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Abstract

Since blockchains are increasingly adopted in real-world applica-
tions, it is of paramount importance to evaluate their performance
across diverse scenarios. Although the network infrastructure plays
a fundamental role, its impact on performance remains largely un-
explored. Some studies evaluate blockchain in cloud environments,
but this approach is costly and difficult to reproduce. We propose
a cost-effective and reproducible environment that supports both
cluster-based setups and emulation capabilities and allows the un-
derlying network topology to be easily modified. We evaluate five
industry-grade blockchains – Algorand, Diem, Ethereum, Quorum,
and Solana – across five network topologies – fat-tree, full mesh,
hypercube, scale-free, and torus – and different realistic workloads
– smart contract requests and transfer transactions. Our bench-
mark framework, Lilith, shows that full mesh, hypercube, and
torus topologies improve blockchain performance under heavy
workloads. Algorand and Diem perform consistently across the
considered topologies, while Ethereum remains robust but slower.

CCS Concepts

•Networks→Network performance analysis; Topology anal-

ysis and generation; •General and reference→Measurement;
Validation.
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1 Introduction

A blockchain is a distributed, tamper-proof ledger system that
permanently records transactions across a network of possibly
untrusted nodes. With the growing adoption of the blockchain
technology in various domains – such as digital currencies, finance,
supply chains, and healthcare – an increasing number of studies
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have been conducted to explore its diverse aspects, including the
properties of consensus protocols [41, 55, 59, 66, 70] and the system
transaction processing capabilities in terms of transactions per
second (TPS) [38]. Alongside these studies, various benchmark
tools [17, 30, 36, 40, 46, 49, 60, 65] are available to validate the
performance and behavior of blockchain systems.

Despite ongoing efforts, systematic and reproducible benchmark-
ing of blockchains remains an open problem. On the one hand,
large-scale peer-to-peer systems like blockchain networks are in-
herently complex and dynamic, with vast, constantly shifting, and
unpredictable topologies. For instance, the Bitcoin network alone
consists of over 20,000 full nodes [24]. On the other hand, when
conducting large-scale, long-term experiments on cloud platforms,
one can incur substantial costs. We estimate an average expense
ranging from 2,000 to 14,000 USD for maintaining up to 200 high-
performance nodes continuously operating 24/7 across the four
major cloud providers: Amazon Web Services (AWS), Google Cloud
Platform (GPC), Azure, and Alibaba (see Fig. 1).

Moreover, cloud platforms obscure the details of the underlying
network topology and offer limited flexibility in adjusting network
properties to accommodate variations in experimental configura-
tions (e.g., specifying packet drop rates, ad-hoc latencies, bandwidth
capacities, etc.), while the inherent network variability – such as
increased bandwidth, reduced latencies, dynamic node removal
– further compromises the reproducibility of experiments, both
within the same experimental session and over longer timeframes.
For instance, Fig. 2 shows significant variations of performance
among AWS regions across different continents with reference to
2023 and 2024 (see the caption for AWS region specifics). Our anal-
ysis in Fig. 3 for 10 AWS regions in April, July, and November 2023,
and March 2024, shows notable daily fluctuations in network links.
Compared with dataset from 2023 [42], we observed a 3% decrease
in average latency (from 194 to 188 ms) and an 85.5% improvement
in average throughput (from 74.6 to 138.3 Mbps).

Validating the performance and behavior of a blockchain by us-
ing benchmark tools is fundamental, especially given the significant
discrepancies between the performance claims made by blockchain
providers and the observed results. For instance, Solana declares
a throughput of 200,000 TPS and a sub-second time for block fi-
nality [76], but independent researchers observed only 8,845 TPS
with an average latency above 12 seconds [42]. These discrepancies
highlight the importance of developing accurate benchmark tools
for validating and testing such claims.
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Figure 1: Cost comparison of four

cloud platforms and three in-

stance types: (i) high, (ii) low,

(iii) medium performance.
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Figure 2: Latencies (ms) and throughput (Mbps) heatmaps of our 2024 measurements (upper colored

triangles); % of difference 2024 vs. 2023 (lower grayed triangles). The 10 AWS regions are: af-s-1 (Cape

Town), ap-ne-1 (Tokyo), ap-s-1 (Mumbai), ap-se-2 (Sydney), eu-n-1 (Stockholm), eu-s-1 (Milan),me-s-1
(Bahrain), sa-e-1 (Sao Paulo), us-e-2 (Ohio), and us-w-2 (Oregon).
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Figure 3: Four snapshots of monthly latency variations and standard deviation across the 10 AWS regions from Fig. 2.

