given the lack of central
deployment control system. Further, Trickle does not support
statically linked binaries. In contrast, KOLLAPS is independent
of the application as it works with unmodified binaries, either
dynamically or statically linked. EmuSocket [36] and Delay-
Line [30] are user-space tools, similar in design and features
to Trickle. DelayLine supports the deployment of complex
topologies, but it lacks several important network emulation
features (such as bandwidth or jitter).

MyP2P-World [40] is a Java-based application-level emu-
lator aimed at peer-to-peer protocols. Applications must be
implemented in Java and rely on Apache Mina [71] to intercept
and emulate large-scale network conditions. While KOLLAPS
can be used for Java applications, it can be used for systems
implemented in any other language.

SPLAYNET [45] extends SPLAY [72] to allow emulation of
arbitrary network topologies, deployed across several physical
machines in a fully decentralized manner. SPLAYNET, is fully

distributed as it does not rely on dedicated processes for net-
work emulation. To emulate the network topology, SPLAYNET
relies on graph analysis and distributed emulation algorithms,
effectively collapsing the inner topology and delivering pack-
ets directly from one emulated process to the destination
process. However, it requires developers to implement their
programs in a Domain Specific Language using the Splay
framework and the Lua programming language, precluding its
usage to evaluate real-world and legacy systems. Moreover,
it does not support dynamics nor does it emulate packet loss
upon congestion. KOLLAPS adopts a similar fully decentral-
ized approach while completely overcoming its limitations.
In fact, KOLLAPS can be used with unmodified, off-the-shelf
applications and assess their performances under different
network conditions.

Kernel-space approaches. Next, we survey network em-
ulators that require explicit or specialized support from the
underlying OS and kernel. Dummynet [73] operates directly
on a specific network interface. It was used as a low-level
tool to build full-fledged emulators, such as Modelnet [25].
Modelnet allows the deployment of unmodified applications.
Applications are deployed on edge nodes and all network
traffic is routed through a set of core routers - dedicated
machines that collectively emulate the properties of the desired
target network before relaying the packets back to the destina-
tion’s edge nodes. KOLLAPS relies on Linux’s Traffic Control
(tc) [62] to offer similar low-level traffic shaping features,
but (i) without requiring dedicated physical machines and (ii)
at the same time providing a complete testbed integrating with
large-scale container orchestration tools.

The Emulab [33] testbed supports the deployment of user-
provided operating systems. As ModelNet and KOLLAPS, it
leverages Linux’s tc to shape the traffic directly at the edge
nodes. Emulab supports large topologies over shared clusters
while maintaining the user requested resource allocation, and
the ability to perform this scheduling optimally. Its graph
coarsening technique is similar in principle to KOLLAPS
approach for collapsing the topology.

Container-based approaches. Finally, we look at emula-
tion tools used with containers. Mininet [22] emulates network
topologies on a single physical machine. It relies on Linux’s
lightweight virtualisation mechanisms (i.e., cgroups) to em-
ulate separated nodes. Similarly to Docker, it creates virtual
Ethernet pairs running in separated namespaces and it assigns
processes to those. Mininet can emulate hundreds of nodes
(instances) on a single physical machine, with dedicated
instances for switches and routers running on their own pro-
cesses. Conversely, KOLLAPS does not require these additional
network instances, relying instead on maintaining and updating
the state of the emulation at each container. Mininet is limited
to a single physical machine deployment hence preventing its
use for large-scale resource-intensive applications that cannot
fit in a single machine. Besides, even with a simple topology,
Mininet’s accuracy quickly degrades under certain workloads
such as short-flows. Maxinet [23] extends Mininet to allow for
cluster deployments of worker physical machines with native
support for Docker containers. It does so by tunneling links
that cross different workers. However, it requires all emulated

5

10Mb/s
10ms

100Mb/s
20ms

50Mb/s
5ms

50Mb/s
5ms

sv1

sv2

c1

sv1 sv250Mb/s
10ms

10Mb/s
35ms

10Mb/s
35ms

s1 s2c1

Node

Router

Throughput
Latency

target topology collapsed topology

Fig. 2: Left: deployment with one client (c1), two servers (sv1, sv2)
and three network elements (s1, s2). Right: collapsed topology with
links describing maximum bandwidth and minimum latency between
each two nodes.

nodes that connect to the same switch to be deployed on
the same worker as the switch. In contrast, KOLLAPS does
not impose co-located deployments of workers and switches.
ContainerNet [50], [74] extends Mininet to add native support
for Docker containers and dynamic topologies. Still, it is
limited to single machine deployments. A similar limitation
is present in Dockemu [75], a network emulation tool based
on Docker containers. Dockemu 2.0 [49] improved upon its
predecessor, however, this limitation remains.

DockSDN [52] is a network emulator with the goal of cre-
ating a software-defined network testbed. It relies on Docker
containers to emulate virtual nodes, controllers, and switches
which enables lightweight and multi-platform deployments.
According to DockSDN’s evaluation, it has better resource
utilization than Mininet without hindering the performance of
the emulated network. However, it lacks support for jitter,
packet loss and path congestion emulation and does not
support network dynamics.

Testground [53] is a platform for testing, benchmarking, and
simulating distributed systems. Like SPLAYNET, Testground
provides developers with a specific API that must be used
for experiment description and orchestration. The experiments
are described in an imperative way, using the Go programming
language, rather than in a declarative way as in KOLLAPS and
other systems such as ModelNet. Moreover, Testground lacks
support for path congestion and link dynamics.

NEaaS [51] is a cloud-based network emulation platform
aiming at providing users with a Network Emulation as a
Service (NEaaS). NEaaS can be used on both public and pri-
vate clouds and has support for Docker containers. However,
NEaaS lacks support for topology dynamics and its accuracy
with large-scale scenarios is unclear.

To the best of our knowledge, KOLLAPS is the only
system that can be used to evaluate unmodified large-scale
applications over arbitrary topologies, supporting a richer set
of emulation features, and providing good accuracy when
compared to bare metal and state-of-the-art systems. While
some existing approaches (in particular ModelNet [25] and
ContainerNet [50]) show characteristics similar to KOLLAPS,
they do either fail to meet the criteria of scalability, supporting
multiple physical machines or supporting path congestion,
two fundamental features that prevents the adoption of such
tools for modern large-scale distribute systems. Finally, it
is worth noting that the decentralized design of KOLLAPS’
metadata exchange is similar in spirit to the hose model of
ElasticSwitch [76], which was used to provide bandwidth
guarantees for virtual machines in cloud environments.

machine-C

em. core
!!!

tcal
overlay,..
qdisc tcal

overlay,..
qdisc tcal

overlay,..
qdisc

Aeron
Media DriverLog

shared memory

em. core
!!!

em. core
!!!

machine-B

em. core
!!!

tcal
overlay,..
qdisc tcal

overlay,..
qdisc tcal

overlay,..
qdisc

Aeron
Media DriverLog

shared memory

em. core
!!!

em. core
!!!

physical network

machine-A

overlay, macvlan,…

Controller
em. core

!!!

tcal
overlay,..

app-node-1
qdisc tcal

overlay,..

app-node-2
qdisc tcal

overlay,..

app-node-3
qdisc

Communications
Manager

OS pipes

em. core
!!!

em. core
!!!

shared lib call userland traffic metadata

machine-B machine-C

dashboardinput deployment
generator

monitordesign

eBPF eBPF eBPF

app-node-n
… tcal

overlay,..
qdisc

eBPF

Fig. 3: Kollaps architecture

IV. THE KOLLAPS SYSTEM

We now describe the design of KOLLAPS which, as we
discussed earlier, rests on two key insights. The first insight
is that from an application’s standpoint, what matters are the
end-to-end network properties such as bandwidth or latency,
rather than the underlying state of routers and switches leading
to these properties. This enables us to forego the need to
emulate the full state of the internal network elements (e.g.,
routers, switches) and hence build a leaner and simplified
emulation model. Second, this leaner emulation model is
amenable to distribution which allows the emulation to scale
with the application nodes without sacrificing accuracy. To
illustrate this, consider the topology in Figure 2 (left), with
two network elements, switch s1 and s2, and three nodes,
client c1 and servers sv1, and sv2. Rather than emulating
the full network and the state of the switches (s1 and s2),
we rely on a network collapsing technique to collapse the
topology to virtual end-to-end links that retain the properties
of the original topology, as depicted in Figure 2 (right).
Note that the nominal bandwidth and latency in the collapsed
network correspond to the maximum available bandwidth and
the minimum achievable latency between each two nodes, as if
it was the only active flow. The actual link properties are then
maintained through a distributed network emulation algorithm
that models latency, bandwidth, jitter and packet loss. The
distributed nature of KOLLAPS and its simplified emulation
model allows it to scale to thousands of nodes with accuracy
on par with centralized state-of-the-art emulators. Next, in
§IV-A we present an overview of KOLLAPS’s architecture
and then in §IV-B we discuss how the distributed network
emulation works.

A. Overview

Figure 3 depicts KOLLAPS’s architecture in a deployment
over several machines. KOLLAPS consists of several compo-
nents. The Emulation Core has a single instance per applica-
tion node and is responsible for maintaining and enforcing
the emulation model. The Communications Manager has a
single instance per machine and is responsible for sharing
metadata among all the Emulation Cores across the system.
The TC Abstraction Layer (TCAL) is deployed once per
application node, and it retrieves and sets the link properties.