An essential aspect of benchmarking blockchains is to control the
underlying network topology [18, 48], which should be a best prac-
tice in blockchain evaluation to study and improve performance.
Despite the significant impact of network dynamics (e.g., changes in
link properties, node failures, etc.), few studies have examined their
influence on blockchain performance, with notable examples in-
cluding the effect of network latency on key parameters (e.g., block
size, frequency, or propagation [29, 58]) as well as node failures and
network contraction (e.g., China’s 2021 ban on Bitcoin mining [63])
and their consequences on the network [64].

Our research aims to validate cluster as a cost-effective, repro-
ducible environment for the study of the impact of network topolo-
gies on blockchain performance. Aside from prior work on hyper-
cube topology benefits for Bitcoin [71], to the best of our knowledge
our work is the first in-depth experimental study across multiple
real-world blockchains.

In this paper we measure the performance of five industry-grade
blockchain systems – Algorand [41], Diem [22], Ethereum [74], Quo-
rum [31], and Solana [76] – across five network topologies – fat-tree,
full mesh, hypercube, scale-free, and torus – under different work-
loads – smart contract requests and transfer transactions. Although
blockchains often adopt topologies suited to their design, such as
fat-tree or hypercube for private ones like Diem and scale-free for
public systems like Ethereum, this study explores blockchain topol-
ogy reconfigurations to improve efficiency without altering their
public or private nature. Here are our key contributions:
• We show, via a 12-month-long network trace of cloud per-
formance monitoring (released at https://zenodo.org/records/
11457020), that cloud-based deployments must account for vary-
ing and challenging network conditions.

• We release several ready-to-use network topologies and traces,
enabling practitioners to experiment with distributed systems
beyond our blockchain measurement study.

• Themain conclusions are: (i) Algorand and Diem show consistent
performance across various network topologies. (ii) Ethereum
has the lowest TPS rate but remains resilient to network issues,
i.e., packet loss, link congestion, node crash, and increasing la-
tency. (iii) Full mesh and hypercube topologies improve perfor-
mance across all tested blockchains. (iv) Torus topology excels
under heavy workloads. (v) Increasing the number of nodes re-
duces commit rate and raises block latency, while higher network
bandwidth has no effect on latency. (vi) Quorum is the blockchain
more affected by network dynamics.
For our measurements we built Lilith, a framework integrating

Diablo [42], a benchmark tool for blockchain, and Kollaps [18],
a distributed network topology emulator. The goal is to achieve
reproducibility by having control over the network topology.

Roadmap. §2 describes the state of the art of blockchain bench-
mark tools. §3 outlines the architecture of Lilith. §4 explains our
evaluation setup. §5 describes our results. §6 discusses the results
and limitations of our approach. Finally, §7 concludes the paper.

2 Background and Related Work

A blockchain is a distributed ledger that maintains a cryptograph-
ically linked list of blocks. Each block contains transactions and
references to the previous block, forming an immutable record
chain. Consensus mechanisms achieve agreement on the block or-
der without a centralized trusted party. There are several consensus
mechanisms, e.g., Proof of Work (PoW) [55], Proof of Stake (PoS) [59],
Proof of Authority (PoA) [70], as well as consensus based on classical
Byzantine Fault Tolerance (BFT) [25] and its variants [41, 66, 78, 80].
Blockchains can execute smart contracts [74], which are special-
ized programs designed to automatically execute predefined ac-
tions when certain conditions are met. There are many types of
blockchains which can be categorized as: (i) public, where any
node can join, transact, and validate transactions; (ii) private, for
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authorized entities and governed by a central authority; and (iii)
consortium, managed by collaborating organizations. Our measure-
ments compare the impact of network topology on five blockchains:
three public ones (Algorand [41], Ethereum [74], and Solana [76]),
a private one (Diem [22]), and a consortium one (Quorum [31]).