6

The Dashboard exposes a web-based interface to monitor and
control the experiments. Finally, the Deployment Generator is
a command line tool that transforms an experiment description
(e.g., Listing 1 and Listing 2) into a deployment plan. Next,
we detail these components.

The Deployment Generator translates a topology descrip-
tion into an actual deployment plan. KOLLAPS supports an
XML Modelnet-like syntax [25] to facilitate porting of existing
topology descriptions, as well as a YAML-based syntax that
we show here. Listing 1 describes the network topology from
Figure 2 (left). The topology description language supports
services, bridges, links, and dynamic elements. For
managed deployments, the services correspond to sets of
containers sharing the same image. The image names must be
valid and available from private or public Docker registries
(Listing 1, lines 4 and 6). Each service supports several
parameters (e.g., total replicas or additional parameters to pass
to the running containers once deployed). For unmanaged
deployments, the service specifies the machine details such
as IP, the paths to the KOLLAPS installation and the topology
file.

The bridges map to networking devices, e.g., routers and
switches that have unique names (lines 9–10) and are arbi-
trarily connected, to realize complex topologies, via links.
Links can be uni– or bi—directional, with mandatory at-
tributes to specify the source, destination, and the network
properties (i.e., latency, bandwidth, packet loss, jitter, lines
12–17). In case of jitter, the link latency follows by default a
normal distribution but others are supported, with mean and
standard deviation to match the specified latency and jitter
attributes. Internally, all links are unidirectional: declaring
a bi-directional link results in the creation of two identical
links in opposite directions, with same attributes except for
the bandwidth capacity where upload and download attributes
might differ. The dynamic part (Listing 2) injects changes
into the topology dynamically while the experiment pro-
gresses. KOLLAPS supports several dynamic events, namely
modification of any of the properties of the links, addition
and removal of links, bridges and services. This captures a
wide range of dynamics, not only in the application itself,
whose nodes may come and go during the experiment, but also
in the network topology. For example, the rapid removal and
insertion back into the topology of a link emulates a flapping
link [77]. Each event maps to an action element, either
for changes to link properties (lines 21–23) or for addition
and removal of services, links and bridges (lines 24–36). A
dedicated DSL to simplify the programming of more complex
dynamics is detailed in [78].

The Emulation Core (EC) is the main component of
KOLLAPS. Each instance is responsible for emulating end-
to-end network properties. Since KOLLAPS does not directly
emulate network elements nor their internal state, we must
accurately describe the topology at the application nodes.
This is achieved as follows. We start by parsing the topology
description (e.g., Listing 1) into a graph structure, maintained
throughout the emulation. Next, we compute the shortest paths
between every pair of reachable nodes. Each shortest path
is composed of several links, whose properties are used to

Listing 1: Static topology.

1 experiment:
2 services:
3 name: c1
4 image: "iperf"
5 name: sv
6 image: "nginx"
7 replicas: 2
8 bridges:
9 name: s1
10 name: s2
11 links:
12 orig: c1
13 dest: s1
14 latency: 10
15 up: 10Mbps
16 down: 10Mbps
17 jitter: 0.25
18 #others not shown

Listing 2: Dynamic events.

19 dynamic:
20 orig: c1
21 dest: s1
22 jitter: 0.5
23 time: 120
24 action: leave
25 name: s1
26 time: 200
27 action: join
28 orig: c1
29 dest: s2
30 up: 100Mbps
31 down: 100Mbps
32 latency: 10
33 time: 210
34 action: leave
35 name: sv
36 time: 240

determine the end-to-end network properties. We further detail
how these properties are computed in §IV-B.

Dynamic Topologies. The Emulation Core also enforces the
dynamic features of the topology. The dynamic topology
elements are reflected by modifications to the graph structure
discussed above. Rather than computing modifications to the
graph on the fly while the experiment executes, we pre-
compute offline all the modifications before the experiment
starts, as an ordered sequence of graphs. We resort to this
approach because while computing all the required metadata
(e.g., all-pairs shortest paths, end-to-end properties, etc.) is
fast for small graphs (e.g., few milliseconds), for large graphs
with thousands of nodes it requires several seconds, precluding
accurate emulation of sub-second dynamics.

The Communications Manager (CM) is responsible for
sharing metadata across all the ECs in the deployment. In
KOLLAPS, ECs can either be in the same machine or in
different machines therefore the CM has two responsibili-
ties. The first, is intra-machine communication, ensuring the
sharing of metadata among ECs in the same machine. To
achieve it, the CM will start two pipes for each EC running
in the same machine, one pipe to read metadata related to
that EC and another pipe to write data related to all the
other ECs. Secondly, the CM is also responsible for inter-
machine communication guaranteeing the sharing of metadata
among ECs in different machines. This is achieved by starting
a socket for each other CM in the deployment. This way, the
CM guarantees that all the ECs observe the same metadata
regarding the flows in the system, used to update the emulation
model.

The TC Abstraction Layer (TCAL) interfaces with Linux’s
Traffic Control (§II) and is used to enforce the emulation
constraints. For each destination, KOLLAPS creates a htb
qdisc that enforces the bandwidth allocated to flows towards
that destination. To enforce latency, jitter, and packet loss
KOLLAPS relies on a netem qdisc.

The Dashboard allows users to control and monitor the
progress of their experiments via a graphical web-based in-
terface (not shown). This dashboard shows a graph-based
representation of the emulated topology, the status of the

7

services, ongoing traffic, and dynamic events. In unmanaged
deployments, the Dashboard also provides a command to start
and stop the emulation, allowing the developers to control their
experiments.

Finally, the Controller component has a dual role depend-
ing on the deployment mode. In unmanaged deployments, the
Controller is responsible for receiving commands from the
Dashboard via ssh, and relaying these commands, through
TCP sockets to every EC in the system. In managed deploy-
ments, the Controller is responsible for interfacing with the
containers and starting the Emulation Core and the Dashboard
in the respective containers.

B. Emulation Model

We now discuss how KOLLAPS’s emulation model main-
tains the end-to-end network properties. Formally, given a
path P composed of links P = {l1, l2, . . . , ln}, its end-to-end
properties can be computed as follows:

Latency(P) =
∑n

i=1 Latency(li)

Jitter(P) =
√∑n

i=1 Jitter(li)
2

Loss(P) = 1.0−
∏n

i=1(1.0− Loss(li))

maxBandwidth(P) = min∀li∈P Bandwidth(li)

For latency, packet loss and jitter (assuming a uniform
distribution), it is enough to sum or multiply the properties
of the links (variance for the jitter case).

Bandwidth requires more considerations though, because it
is limited not only by the physical capacity of the path, but
also by all active flows on each link. The maximum bandwidth
in the path is determined by the link with the least bandwidth.
However, the bandwidth allocated to each active flow depends
on all active flows in the same path and thus it must be
dynamically recomputed at runtime. Moreover, when the band-
width required by each flow surpasses the maximum available
bandwidth, the links become congested and therefore we need
a mechanism to ensure a fair allocation of bandwidth among
the competing flows. In a real deployment, when competing
flows require more bandwidth than the available capacity,
network elements such as routers and switches buffer packets
to accommodate the excess load up to a point where the
buffers overflow and packets are dropped. Unreliable transport
protocols (i.e., UDP) ignore packet loss but reliable transport
protocols (i.e., TCP) have congestion control mechanisms to
adjust the throughput with the goal of allowing all competing
flows to get a fair bandwidth share. In KOLLAPS, rather
than modeling the internals of network elements, which is
expensive, we rely instead on a model to compute a fair
share of the bandwidth available for each competing flow. In
particular, we leverage the RTT-Aware Min-Max model [79],
[80], which gives a share to each flow that is proportional to
its round-trip time and is inspired by TCP Reno [81], a widely
adopted congestion control implementation. Formally, the fair
share of a long-lived flow f is given by:

Share(f) =
(
RTT (f)

∑n
i=1

1
RTT (fi)

)−1

where f ∈ {f1, f2, . . . , fn} are active flows on a link.
This bandwidth sharing model gives the percentage of the

maximum bandwidth any flow is allowed to use at capacity.
However, it does not guarantee that the available bandwidth
on a link will be fully utilized, for instance when a given
flow does not consume all its available share. Hence, when
the sum of shares of all active flows is less than the maximum
bandwidth on the link, a maximization step occurs, to increase
the share of the other flows, proportionally to their original
shares. Note that KOLLAPS enforces bandwidth sharing per
destination, not per connection.

V. IMPLEMENTATION

KOLLAPS components are implemented in Python (v3.19),
C and Rust(1.67.0), and available at https://kollaps.dev. For
managed deployments, it requires a Docker daemon (v1.12)
running on each machine. The Deployment Generator cur-
rently supports Docker Swarm (v1.12) and Kubernetes (v1.14)
by generating Docker Compose or Kubernetes Manifest files,
respectively. Before proceeding with the experiment deploy-
ment, users can adjust these configuration files as need,
which is in fact required by many real applications [82]. For
unmanaged deployments, it requires key-based ssh access to
the machines, which must have KOLLAPS pre-installed.

A. Integration with container orchestrators

In addition to producing Compose/Manifest files, the KOL-
LAPS deployment toolchain must configure the following
orchestrator-dependent resources: (1) access to the orchestrator
APIs, used at runtime for name resolution, (2) the topology
descriptor file, read by each Emulation Core instance to setup
the initial network state and compute the graph of the dynamic
changes, and (3) the setup of multiple virtual networks.

Privileged bootstrapping. In order for an application run-
ning inside a Docker container to use tc (as the TCAL does),
it must be executed with CAP_NET_ADMIN capability [83].
Although Docker allows executing applications in standalone
containers with user-specified capabilities, this feature is cur-
rently unavailable for Docker Swarm. We circumvent this
limitation as follows. We deploy a bootstrapping container
on every Swarm node (not shown in Figure 3) whose job
is to launch, on that machine and outside Swarm itself, the
Controller, as depicted in Figure 3. The Controller shares the
PID namespace with the host and has elevated privileges.
It has access to the local Docker daemon and monitors the
local creation of new containers. Upon the creation of a new
container, the Controller launches an Emulation Core in the
network namespace of the container which then becomes the
responsible for that container, as discussed in §IV. We distin-
guish between containers whose network should be emulated
by KOLLAPS and regular containers through a tag injected
in the configuration by the Deployment Generator. We expect
future releases of Docker Swarm to allow for a simplified
mechanism. When using Kubernetes, such restrictions do not
hold and the Controller is therefore deployed automatically.

https://kollaps.dev

8

B. Emulation Core and TCAL

The TCAL library provides an interface to setup the initial
networking configuration and set the network restrictions
dictated by the emulation model, namely bandwidth, latency,
packet loss and jitter.

The Emulation Core execution is split into two stages:
initialization and emulation loop. Once the initial graph rep-
resentation is built, this component resolves the names of all
services to obtain their IP addresses. In managed deployments
it uses the internal Swarm discovering service or Kubernetes’s
API. In unmanaged deployments this step is skipped since we
know at startup the IPs. Then, it runs an all-pairs shortest
path graph traversal [84] between the local node and all the
other reachable nodes. Finally, it computes the properties of
the collapsed topology as described previously. The properties
of the paths are then set up by the TCAL, before moving
to the emulation loop stage. The emulation loop maintains a
data structure with the bandwidth usage of each instance. It
works by periodically executing the following steps: (1) obtain
the bandwidth usage through eBPF; (2) disseminate the local
bandwidth usage to the other nodes, (3) compute bandwidth
usage on each path and its constituent links; (4) enforce
bandwidth restrictions. The period is defined by the system
parameter ec_period. Additionally, the bandwidth usage
considered in step (1) is subject to an hysteresis factor con-
trolled by the system parameter max_age. We choose the
default value of max_age=2, although using max_age=1
is fine for a lot of scenarios, in systems with very short
and intermittent flows this could result in over-sensitivity in
adapting the model to changes resulting in the model flip-
flopping between two states. A max_age greater than one
indicates that the model considers bandwidth reports from the
previous emulation cycles, if no more recent value is available,
which prevents unwanted switching. We study the impact of
these parameters in §VI-D.

Monitoring. Outbound traffic is matched to netem
qdiscs through an u32 universal 32 bit [61] traffic control
filter. The filter is a two-level hashtable that matches against
the destination IP address of packets and directs them to their
corresponding netem qdisc. This two-level design is due to
limitations in the u32, which does not provide a real hashing
mechanism (for speed reasons) but just a simple index in a
256 position array. With a /16 netmask this could result in
several collisions, degrading performance. We map the third
octet of the IP address to the first level and the fourth octet to
the second level of the hashtable, achieving constant lookup
times. Traffic directed to the netem qdisc will first be
subjected to the netem rules to enforce latency, jitter and
packet loss. When packets are dequeued from netem, they
are immediately queued in the parent htb qdisc, to enforce
bandwidth restrictions.

Congestion Effects. The model calculates the maximum
available bandwidth for each flow at any given time. While
effective when bandwidth usage is below or at capacity, it
produces unrealistic results when the cumulative bandwidth
required by flows surpasses the maximum bandwidth capacity.
This stems from a complex interaction between Linux TC and

Kernel
Space

User
Space

Map
Destination Bytes sent

Map
Destination Bytes sent

emulation core


every poll_period
eBPF

for every out packet

eBPF

every poll_period

model
update

Fig. 4: Bandwidth retrieval using eBPF and perf.

the implementation of congestion control algorithms in the
kernel. In a real deployment with TCP, the protocol throttles
its throughput dynamically by observing reported packet loss
or delay when the buffers at network devices overflow. In
contrast, UDP is insensitive to packet loss and simply con-
tinues to send packets at the application sending rate. A first
approach to model packet loss due to congestion would be to
dimension the buffers (queue sizes) in the TCAL following
known network buffer sizing strategies [85], [86]. However,
there are some differences between tc queues behavior and
those found in a switch or router. Routers and switches drop
further incoming packets when the buffers become full2. In
the kernel, when the buffer becomes full htb qdisc back-
pressures the application rather than dropping packets. This
is because packet loss is done in netem [87] rather than in
htb qdiscs(see §II), and also due to Linux’s TCP Small
Queues (TSQ) [88] (since kernel v3.6). TSQ reduces the
number of packets in qdiscs and device queues with the
goal of reducing the RTT, hence mitigating buffer-bloat. It
tracks the amount of data waiting to be transmitted, and when
this surpasses a given limit, the socket is throttled down.
The impact of this is application-dependent, with blocking-IO
applications blocks when writing to the socket, while with non-
blocking I/O would applications observes zero bytes written.

C. Kernel Information Retrieval

For the emulation to be accurate, and adapt quickly to
changes, it is crucial to have timely information about the
ongoing network traffic. Our approach, depicted in Figure 4,
leverages eBPF and perf and works as follows.

The information related to the flows of a node is a pair of IPs
(source and destination addresses), and a number representing
how many bytes were sent from the source to the destination.
This allows us to represent the information related to flows as
a map, where the key is the destination address, and the value
is the number of bytes sent.

We use eBPF’s socket filter, and more precisely
RedBPF [89] which allows attaching to a raw_socket [90]
and filter all outgoing traffic of the node. Each time a node
sends a packet, the eBPF’s socket filter is triggered and the
map is updated. Since all of this is done in kernel space using
eBPF it is extremely lightweight. To expose this information
to userspace, so that it can be accessed by the Emulation
Core, we use perf_events, which allows us to notify

2This is a simplification: in practice packets already in the queue can be
dropped to allow for incoming traffic with higher priority.

9

machine-C
machine-B

machine-A

Kernel eBPF

Comm.
Manager

perf_events Pipe TCP

rust
rust

app-node-1

eBPF

app-node-2

rust
rust

Fig. 5: Metadata dissemination flow.

userspace of events in kernel space. Specifically, we use a
RedBPF PerfMap [91] and produce an event (i.e. update the
map in userspace with the information from kernel space)
every ec_period. Upon starting the Emulation Core spawns
a dedicated thread to process the perf events and keep the map
in userspace updated. The main advantage of our approach
is that it does not require to constantly query the Kernel
for information related to traffic. Instead, eBPF’s socket filter
only updates the userspace map every ec_period with
new metadata, resulting in accurate monitoring with minimal
overhead.

D. Metadata dissemination

The metadata about bandwidth usage mentioned in the
previous section is disseminated across containers by the
Communications Manager. The Communications Manager is
implemented in Rust and consists of 817 SLOC. It uses sock-
ets [92] and pipes created using mkfifo [93]. Upon startup,
the Communications Managers waits for all of Emulation
Cores to start. After this, it opens a socket and starts one
thread for each other CM in the system. The metadata is
received from the other CMs though the sockets and sent to
the local ECs through pipes. This design reduces contention
and synchronization which is key for efficiency. The flow of
metadata in KOLLAPS is displayed in Figure 5.

VI. EVALUATION

We evaluated KOLLAPS through a series of micro- and
macro-benchmark experiments in our cluster. Furthermore,
to validate the soundness of our approach against realistic
scenarios, we compare the behavior of applications running
on Amazon EC2 and under KOLLAPS. Overall, our results
show that: (1) KOLLAPS emulation accuracy is comparable
with, and in some scenarios better than, tools that emulate
the full network state such as Mininet; (2) KOLLAPS has low
CPU and Memory usage in large-scale scenarios; (3) running
an application with KOLLAPS in a cluster or in Amazon EC2
yields similar results; (4) KOLLAPS unmanaged deployments
have comparable results to managed deployments.

The companion supplemental material provides additional
experiments evaluating the emulation accuracy.

Evaluation settings. Our cluster is composed of 6 Dell
PowerEdge R630 server machines, with 64-cores Intel Xeon

TABLE II: Bandwidth shaping accuracy for several emulated link
capacities on a point-to-point client-server topology.