Table 1 compares existing blockchain benchmark tools across
several dimensions, including network experiment capabilities, cen-
tralized vs. distributed orchestration, and simulation vs. emulation
workingmode.We also include the benchmark criteria from [65]: re-
producibility (consistent results with the same test setup), versatility
(identical experiments across diverse infrastructures), observability
(insights into performance metrics and system impact), portability
(to facilitate comparisons between distinct blockchain systems),
ease to run (sharing configurations and deployment details in a
widely adopted format like YAML across different testbeds), and
realistic workload (evaluating scenarios that mimic real-world con-
ditions). We use  and # for the presence/absence of a feature,
respectively, on the basis of the literature,� when no valid refer-
ence is found, andH# for tools that address limited network features.

Evaluating large networks is challenging due to limited compu-
tational resources, which often restrict evaluations to consensus
processes, failing to capture full system behavior [73, 75]. Tools like
Minichain [75] and BlockLite [73] emulate only PoW. To achieve
more realistic results, other tools [16, 34, 35] focus on adjusting
transaction/block structure, algorithms for wallet creation, and
message signing. Some tools allow for dynamic events during the
execution of the simulation [16]. Other tools [35, 62] do not run
the real code and hence fail to precisely capture the load on the
different resources, such as the transaction processing data struc-
tures. SimBlock [20] employs an event-driven model, distinguishing
itself from real-world blockchains by calculating block creation
time based on the success probability of block generation. Unlike
traditional blockchains, where each node independently determines
block generation difficulty, SimBlock assigns the same mining diffi-
culty level to all nodes.

We stress that none of the listed tools simulate the entire set
of features of a blockchain. For instance, BlockSim [16] assumes
that miners include as many transactions in each block as possible,
whereas in actual systems miners may generate a block with only
a few transactions or even none at all. Moreover we observe a lack
of standardization, as each tool reports different system aspects.
SimBlock [20] treats block generation and message transmission
as separate events, removing the need to replicate mining power.
BlockLite [73] performs the actual PoW workload by solving a
cryptographic puzzle. HIVE [14], an Ethereum test environment,
cannot inspect the client internal state. Hyperledger Caliper [45]
does not provide functionalities for resource reservation.

Some blockchain benchmark tools offer more flexible and feature-
rich options. BlockBench [30] andDiablo [42] leverage ad-hoc scripts
to manage the deployment of a blockchain but lack abstractions
over their targeted testbed. However, despite recents efforts [43, 47],
such an approach does not capture the underlying behavior of
a wide-area network. BCTMark [65] ensures cross-infrastructure
portability. It defines the network structure with a YAML topology
file, streamlining node initialization. COCONUT [40] let users de-
fine and adapt different blockchain parameters, including consensus
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Figure 4: Architecture and execution flow of a Lilith experiment

(dashed contour lines represent existing components).

algorithms, transaction structures, distribution of network compo-
nents, etc.. Core-Bitcoin Network Simulator [17] can automatically
tune mining difficulty, leveraging the Pumba network emulator [2],
with built-in result analysis tools (e.g., automatic plotting). Boston
Blockchain Benchmarking (BBB) [60], JABS [77], and DLPS [36]
address limitations in earlier approaches.

Our tool Lilith aims to provide a precise and feature-rich bench-
marking standard, enabling testing across multiple blockchain sys-
tems while allowing for variations in network configurations. Its
decentralized experiment orchestration minimizes interference be-
tween nodes, enhancing the accuracy and consistency of evalua-
tions while ensuring reliable performance insights.

3 Lilith Overview

Lilith is a blockchain benchmark framework that we developed to
support multiple deployment environments including clusters. It
integrates, extends, and coordinates Diablo’s workflow (see §3.1)
and Kollaps’s network emulation capabilities (see §3.2). It features a
topology generator that creates ad-hoc network topologies, which
are then fed into the Kollaps module for precise emulation. Addi-
tionally, Lilith can enforce arbitrary resource constraints, similar
to selecting a specific instance in the cloud. Fig. 4 illustrates the
execution flow of Lilith, which we detail in the following sections.

3.1 The Diablo Benchmark Suite

We selected Diablo [42] as a building block since it is the one
matching most of the features in Table 1 and supports the different
blockchain types discussed in §2. An experiment coordinator called
primary manages a distributed workload generation mechanism
between secondary nodes interacting with the specific blockchain
via a dedicated client interface, ensuring synchronized evaluations.
Unlike many other tools that require an existing blockchain infras-
tructure, along with the addresses of its nodes, the latest version
of Diablo [42] introduces a set of Perl scripts called Minion [7],
which automate the process of building the infrastructure. Diablo
can inject realistic workloads, e.g., smart contracts and transfer
transactions, with varying volumes and complexities, and supports
multi-region AWS deployments.