Link BW KOLLAPS Mininet trickle (def.) trickle (tuned)
Low (Kb/s)

128 Kb/s 123 (-4%) 123 (-4%) 262 (+104%) 131 (+2%)
256 Kb/s 245 (-4%) 286 (+11%) 472 (+184%) 262 (+2%)
512 Kb/s 489 (-4%) 490 (-5%) 717 (+40%) 525 (+2%)

Mid (Mb/s)
128 Mb/s 122 (-5%) 122 (-5%) 250 (+95%) 131 (+2%)
256 Mb/s 244 (-5%) 245 (-5%) 493 (-4%) 261 (+1%)
512 Mb/s 487 (-5%) 486 (-5%) 952 (+85%) 518 (+1%)

High (Gb/s)
1 Gb/s 0.954 (-5%) 933 (-7%) 1.67 (+67%) 1.00 Gb/s
2 Gb/s 1.91 (-5%) N/A 1.93 (-3%) 1.97 (-1.5%)
4 Gb/s 3.79 (-5%) N/A 4.12 (+3%) 3.61 (-10%)

E5-2683v4 clocked at 2.10 GHz CPU, 128 GB of RAM
and connected by a Dell S6010-ON 40 GbE switch. The
machines run Ubuntu Linux 22.04 LTS, kernel v5.15.0-60-
generic. The ec_period and max_age are set to 50ms and
2, respectively, unless otherwise stated. We assess the impact
of adjusting these parameters in §VI-D This configuration is
used in all experiments, unless stated otherwise. The tests
conducted on Amazon EC2 use r4.16xlarge instances,
the closest type in terms of hardware-specs to the machines
in our cluster. We used Docker Engine version 20.10.23, and
the Docker overlay network driver. For comparison with other
state-of-the-art tools we used Mininet (v2.22) and Maxinet
(v1.2). We also conducted some experiments in IMEC Virtual
Wall 1 [94] testbed, which we further describe in §VI-F3.

A. Bandwidth Emulation Accuracy

First we evaluate the accuracy of our bandwidth shaping
mechanism under a topology that consists of two services
running iPerf3 [95], connected by a single link. iPerf3 is a
tool that measures the maximum bandwidth between its client
and server instances. We use iPerf3 to assess the accuracy
of KOLLAPS in emulating different target bandwidths, and
compare the results with Mininet [22] and Trickle [35], a
userspace bandwidth shaper. During the experiment, we run
iPerf3 for 60 seconds, and report the average bandwidth in
Table II. The values obtained with KOLLAPS and Mininet
are similar since both systems rely on the htb qdisc to
perform the bandwidth shaping. Mininet however does not
allow imposing bandwidth limits greater than 1Gb/s. KOL-
LAPS does not impose that restriction and ensures the same
level of accuracy of both systems at lower bandwidth rates
(≈ 95%). Results using the default Trickle settings deviate
significantly from the specified bandwidth rates. After a more
detailed investigation, we were forced to tune iPerf3 to use
smaller TCP sending buffers to achieve accuracy comparable
with the other systems.

B. Jitter Emulation Accuracy

Next, we evaluate the accuracy of jitter emulation. For this,
we set up a sequence of experiments using the same topology
of two nodes connected through a single link, with one sending
10,000 ping requests to the other. We assign the link different
latency values according to the measured latencies between
services deployed on us-east-1 and other Amazon AWS

10

TABLE III: Jitter shaping accuracy for several emulated links with
source at us-east-1.

→ Destination Latency (ms) EC2 Jitter (ms) KOLLAPS Jitter (ms)
us-east-1 6 0.5607 0.6367
us-east-2 17 1.2411 1.4018
ca-central-1 24 1.2451 1.3872
us-west-1 70 1.3627 1.5438
eu-west-1 78 1.2000 1.3684
eu-west-2 85 1.6609 1.8592
eu-north-1 119 1.2850 1.4479
ap-northeast-1 170 1.4217 1.6031
ap-south-1 194 2.0233 2.2758
ap-northeast-2 200 1.8364 2.0888
ap-southeast-2 208 1.4277 1.6290
ap-southeast-1 249 1.2111 1.3728

regions Table III shows for each destination AWS region (2nd

column), the measured latency and jitter values in the 3rd

and 4th columns, respectively. On the right-most column, we
present the jitter value emulated by KOLLAPS using the same
latency. The overall mean squared error between the observed
and emulated jitter is 0.2029 which is negligible for most
practical purposes. While smaller errors could be achieved
by directly controlling the network infrastructure on which
KOLLAPS is deployed, this is beyond the scope of this work.

C. Decentralized Bandwidth Throttling

Next, we investigate the effectiveness of our bandwidth
sharing model when the bandwidth requested by the appli-
cation exceeds the available capacity. To assess this, we set
the topology depicted in Figure 6. It consists of six clients
(C1 - C6), three bridges (B1 - B3) and 6 servers (S1 -
S6). The first three clients are connected to B1 through links
with bandwidths of 50, 50 and 10Mb/s and latencies of 10,
5 and 5ms, respectively. The other three clients are connected
to B2 with the same links properties. All servers are linked
to B3 through equal links with 50Mb/s bandwidth and 5ms
latency. Finally, B1 is connected to B2 by a 50Mb/s link with
10ms latency, and B2 is connected to B3 by a 100Mb/s link
with 10ms latency.

Figure 7 shows the bandwidth of each of the established
flows over time. We use iPerf3 to establish continuous TCP
flows between clients and servers, while the experiment pro-
ceeds as follows. In the first half of the experiment we start
each client sequentially in 60 second intervals. Initially, only
C1 has an active flow, and hence it uses all the available
bandwidth. Upon starting C2, both clients will compete for
the bandwidth over the shared links. At this point, since C2
has a smaller RTT than C1, it gets a proportionally higher
share of the bandwidth. Following the model in §IV, these
shares are 23.08 Mb/s and 26.92 Mb/s, respectively. When
C3 starts, it will be allowed an equal share of the bandwidth
to C2. However, C3 is limited by a 10Mb/s link prior to the
contended one. Consequently, the bandwidth share of the other
two clients is increased proportionally to their original shares,
resulting in 18.45, 21.55, and 10 Mb/s, respectively.

At 180 seconds, C4 starts. It can reach 50Mb/s because
the throughput of all other three clients is limited by the
50 Mb/s link connecting the bridges B1 and B2. Hence, the
link between B2 and B3 can accommodate all four clients.

50 Mbs
5ms

50 Mbs
10ms

50 Mbs
5ms

10 Mbs
5ms

c5

c6

b1 b2c2

target topology
c1

c3 10 Mbs
5ms

50 Mbs
10ms c4 50 Mbs

10ms

b3100 Mbs
10ms

s1 s2

s3

s4s5

50 Mbs
5ms

Fig. 6: Topology used to validate the decentralized bandwidth throt-
tling in Fig. 7).

 0

 10

 20

 30

 40

 50

 0 60 120 180 240 300 360 420 480 540 600 660

c2
 start

c3
 start

c4
 start

c5
 start

c6
 start

6 flows

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Time (s)

Dynamic Throttling
c1 c2 c3 c4 c5 c6

Fig. 7: Decentralized bandwidth throttling: several clients compete
on a shared link. Each gets a different share of bandwidth, adjusted
at runtime.

When C5 starts, this is no longer the case. Now, all five clients
are competing for the 100 Mb/s link. C3 remains limited to
10 Mb/s, below its allowed share. The shares for all other
clients is increased accordingly resulting in 16.89, 19.75, 10,
23.74, and 29.62 Mb/s, respectively. At 300 seconds, C6
starts and, like C3, the maximum bandwidth it can use is
lower than its given share. The expected bandwidths therefore
become 15.04, 17.55, 10, 21.06, 26.33, and 10 Mb/s for
clients C1-C6, respectively.

On the second half of the experiment (from 360s until the
end) we sequentially shutdown the clients every 60s in the
reverse order of arrival. Despite the decentralized emulation
model, KOLLAPS is able to quickly adjust the bandwidth
shares to the dynamic behavior of clients.

D. Impact of System Parameters

We now study the impact of the system parameters
ec_period and max_age. The ec_period affects three
aspects of the emulation. The first is CPU usage as smaller
periods result in the execution of more emulation loops and
hence more CPU usage. The second is accuracy - in scenarios
with short or intermittent flows a smaller ec_period allows
KOLLAPS to react faster to changes. The third one is related
to metadata freshness. A small ec_period might result in
not receiving new metadata from some of the Communication
Managers since the last emulation loop. If we discard this
data right away, this could result in unnecessary adaptations
as explained in §V-B. The max_age counteracts this by
considering older metadata if newer one is not available. Next
we study the impact of these parameters on CPU usage and
reaction time.

1) CPU Usage: To assess CPU usage we use a star
topology (40Mbps upload and 40Mbps download bandwidth)
with an increasing number of nodes where each node sends

11

TABLE IV: Impact of different ec_periods on CPU load.

#Active Flows #Nodes 50 ms 25 ms 10 ms
usr sys usr sys usr sys

20 5 7% 4% 8% 4% 9% 5%
42 7 11% 5% 12% 6% 14% 6%
90 10 20% 8% 24% 9% 30% 10%

traffic to all the others. This is the worst case for the Emulation
Core from a resource usage perspective since there are a
quadratic number of active flows. The experiment is deployed
in a single machine and we measure CPU usage with dstat.
We selected iPerf as the target application because it has a
minimal CPU usage and therefore the observed usage is mostly
due to KOLLAPS.

The results are reported in Table IV, and since the mon-
itoring is done in kernel space through eBPF we show both
%usr and %sys CPU usage.

As expected, smaller periods result in more CPU KOLLAPS
uses, however, the increase is sublinear - for instance, changing
the period from 50ms to 10ms for 10 nodes resulted in the total
CPU usage only increasing from 28% to 40%. The default
of 50ms has a low CPU usage, specially with lower number
of application nodes per machine, and still has a reasonable
reaction time for most scenarios we considered.

2) Reaction Time: We now assess how long KOLLAPS
takes to react to changes in the bandwidth, and how this is
affected by the ec_period and max_age. To to this we
repeat the experiments of §VI-C and measure how long it
takes for client C1 to react to the appearance of client C2
in the network. Note that both clients share a path to the
servers and hence will contend for the available bandwidth.
We ensure that the clients are running on different machines
(and hence take into account the communication cost between
the Communication Managers) and synchronized their clocks
using the NTP protocol [96]. Then we measure the time
since client C2 sends its first metadata message (i.e., after the
Emulation Core becomes aware of the change), until client C1
instructs TCAL to change its bandwidth.

For the default value of ec_period=50ms we ob-
serve an average reaction time of 54.5±2 ms and for an
ec_period=10ms we observe an average reaction time of
7±3 ms. The results are explained by several factors. First,
the periods of the Emulation Cores in both machines are not
synchronized and hence we expect some variations in the
results, up to an ec_period. Second, we have to account
for KOLLAPS’s overhead, namely the processing, sending and
receiving of the metadata messages. Finally, we have the
experimental errors due to NTP inaccuracies and concurrent
traffic going on the cluster, which is shared. Nonetheless,
the take away is that the reaction time in both scenarios is
still below the 60ms round-trip time between the clients and
servers.

E. Geo-replicated Systems

We turn our attention to macro-benchmarks to assess and
motivate the behavior of KOLLAPS in real-world scenarios.

In this experiment, we reproduce results obtained for two
Byzantine fault tolerant state machine replication libraries:

0

100

200

300

400

500

600
B

W

B

W

B

W

B

W

W

B = BFT−SMaRT
W = Wheat

O
re

go
n

Ire
la
nd

Syd
ne

y

Sao
Pau

lo

Virg
in
ia

L
a

te
n

c
y
 (

m
s
)

Original

50th 90th
B

W

B

W

B

W

B

W

W

O
re

go
n

Ire
la
nd

Syd
ne

y

Sao
Pau

lo

Virg
in
ia

Kollaps

50th 90th

Fig. 8: Reproduction of an experiment with a geo-replicated de-
ployment of BFT-SMaRt and Wheat. The experiment measures the
latencies of clients located in different Amazon EC2 regions (left:
results from [55], right: same experiments with KOLLAPS).

BFT-SMaRt [56], and its optimized version Wheat [55]. The
authors of these systems evaluate and compare them through
a geo-distributed deployment on Amazon EC2 instances span-
ning 5 regions [55]. The experiment consists of placing one
server and one client at each region, with servers running a
simple replicated counter. Aside from the experimental results,
the authors also provide the measured average latency and
jitter between regions ([55], Table II), which we use to model
a topology in KOLLAPS that mimics the one observed in their
experiments.

Figure 8 shows the results of the original experiment on
EC2 (left), and using KOLLAPS (right). As we can observe, the
results of executing the experiment in KOLLAPS are close to
the results achieved by the authors on EC2, with a maximum
difference of 7.3% observable between the 90th percentiles
of the Wheat client in Ireland. BFT-SMaRt results were even
closer, with a maximum difference of 2.7%.

We attribute the difference to the following. Since the
authors only provide the average and standard deviation la-
tency measurements, we assumed for the KOLLAPS experi-
ments a normal jitter distribution. However, the Amazon EC2
t1.micro instances used by the authors in their experiments
are prone to jittery behavior [97], potentially not following a
normal distribution. This is relevant in particular to Wheat
as its more latency sensitive than BFT-SMaRt and thus more
affected by the jitter distribution.

F. Scalability

We now study KOLLAPS’s scalability by analyzing the
resource usage and emulation accuracy with increasing system
sizes. We generate large-scale topologies using the preferential
attachment algorithm [98]. This algorithm constructs scale-
free networks, which are representative of the characteristics
of Internet topologies. We consider topologies of the following
sizes: 1000 (666 nodes, 334 bridges), 2000 (1344 nodes,
656 bridges), 4000 (2668 nodes, 1332 bridges) and 8000
(5336 nodes, 2664 bridges). The experiment consists of nodes
sending ICMP echo requests (ping) to other random nodes
for 10 minutes.

1) Resource Usage: The CPU usage was retrieved using
dstat [99]. Since part of KOLLAPS’s logic is on kernel space
due to eBPF, we report both user (usr) and system (sys)
CPU usage, i.e. the time spent in user and kernel mode

12

TABLE V: CPU and Memory usage per physical machine in large-
scale topologies.

Topology size #Nodes #Switches CPU usr CPU sys Memory Usage
1000 666 334 0% 0% 454MB
2000 1344 656 1% 0% 1072MB
4000 2668 1332 1% 1% 3095MB
8000 5336 2664 1% 1% 9768MB

TABLE VI: Mean squared error exhibited on latency tests with large
scale-free topologies in KOLLAPS, Mininet and Maxinet.

Topology size #Nodes #Switches KOLLAPS Mininet Maxinet
1000 666 334 0.0683 0.0079 28.0779
2000 1344 656 0.0770 NA 347.5303
4000 2668 1332 0.0813 NA NA
8000 5366 2664 0.1110 NA NA

respectively. The results are depicted in Table V and, as it
is possible to observe, KOLLAPS’s CPU usage in this scenario
is negligible even in large-scale topologies.

The results for memory usage are also reported in Table V.
Overall, the memory usage per node is very small, allowing
KOLLAPS to scale to large topologies.

2) Emulation Accuracy: We now compare KOLLAPS with
Mininet [22] and Maxinet [23] in large-scale topologies. To
assess the accuracy of the emulation with increasing system
sizes we compare the reported round-trip times (RTT) obtained
with ping, with the theoretical ones statically computed from
the topology. The results are presented in Table VI as a mean
squared error between these two quantities. KOLLAPS and
Maxinet are deployed on four machines while Mininet is de-
ployed in a single machine as a multiple machine deployment
is not supported. We observe that Mininet produces smaller
errors than KOLLAPS for the 1000 topology. The reasons are
twofold. First, the container networking in Docker introduces
small yet measurable delays. Second, because KOLLAPS is
running on different physical machines, there is also a small
but measurable delay when packets need to traverse the
physical links. Despite these two factors, the largest deviations
from the theoretical RTTs observed with KOLLAPS were
0.34ms, 0, 37ms, 0.37ms, 0.45ms for the 1000, 2000, 4000,
and 8000 elements topologies, respectively. For reference,
the minimum theoretical RTTs in the four topologies are
20ms, 16ms, 14ms and 24ms, respectively. Accordingly, the
deviation values correspond to a MSE of 0.0683, 0.0770,
0.0813, and 0.110 respectively.

Due to the current limitations with Mininet, it was not
possible to gather results for the larger topologies. Maxinet re-
quires an external controller to manage the emulated switches.
We experimented with several configurations with POX [100]
modules, Floodlight [101], and Opendaylight [102] to find out
which one yielded the best results. The controller configuration
used for these experiments rely on 4 distinct POX controllers
executing the forwarding.l2_nx module, the best per-
forming one for this scenario. The error obtained for Maxinet
is significantly higher than both KOLLAPS and Mininet, with
the largest deviation reaching 11ms and 40ms on the 1000
and 2000 topologies respectively, larger than the minimum
theoretical delays in each topology. We attribute this to the
overhead of having an external controller, as well as to the type
of controller (with other configurations producing even worse

TABLE VII: Average BW per container and % Error of BFT Smart
with varying machines and servers.

#Machines #Nodes Average BW (Kbps) Error (%)
15 45 4925 1,5%
25 75 4851 2,98%
50 150 4613 7,74%

results). For these reasons, we did not run further experiments
for Maxinet in the 4000 topology. To a lesser extent, Maxinet
also suffers from the small yet measurable delay when packets
need to traverse the physical links.

3) Scalability of Path Congestion: The experiments up to
this point are either with a small amount of active end nodes or
with many nodes producing a low amount of traffic. To assess
KOLLAPS scalability in more intensive workloads and with
more machines we use BFT-Smart [56] as our application. We
choose BFT-Smart because it is a CPU-intensive application
with all-to-all communication which therefore stresses both
the Emulation Core (as the model needs to keep track of N2

flows where N is the number of nodes) and the Communication
Manager (which needs to disseminate metadata to the M ma-
chines). To be able to use more machines than what is available
in our testbed, we used IMEC Virtual Wall 1 testbed [94].
The machines have the following characteristics: 2x Dual core
AMD opteron 2212 (2GHz) CPU and 8GB RAM. Given that
the machines only have 4 cores relatively slow cores, we
were only able to deploy 3 BFT-Smart nodes per machine
before reaching saturation. The nodes are connected in a star
topology so that they all contend with each other, with 5Mbps
of bandwidth and 1ms of latency. We chose 5Mbps because it
is easily reached by BFT-Smart and hence it puts a substantial
strain on the emulation and allows us to better assess emulation
accuracy in difficult conditions. We use a single client, which
is sufficient to saturate the servers. The client is connected to
the servers through an additional switch with a bandwidth of
100Mbps and latency of 0.01ms. Due to the high-contention
among servers, we used a ec_period of 5ms/15ms/50ms
and a max_age of 2 for the experiments with 15, 25, and
50 machines, respectively. The reason for these parameters, as
further discussed in §VI-D, stems from the high contention of
the workload since all servers are competing for bandwidth.
Since the hardware is being use at close to capacity, we also
increased the ec_period to allows each emulation core to
have more time to receive and process the metadata and hence
maintain the emulation accuracy.