3.2 The Kollaps Network Emulator

To assess the impact of network properties on blockchain sys-
tems we leverage Kollaps [18], a decentralized network emula-
tor for large-scale applications that models end-to-end properties
(e.g., latency, bandwidth, and packet loss). Its fully distributedmodel
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Table 1: Comparison of several blockchain benchmark tools (� = not found;# = no match; = match;H# = partial match; Centr. = Centralized;

Distr. = Distributed; Simul. = Simulation; Emul. = Emulation; SC = Smart Contract; TT = Transfer Transactions).

Tool Year

Network

settings
Orchestration Mode Reproducibility Versatility Observability Portability

Ease to

run
Workload

Shadow-Bitcoin [54] 2015 � Centr. Simul. # # # #– Bitcoin # TT
HIVE [14] 2016 � Distr. Simul. # # # #– Ethereum # �
Simcoin [3] 2016 � Centr. Simul. # #  #– Bitcoin # TT
Bitcoin-Simulator [39] 2016 H# Centr. Simul. # # #  – Bitcoin-like # TT
BlockBench [30] 2017 � � Simul. #  #  – Private # SC
Caliper [45] 2018 H# Distr. Emul. # #   – Ethereum,Hyperledger # SC
Minichain [75] 2019 H# Centr. Emul. # # #  # �
BlockLite [73] 2019 � Centr. Emul. # # #  – PoW-public # �
BlockSim-f [34] 2019 H# Centr. Simul. # # #  # �
SimBlock [20] 2019 H# Centr. Simul. # # #  # TT
BlockSim-m [16] 2020 H# Centr. Simul. # # #  # TT
Core-Bit-Netw-Simul. [17] 2020 H# Centr. Simul. # # #  # �
BBB [60] 2020 H# Centr. Emul. # # #  – Private # �
SIMBA [35] 2020 H# Centr. Simul. # # #  # �
BCTMark [65] 2020 H# Distr. Emul. # #   # TT
BlockPerf [62] 2021 # Distr. Both # # # #– Bitcoin # TT
DLPS [36] 2021 H# Distr. Emul. # #   # TT
Gromit [56] 2022 H# Distr. Emul. # #   # SC
Diablo v2 [42] 2022 # Distr. Emul.      TT,SC
JABS [77] 2023 H# Centr. Simul. # # #  # TT
COCONUT [40] 2023 � Distr. Emul.   #   TT,SC
GFBE [50] 2024 # Distr. Emul.      SC
STABL [43] 2024 H# Distr. Emul. #     TT,SC
Lilith 2024  Distr. Emul.      TT,SC
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Figure 5: Real-world network topologies served by Lilith.

ensures scalability while supporting dynamic changes to the topol-
ogy, e.g., link or node removals, service disruptions, etc.. The routing
paths of user-level data flows on the emulated topologies can be dy-
namically determined – as in the link-state protocol Open Shortest
Path First (OSPF) that calculates routes based on the shortest path
tree – based on criteria such as latency or hop count. Kollaps sup-
ports native processes, virtual machines, and can directly integrate
with container orchestrators like Docker Swarm and Kubernetes. Its
network modeling features make it ideal for, though not limited to,
cluster environments.

3.3 Network Topology Generation

The first step (Fig. 4-➊) is to define the experiment parameters,
including (i) the network dataset, (ii) the target topology (Fig. 4-
➋), and (iii) additional experiment parameters, e.g., the number of
blockchain nodes or the characteristics of the workload.

The network dataset consists of experimental measurements of
the network properties related to nodes and regions. By specifying
the network dataset structure (a CSV file with columns src-region,
dst-region, latency, throughput, hops), users can conduct ex-
periments and replicate network scenarios captured from various
sources. This provides a method to replicate existing deployments

such as a cloud environment. Additionally, users should provide
the target topology shape that defines how nodes are connected.
In our experiments, Lilith supports five topologies (Fig. 5), with
nodes as validators, end users as Diablo entities, and gateways as
cloud regions connected by the defined topology. Additionally, it
utilizes the 10 AWS regions listed in Fig. 2.

A fat-tree topology, often used in data centers, consists of multi-
ple gateways organized in layers. For our emulated network of 10
AWS regions, we allocate 20% (2 gateways per region) at the first
level and 50% (5 regions) at the second level. Gateways for the first
and second levels are selected based on the lowest latencies in the
dataset, while links between gateways at these levels are assigned
randomly to limit dynamic routing paths and promote information
flow throughout the topology. Blockchain nodes connect to the
gateways at the second level.