For the experiment, we progressively increase the number
of nodes (BFT-Smart servers) and machines and measure the
average bandwidth used by each server with iftop [103]. The
observed bandwidth should not surpass 5Mbps since this is
the limit established in the topology. The results are reported
in Table VII. The main observation is that the error rate is
below 10% in all experiments. We note that this scenario
represents a worst case scenario for KOLLAPS path congestion
mechanism since all of the active end nodes generate traffic for
all of the other end nodes. Thus there is a permanent high-
contention for a share of bandwidth in the same links. For
instance, for the experiments with 75 nodes each connection
amounts to only 66,6b Kbps of the total 5Mbps. Overall, this

13

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

1

2

3

4

5
6

7
8

9

T
h

ro
u

g
h

p
u

t
[K

o
p

s
/s

e
c
]

Time (s)

Unmanaged Managed

Throughput over time in managed vs unmanaged modes

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120

1 2 3

4

5

6

7
8

9

L
a

te
n

c
y
 (

m
s
)

Time (s)

Unmanaged Managed

Latency over time in managed vs unmanaged modes

Fig. 9: YCSB throughput and read latency in a dynamic environment
in managed and unmanaged deployment modes. The circled numbers
correspond to dynamic events from §VI-G.

experiment illustrates KOLLAPS ability to provide accurate
emulation under high-contention and as the system size (both
in terms of physical machines and application nodes) scales.

G. Unmanaged Mode

So far all the experiments were conducted in managed
mode, where KOLLAPS controls the full lifecycle of the ap-
plications. We now compare the emulation accuracy between
managed and unmanaged modes. To this end, we manually
deployed Apache Cassandra (v4.0.5) on five physical machines
for the unmanaged mode, and on Docker Swarm on one
physical machine for the managed mode. The experiment
models a deployment with: (i) two server machines located
in one data center in North Virginia, USA, (ii) two server
machines located in one data center in Frankfurt, Germany,
and (iii) a client which is located in Stockholm, Sweden. The
latencies between data centers were obtained from Cloudping
and the client runs the YCSB benchmark [104]. This produces
a topology with five services (four servers and one client)
and two bridges connecting the data centers to the client.
The experiment injects several dynamic events to model
multiple what-if scenarios, described next. Throughput and
read latency3 results are depicted in Figure 9. We start with
the scenario previously described and then apply the following
events: 1 at 15 seconds we model what would happen if we
moved one data center from Frankfurt to Mumbai, India which
has higher latency and hence negatively affects the application
performance, 2 at second 30 we reduce the latency from
the Mumbai datacenter to the US datacenter in half, which
results in an increase in performance, 3 at second 45, we
introduce a 1% drop rate of all packets in the same link,
causing the system to be disrupted as we observe a substantial

3The benchmark reports read and update latency separately. The obtained
results for both are similar and hence, for clarity, we report only read latency

decline in throughput and a rise in latency, 4 at second 60 we
increase the drop rate in the link to 10% increasing the level
of disruption in the network. As expected we observe an even
bigger drop in throughput and a substantial rise in latency, 5
at second 75 the drop rate in the link is set to zero, 6 at
second 85 we increase by 4× the latency in the links from
the client to both data centers causing a significant drop in
performance, 7 at second 95 we normalize the conditions
again, 8 at second 105 we introduce a 100% drop rate loss
in the link from the client to one of the servers, disrupting
the system and causing a significant drop in throughput, 9 at
second 120 we reset the network to the original state before
concluding the experiment.

We draw two main conclusions from these experiments.
First, the managed and unmanaged modes achieves very sim-
ilar results, demonstrating how KOLLAPS provides accurate
emulation in unmanaged mode. Second, the ability to easily
deploy KOLLAPS in an already running system opens the
door to a novel set of experiments, e.g., injecting network
faults in a production system in line with Chaos Engineering
methodologies.

VII. LESSONS LEARNED

Efficiency. While we had efficiency concerns in the early
designs, we noticed some inefficiencies over the years as
KOLLAPS [54] was used in several scenarios, from teaching
distributed system classes up to deployment in production-
grade systems. Originally, metadata dissemination relied on
Aeron [105], an efficient and reliable UDP unicast frame-
work. While Aeron was designed to be efficient, its usage
in KOLLAPS proved to be very demanding on the CPU.
This is because each emulation core polls with a thread in
busy-waiting for new metadata messages. This resulted in the
scheduler always selecting the Aeron thread causing high CPU
usage which could affect the application.

With this problem solved, we noticed that sys CPU usage
could significantly increase in large-scale deployments. Upon
a thorough investigation, we pinpointed this to the mechanism
used to retrieve the flow metadata. In earlier versions, we
used tc to retrieve this data. Specifically, each emulation
core would query about the metadata from itself to every
other emulation core. This quadratic cost resulted in high sys
usage, particularly when emulating large-scale topologies. We
redesigning and reimplementing this mechanism by leveraging
eBPF (§V-C).

Finally, we also reimplemented the KOLLAPS’s critical
components in Rust which resulted in an overall more efficient
(CPU- and memory-wise) and safer system when compared
with the previous Python implementation.

Unmanaged Scenarios. Since the early designs, we aimed
for KOLLAPS to be accessible to use and it supported Docker
Swarm [4] and Kubernetes [5] from the outset. Interestingly,
potential users of the tool felt this was limiting since it did
not allow them to use KOLLAPS in their existing (legacy)
deployments or within their continuous integration pipelines.
To address this, we extended KOLLAPS to support unmanaged
deployments which allows to deploy KOLLAPS alongside

14

existing systems and control their network. This enables new
use cases such as using KOLLAPS to control the network as
part of a Chaos Engineering [106] approach.

VIII. LIMITATIONS

Interactivity. For dynamic topologies, we compute off-line,
and locally at each node, the sequence of all graph states
over time. While this approach allows to achieve sub-second
emulation precision, it also prevents the support to establish
an interactive testing session for which a precise crash plan
is not defined statically by configuration but rather decided
by the user on the fly. In principle, it is possible to support
interactive experiments by computing and applying the graph
changes online at the expense of some accuracy.

Multipath routing and multicast. While the emulated
topology itself can include multiple paths between each two
pairs of nodes, KOLLAPS uses a shortest path algorithm to
compute the collapsed links between every pair of applica-
tion nodes, effectively discarding any multipath routing [107]
considerations. We plan to support this in the future by: (i)
extending the language to allow the specification of multiple
paths, (ii) use a k-shortest paths algorithm for link collapsing,
and (iii) extend the emulation model to embed this. Note also
that KOLLAPS does not currently support multicast because
the multicast tree is maintained at the network elements such
as switches and bridges, which we do not model.

Beyond the physical links. KOLLAPS only emulates net-
work topologies whose aggregate capacity fits into the limits of
the underlying physical cluster (i.e., it is impossible to emulate
a link of 10Gb/s if KOLLAPS is running on a cluster with
1Gb/s connections). Moreover, since the bandwidth sharing is
updated upon each iteration of the Emulation Core, there is
a lower bound on the minimum latency that KOLLAPS can
emulate. Concretely, KOLLAPS will either fail to capture and
update the bandwidth sharing for short flows that span a time
interval shorter than a single iteration, or would react after the
flow has ended. In this sense, our design and implementation
are better suited for emulating WAN deployments rather than
emulating data-center environments. Recent work explores
such support time-dilution techniques optimized for containers
in the context of SDN [108], which we plan to leverage.

IX. CONCLUSION

KOLLAPS is motivated by the need to simplify the evalu-
ation of large-scale geo-distributed applications. Rather than
emulating the full network state, we argue that application-
level metrics are mostly affected by the macro network prop-
erties, such as end-to-end latency, bandwidth, packet loss and
jitter. Our experiments, on small and large-scale Internet-like
topologies, in both static and dynamic settings, show that
KOLLAPS is able to accurately reproduce real-world deploy-
ments of off-the-shelf popular systems, such as Cassandra.
To our community, reproducibility of results is increasingly
important and we believe KOLLAPS can be a useful tool to
achieve this goal. We showed this by reproducing results from
a geographically distributed state machine replication system
presented in the literature [55]. Finally, KOLLAPS can also

be used by engineers to predict application performance and
correctness under hypothetical, but fully controlled, network
conditions.

ACKNOWLEDGMENTS

This work was supported by Fundação para a Ciência e
Tecnologia (FCT) under grant PTDC/CCI-COM/4485/2021
(Ainur).

REFERENCES

[1] P. Bailis and K. Kingsbury, “The Network is Reliable,” Queue, vol. 12,
no. 7, p. 20, 2014.

[2] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[3] “Linux LXC,” https://linuxcontainers.org/, 2024, accessed: 2024-06-04.
[4] “Docker Swarm,” https://docs.docker.com/engine/swarm/, 2024, ac-

cessed: 2024-06-04.
[5] “Kubernetes,” https://kubernetes.io/, 2024, accessed: 2024-06-04.
[6] “Amazon Elastic Compute Cloud,” https://aws.amazon.com/ec2/, 2024,

accessed: 2024-06-04.
[7] R. F. Boisvert, “Incentivizing Reproducibility,” Communications of

the ACM, vol. 59, no. 10, pp. 5–5, Sep. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2994031

[8] R. D. Peng, “Reproducible research in computational science,” Science,
vol. 334, no. 6060, pp. 1226–1227, 2011.

[9] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, “Large-scale virtualization in the emulab
network testbed,” in USENIX 2008 Annual Technical Conference, ser.
ATC’08. USA: USENIX Association, 2008, p. 113–128.

[10] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications,” ;
login:: the magazine of USENIX & SAGE, vol. 39, no. 6, pp. 36–38,
2014.

[11] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 3–12, 2003.

[12] B. C. Senel, M. Mouchet, J. Cappos, T. Friedman, O. Fourmaux, and
R. McGeer, “Demo: Edgenet, a production internet-scale container-
based distributed system testbed,” in ICDCS. IEEE, 2022, pp. 1298–
1301.

[13] W. Kim, A. Roopakalu, K. Y. Li, and V. S. Pai, “Understanding and
characterizing planetlab resource usage for federated network testbeds,”
in Internet Measurement Conference. ACM, 2011, pp. 515–532.

[14] J. Banks, J. S. C. II, B. L. Nelson, and D. M. Nicol, Discrete-Event
System Simulation, 5th New International Edition. Pearson Education,
2010.

[15] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in PODC. ACM, 2007, pp. 398–407.

[16] S. Floyd and E. Kohler, “Internet research needs better models,” ACM
SIGCOMM Computer Communication Review, vol. 33, no. 1, pp. 29–
34, 2003.

[17] S. Floyd and V. Paxson, “Difficulties in simulating the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 4, pp. 392–403,
Aug 2001.

[18] V. Paxson and S. Floyd, “Why we don’t know how to simulate the
internet,” in In Proceedings of the 1997 Winter Simulation Conference,
1997, pp. 1037–1044.

[19] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How amazon web services uses formal methods,”
Commun. ACM, vol. 58, no. 4, pp. 66–73, 2015.

[20] B. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz, “Trace-
based mobile network emulation,” in SIGCOMM. ACM, 1997, pp.
51–61.

[21] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in CoNEXT. ACM, 2012, pp. 253–264.

[22] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in HotNets. ACM, 2010,
p. 19.

https://linuxcontainers.org/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://aws.amazon.com/ec2/
http://doi.acm.org/10.1145/2994031

15

[23] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee,
and H. Karl, “Maxinet: Distributed emulation of software-defined
networks,” in 2014 IFIP Networking Conference, June 2014, pp. 1–
9.

[24] K. V. Vishwanath, A. Vahdat, K. Yocum, and D. Gupta, “Modelnet:
Towards a datacenter emulation environment,” in Peer-to-Peer Com-
puting. IEEE, 2009, pp. 81–82.

[25] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase,
and D. Becker, “Scalability and accuracy in a large-scale network
emulator,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI,
pp. 271–284, 2002.

[26] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating
large production networks,” in SOSP. ACM, 2017, pp. 599–613.

[27] W. Du, H. Zeng, and K. Won, “SEED Emulator: An Internet Emulator
for Research and Education,” in Proceedings of the Twenty-First ACM
Workshop on Hot Topics in Networks (HotNets), Austin, Texas, USA,
November 14-15 2022.

[28] S. Hemminger, “Network emulation with NetEm,” in Proceedings of
the Linux Conference, 2005.

[29] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and Tools for Network Simulation. Springer, 2010, pp. 15–
34.

[30] D. B. Ingham and G. D. Parrington, “Delayline: a wide-area network
emulation tool,” Computing Systems, vol. 7, no. 3, pp. 313–332, 1994.

[31] L. Rizzo, “Dummynet: a simple approach to the evaluation of net-
work protocols,” ACM SIGCOMM Computer Communication Review,
vol. 27, no. 1, pp. 31–41, 1997.

[32] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, p. 12, 2009.

[33] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 255–270, 2002.

[34] M. Carson and D. Santay, “NIST net: a linux-based network emulation
tool,” Comput. Commun. Rev., vol. 33, no. 3, pp. 111–126, 2003.

[35] M. A. Eriksen, “Trickle: A userland bandwidth shaper for unix-like
systems,” in USENIX Annual Technical Conference, FREENIX Track.
USENIX, 2005, pp. 61–70.

[36] M. Avvenuti and A. Vecchio, “Application-level network emulation:
the emusocket toolkit,” Journal of network and computer applications,
vol. 29, no. 4, pp. 343–360, 2006.

[37] R. Ricci, J. Duerig, P. Sanaga, D. Gebhardt, M. Hibler, K. Atkinson,
J. Zhang, S. K. Kasera, and J. Lepreau, “The flexlab approach to
realistic evaluation of networked systems,” in NSDI. USENIX, 2007.

[38] S. Wang, C. Chou, and C. Lin, “The design and implementation of the
NCTUns network simulation engine,” Simulation Modelling Practice
and Theory, vol. 15, no. 1, pp. 57–81, 2007.

[39] Z. Puljiz, R. Penco, and M. Mikuc, “Performance analysis of a
decentralized network simulator based on imunes,” in 2008 Inter-
national Symposium on Performance Evaluation of Computer and
Telecommunication Systems, June 2008, pp. 519–525.

[40] R. Roverso, M. Al-Aggan, A. Naiem, A. Dahlstrom, S. El-Ansary,
M. El-Beltagy, and S. Haridi, “MyP2PWorld: Highly reproducible
application-level emulation of P2P systems,” in Second IEEE Inter-
national Conference on Self-Adaptive and Self-Organizing Systems
Workshops, ser. SASOW, 2008.

[41] L. Nussbaum and O. Richard, “Lightweight emulation to study peer-
to-peer systems,” Concurrency and Computation: Practice and Expe-
rience, vol. 20, no. 6, pp. 735–749, 2008.

[42] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “Core: A
real-time network emulator,” in MILCOM 2008 - 2008 IEEE Military
Communications Conference, 2008, pp. 1–7.

[43] C. Tang, “DSF: A common platform for distributed systems research
and development,” in Middleware, ser. Lecture Notes in Computer
Science, vol. 5896. Springer, 2009, pp. 414–436.

[44] E. Weingärtner, F. Schmidt, H. vom Lehn, T. Heer, and K. Wehrle,
“Slicetime: A platform for scalable and accurate network emulation,”
in NSDI. USENIX Association, 2011.

[45] V. Schiavoni, E. Rivière, and P. Felber, “Splaynet: Distributed user-
space topology emulation,” in Middleware, ser. Lecture Notes in
Computer Science, vol. 8275. Springer, 2013, pp. 62–81.

[46] L. Sarzyniec, T. Buchert, E. Jeanvoine, and L. Nussbaum, “Design
and evaluation of a virtual experimental environment for distributed
systems,” in PDP. IEEE Computer Society, 2013, pp. 172–179.

[47] V. Sinha and M. Wang, “evalbox: A cross-platform evaluation frame-
work for network systems,” in MASCOTS. IEEE Computer Society,
2015, pp. 15–18.

[48] M. A. To, M. Cano, and P. Biba, “Dockemu – a network emulation
tool,” in 2015 IEEE 29th International Conference on Advanced
Information Networking and Applications Workshops, 2015, pp. 593–
598.

[49] E. Petersen, G. Cotto, and M. Antonio To, “Dockemu 2.0: Evolution
of a network emulation tool,” in 2019 IEEE 39th Central America and
Panama Convention (CONCAPAN XXXIX), 2019, pp. 1–6.

[50] M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A rapid
prototyping platform for hybrid service function chains,” in 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft),
June 2018, pp. 335–337.

[51] J. Lai, J. Tian, D. Jiang, J. Sun, and K. Zhang, Network Emulation
as a Service (NEaaS): Towards a Cloud-Based Network Emulation
Platform, 10 2019, pp. 508–517.

[52] E. Petersen and M. A. To, “Docksdn: A hybrid container-based
sdn emulation tool,” in 2020 IEEE Latin-American Conference on
Communications (LATINCOM), 2020, pp. 1–6.

[53] “Testground,” https://github.com/testground/testground, 2022,
accessed: 2024-06-04.

[54] P. Gouveia, J. Neves, C. Segarra, L. Liechti, S. Issa, V. Schiavoni, and
M. Matos, “Kollaps: decentralized and dynamic topology emulation,”
in EuroSys. ACM, 2020, pp. 23:1–23:16.

[55] J. Sousa and A. Bessani, “Separating the WHEAT from the chaff: An
empirical design for geo-replicated state machines,” in SRDS. IEEE
Computer Society, 2015, pp. 146–155.

[56] A. N. Bessani, J. Sousa, and E. A. P. Alchieri, “State machine repli-
cation for the masses with BFT-SMART,” in DSN. IEEE Computer
Society, 2014, pp. 355–362.

[57] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp.
35–40, 2010.

[58] “Apache Cassandra,” https://cassandra.apache.org/, 2024, accessed:
2024-06-04.

[59] “Linux hierarchy token bucket,” https://linux.die.net/man/8/tc-htb,
2024, accessed: 2024-06-04.

[60] “Priority qdisc.” accessed: 2024-06-04. [Online]. Available: https:
//man7.org/linux/man-pages/man8/tc-prio.8.html

[61] “u32 Universal Identifiers,” http://man7.org/linux/man-pages/man8/
tc-u32.8.html, 2024, accessed: 2024-06-04.

[62] “Linux Traffic Control,” https://linux.die.net/man/8/tc, 2024, accessed:
2024-06-04.

[63] “extended berkeley packet filter.” accessed: 2024-06-04. [Online].
Available: https://ebpf.io/what-is-ebpf

[64] “Linux socket filter,” accessed: 2024-06-04. [Online]. Available:
https://www.kernel.org/doc/Documentation/networking/filter.txt

[65] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,”
in Peer-to-Peer Computing, 2009. P2P’09. IEEE Ninth International
Conference on. IEEE, 2009, pp. 99–100.