Full mesh is a topology where each node is directly connected to
every other node, reflecting the connectivity of cloud-based deploy-
ments. In such topologies, high-latency links simulate long inter-
continental connections. This topology is easy to construct, with
all gateways interconnected, simplifying the scan of the network
dataset to capture region/gateway pairs and latency information.
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A hypercube topology connects nodes via binary-based adja-
cency, forming a multidimensional structure common in parallel
and IoT systems. We encode each of the 10 AWS regions as 4-bit
binary vectors [0,9] and generate links by toggling one bit at a time,
accepting only valid region indices.

In a scale-free topology few nodes have significantly more con-
nections than others [26]. We build topologies of this kind by us-
ing the preferential attachment algorithm [26], so that nodes with
higher degrees are more likely to be selected. This topology resem-
bles Internet-like (WAN) networks [26].

A torus topology connects nodes in a wrap-around grid, enabling
efficient data transfer, and is often used in supercomputing [72]. We
construct a 2D torus (2 rows and 5 columns) for 10 AWS regions,
placing one gateway per slot. Starting with the lowest-latency re-
gion pair in the first column, we iteratively add columns by selecting
new region pairs linked to the most recently added gateways, prior-
itizing low latency. Each gateway connects to its previous column
and adjacent row gateway.

By incorporating latency and throughput into the structure of the
network dataset, evaluators can construct customized topologies
that prioritize specific performance goals, such as low latency over
high throughput. Organizing the dataset accordingly and selecting
regions based on these metrics enable more targeted and meaning-
ful performance assessments. Furthermore, with Kollaps’s routing
selection mechanism, we can determine whether to optimize for
the best latency or the fewest hops in the link selection.

3.4 Benchmark Execution

Lilith manages the installation of Docker daemons and Kollaps on
the cluster nodes, deploys the necessary experiment images, and
sets up a network to distribute the experiment across the machines
(Fig. 4-➌). The initialization phases can also enforce resource limits
(Fig. 4-➍), to mimic specific computing or networking constraints
(leveraging cgroup’s container properties). The architecture in-
tegrates with Docker containers, though a similar approach can
be used with other execution units (e.g., virtual machines, native
processes) with additional engineering efforts. Once all steps are
completed, the services can be initiated (Fig. 4-➎).

The Lilith builder interacts (Fig. 4-➏) with Diablo’s Minion so
that the launcher (Fig. 4-➐) triggers Diablo’s mechanics to start
its benchmark suite. Diablo’s Minion [7] component is in charge
of installing and bootstrapping the blockchain network (Fig. 4-➑).
This process includes installing both Diablo and the blockchains
dependencies on the designated machines. The primary node co-
ordinates the experiment (Fig. 4-➒): it orchestrates the execution
of the various secondary nodes. To ensure a ready blockchain en-
vironment where validators are aware of the current blockchain
state and clients can actively send transaction requests, the primary
coordinates the blockchain configuration by creating accounts and
the genesis block, which is then distributed to all blockchain nodes.
A given workload effectively starts when the secondaries inject the
workload transactions into the blockchain network (Fig. 4-➓). Once
finished, they collect and transmit the results back to the primary.
The Lilith architecture includes a modular monitoring component,
which is in charge of collecting network usage with the vnstat
tool [1]. Also, an exporter module enables further refinements of

both benchmark results and execution trace during post-processing.
The exporter gathers network monitoring data, validator logs from
the blockchain nodes, and benchmark execution records from the
primary node. A script plots the results as shown in §5, allowing
performance and network metrics to be checked.

4 Evaluation Setup

This section presents our experimental setup by detailing the ex-
periment configurations, the blockchains under test, the used work-
loads, and the properties of the considered topologies. Specifically,
we analyze the impact of five distinct topologies on five blockchains
running six different workloads. We focus on four key performance
metrics: (i) commit ratio, i.e., the ratio of submitted to commit-
ted transactions; (ii) throughput, measured in terms of committed
transactions per second (CTPS); (iii) block latency, i.e., the aver-
age time required to finalize transactions, also referred to as block
finality [42]; and (iv) network load, measured in Mbps.