[66] M. Pizzonia and M. Rimondini, “Netkit: easy emulation of complex
networks on inexpensive hardware,” in TRIDENTCOM. ICST, 2008,
p. 7.

[67] G. Bonofiglio, V. Iovinella, G. Lospoto, and G. D. Battista, “Kathará:
A container-based framework for implementing network function vir-
tualization and software defined networks,” in NOMS. IEEE, 2018,
pp. 1–9.

[68] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in SIGCOMM. ACM, 2018, pp. 476–489.

[69] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. A. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in USENIX Annual Technical Conference. USENIX
Association, 2018, pp. 731–743.

[70] T. Pfandzelter and D. Bermbach, “Celestial: Virtual software system
testbeds for the LEO edge,” in Middleware. ACM, 2022, pp. 69–81.

[71] “Apache mina,” https://mina.apache.org/, 2024, accessed: 2024-06-04.
[72] L. Leonini, E. Rivière, and P. Felber, “SPLAY: distributed systems

evaluation made simple (or how to turn ideas into live systems in a
breeze),” in NSDI. USENIX Association, 2009, pp. 185–198.

[73] L. Rizzo, “Dummynet: a simple approach to the evaluation of net-
work protocols,” ACM SIGCOMM Computer Communication Review,
vol. 27, no. 1, pp. 31–41, 1997.

[74] M. Peuster, H. Karl, and S. Van Rossem, “Medicine: Rapid prototyping
of production-ready network services in multi-pop environments,” in
Network Function Virtualization and Software Defined Networks (NFV-
SDN), IEEE Conference on. IEEE, 2016, pp. 148–153.

https://github.com/testground/testground
https://cassandra.apache.org/
https://linux.die.net/man/8/tc-htb
https://man7.org/linux/man-pages/man8/tc-prio.8.html
https://man7.org/linux/man-pages/man8/tc-prio.8.html
http://man7.org/linux/man-pages/man8/tc-u32.8.html
http://man7.org/linux/man-pages/man8/tc-u32.8.html
https://linux.die.net/man/8/tc
https://ebpf.io/what-is-ebpf
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://mina.apache.org/

16

[75] M. A. To, M. Cano, and P. Biba, “DOCKEMU - A Network Emulation
Tool,” Proceedings - IEEE 29th International Conference on Advanced
Information Networking and Applications Workshops, WAINA 2015, pp.
593–598, 2015.

[76] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and
J. R. Santos, “Elasticswitch: practical work-conserving bandwidth
guarantees for cloud computing,” in SIGCOMM. ACM, 2013, pp.
351–362.

[77] R. Potharaju and N. Jain, “When the network crumbles: an empirical
study of cloud network failures and their impact on services,” in SoCC.
ACM, 2013, pp. 15:1–15:17.

[78] L. Liechti, P. Gouveia, J. Neves, P. G. Kropf, M. Matos, and V. Schi-
avoni, “THUNDERSTORM: A tool to evaluate dynamic network
topologies on distributed systems,” in SRDS. IEEE, 2019, pp. 241–
250.

[79] F. Kelly, “Charging and rate control for elastic traffic,” European
transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[80] L. Massoulie and J. Roberts, “Bandwidth sharing: objectives and
algorithms,” IEEE/ACM Transactions on Networking, vol. 10, no. 3,
pp. 320–328, June 2002.

[81] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling
tcp reno performance: a simple model and its empirical validation,”
IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 133–145,
April 2000.

[82] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” Queue, vol. 14, no. 1, p. 10, 2016.

[83] “Docker Security Capabilities,” https://docs.docker.com/engine/
security/, 2024, accessed: 2024-06-04.

[84] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[85] G. Vu-Brugier, R. Stanojevic, D. J. Leith, and R. Shorten, “A critique
of recently proposed buffer-sizing strategies,” Comput. Commun. Rev.,
vol. 37, no. 1, pp. 43–48, 2007.

[86] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router
buffer sizing: Recent results and open problems,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 2, pp. 34–39, 2009.

[87] “Linux Network Emulator,” https://www.linux.org/docs/man8/
tc-netem.html, 1997, accessed: 2024-06-04.

[88] “Linux TCP Small Queues,” https://lwn.net/Articles/507065/, 2012,
accessed: 2024-06-04.

[89] “A rust ebpf toolchain.” accessed: 2024-06-04. [Online]. Available:
https://github.com/foniod/redbpf

[90] “raw(7) - linux man page.” accessed: 2024-06-04. [Online]. Available:
https://linux.die.net/man/7/raw

[91] “Perfmap implementation in github.” accessed: 2024-06-04. [Online].
Available: https://github.com/foniod/redbpf/blob/main/redbpf/src/perf.
rs

[92] “Async standard library.” accessed: 2024-06-04. [Online]. Available:
https://doc.rust-lang.org/stable/std/net/

[93] “Linux pipes.” accessed: 2024-06-04. [Online]. Available: https:
//linux.die.net/man/3/mkfifo

[94] “Imec virtual wall 1.” accessed: 2024-5-28. [Online]. Available:
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html

[95] “iPerf3,” https://github.com/esnet/iperf, 2024, accessed: 2024-06-04.
[96] “Network time protocol (ntp).” accessed: 2024-06-04. [Online].

Available: https://www.rfc-editor.org/rfc/rfc958.html
[97] “Amazon EC2 - T1 micro instances,” https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/concepts micro instances.html, 2024, ac-
cessed: 2024-06-04.

[98] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999. [Online].
Available: https://science.sciencemag.org/content/286/5439/509

[99] “dstat.” accessed: 2024-06-04. [Online]. Available: https://linux.die.
net/man/1/dstat

[100] “POX,” https://github.com/noxrepo/pox, 2018, accessed: 2024-06-04.
[101] “Floodlight,” https://github.com/floodlight, 2018, accessed: 2024-06-

04.
[102] “Opendaylight,” https://www.opendaylight.org/, 2018, accessed: 2024-

06-04.
[103] “iftop - display bandwidth usage on an interface by host.” accessed:

2024-06-04. [Online]. Available: https://linux.die.net/man/8/iftop
[104] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in SoCC. ACM,
2010, pp. 143–154.

[105] “Aeron,” https://github.com/real-logic/aeron, 2024, accessed: 2024-06-
04.

[106] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Softw.,
vol. 33, no. 3, pp. 35–41, 2016.

[107] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of multi-path routing,”
IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 885–896,
Dec 1999.

[108] J. Yan and D. Jin, “A lightweight container-based virtual time sys-
tem for software-defined network emulation,” Journal of Simulation,
vol. 11, no. 3, pp. 253–266, 2017.

Sebastião Amaro , is a Ph.D. student, in the topic
of Fault Injection in Distributed Systems. He holds a
Master in Computer Science and Engineering from
IST (Instituto Superior Técnico) with a thesis in the
topic of network emulation, and he worked as a
researcher in 2022 on the topic of performance in
persistent memory systems.

Miguel Matos (Member, IEEE) is an assistant pro-
fessor at the Engineering School of the University
of Lisbon (Instituto Superior Técnico) and a Senior
Researcher at INESC-ID. His research interests lie
in broad the area of systems. His work has been
published in SOSP, Eurosys, TPDS, JPDC, ICDCS,
DSN, IPDPS and Middleware among others.

Valerio Schiavoni (Member, IEEE), is Professeur
Titulaire and Maı̂tre d’enseignment et recherche at
the University of Neuchâtel, Switzerland. His re-
search interests lie at the intersection of systems,
security, and data management. He served on more
than 50 program committes and published his work
in JPDC, TPDS, TDSC, Eurosys, Middleware, DNS,
ICDCS, IPDPS, PPoPP, SRDS, and more.

https://docs.docker.com/engine/security/
https://docs.docker.com/engine/security/
https://www.linux.org/docs/man8/tc-netem.html
https://www.linux.org/docs/man8/tc-netem.html
https://lwn.net/Articles/507065/
https://github.com/foniod/redbpf
https://linux.die.net/man/7/raw
https://github.com/foniod/redbpf/blob/main/redbpf/src/perf.rs
https://github.com/foniod/redbpf/blob/main/redbpf/src/perf.rs
https://doc.rust-lang.org/stable/std/net/
https://linux.die.net/man/3/mkfifo
https://linux.die.net/man/3/mkfifo
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
https://github.com/esnet/iperf
https://www.rfc-editor.org/rfc/rfc958.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts_micro_instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts_micro_instances.html
https://science.sciencemag.org/content/286/5439/509
https://linux.die.net/man/1/dstat
https://linux.die.net/man/1/dstat
https://github.com/noxrepo/pox
https://github.com/floodlight
https://www.opendaylight.org/
https://linux.die.net/man/8/iftop
https://github.com/real-logic/aeron

	Introduction
	Background
	Related Work
	The Kollaps System
	Overview
	Emulation Model

	Implementation
	Integration with container orchestrators
	Emulation Core and TCAL
	Kernel Information Retrieval
	Metadata dissemination

	Evaluation
	Bandwidth Emulation Accuracy
	Jitter Emulation Accuracy
	Decentralized Bandwidth Throttling
	Impact of System Parameters
	CPU Usage
	Reaction Time

	Geo-replicated Systems
	Scalability
	Resource Usage
	Emulation Accuracy
	Scalability of Path Congestion

	Unmanaged Mode

	Lessons Learned
	Limitations
	Conclusion
	References
	Biographies
	Sebastião Amaro
	Miguel Matos
	Valerio Schiavoni