Our evaluation intends to provide insights into the following
specific research questions:

RQ1 How do topologies affect blockchain performance and which
is the optimal topology for each blockchain?

RQ1 What is the impact on performance of network perturbations,
such as packet loss, congestion, node failures, and increased
latency, and which blockchain is most affected?

4.1 Topologies

In our experiments, we examine the five topologies described in §3.3.
Table 2a summarizes their structural properties, as well as aggre-
gated statistics over the imposed throughput and latency properties.
Specifically, we report: degree, the average number of neighbors
per gateway; links, the total number of links; and average latency
and average throughput, computed from the respective network
datasets used to define each topology.

4.2 Workloads

We consider a variety of workloads, ranging from modest to very
high TPS peaks over a short time interval, modeling transfer trans-
actions and smart contracts, as detailed next (see Table 2b).

DDoS is a constant workload of 10,000 injected TPS staging for
2 minutes used to stress the robustness of the specific blockchain
under sustained high-demanding scenarios, e.g., a DDoS attack.

FIFA models the FIFA website workload during the 1998 soc-
cer world cup [21]. It implements a simple (yet highly contended)
counter smart contract with an add function. We use a very high
sending rate (45,000 injected TPS) over a 100 seconds experiment.

GAFAM simulates a financial market smart contract, allowing
users to buy and check stock availability for Google, Apple, Facebook,
Amazon, and Microsoft. Using data derived from [5], the system
runs for 3 minutes, reaching an initial shortly lived peak of 19,800
injected TPS before stabilizing between 25 and 140 injected TPS.
For simplicity, we round the peak to 20,000 injected TPS.

Gaming executes the trace of an online battle arena video game
(Dota2) [69]. The trace lasts 276 seconds, invoking at an almost
constant high update rate of 13,000 injected TPS.
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Table 2: Topologies (a) and workloads (b) for tested blockchains (c).

Topology Degree Links Avg. Lat. Avg. TPut

(ms) (Mbps)

fat-tree (k ports=4, l level=2) k 𝑘𝑙 /2 102 712
full mesh (N nodes) 𝑁 − 1 𝑁 × (𝑁 − 1)/2 194 600
hypercube (n dimensions=4) 𝑛 𝑛 · 2(𝑛−1) 208 560
scale-free (N nodes) (Based on Power Law) 218 432
torus (N nodes/row=5, n dim.=2) 2𝑛 𝑛 · 𝑁𝑛 197 728

(a) Topologies used in our experiments.

Workload Type Scenario Duration Injected

(s) TPS

DDoS Transfer Tx Constant rate 120 10,000
FIFA Smart contract High sending rate 100 45,000
GAFAM Smart contract Burst 180 20,000 down to 100
Gaming Smart contract Intensive 276 13,000
PayPal Transfer Tx Constant rate 300 200
VISA Transfer Tx Constant rate 300 1,800

(b) Workloads used in our experiments.

Blockchain Consensus VM DApp Block Finality Claimed

(s) TPS

Algorand BA [41] AVM PyTeal [8] 3.3 [9] 7.5K [9]
Diem HotStuff [80] MoveVM Move 100 [61] 60−1K [81]
Ethereum Clique [70] geth Solidity 10−20 [4] 10−15 [67]
Quorum IBFT [66] geth Solidity 2−15 [52] 0.7K−2.5K [10]
Solana TowerBFT [78] Sealevel Solang 12 [42] 65K [11]

(c) Blockchains used in our experiments.

The PayPal payment system typically processes an average of
193 TPS [53]. For simplicity, in our experiments we modeled it as a
constant workload of 200 injected TPS over a 5-minute period.

Similarly, we approximate theVISA system, reported at 1,770 TPS
in [42], with a constant workload of 1,800 injected TPS.

4.3 Blockchains under Test

Next, we detail the blockchains under study, summarized in Ta-
ble 2c. They are representative of different approaches (e.g., public,
private, and consortium blockchains), smart contract languages
(e.g., Solidity, PyTeal, Move), execution virtual machines (e.g., AVM,
MoveVM, geth, Sealevel), and consensus mechanisms (e.g., BA, Hot-
Stuff, Clique, IBFT, TowerBFT). To ensure consistency, we used the
blockchain configurations from [42], with each blockchain version
specified by the respective repository commits.

Algorand [41] uses a pure PoS consensus algorithm, selecting
nodes via sortition to propose blocks. Transactions are finalized
immediately upon inclusion, minimizing fork risks. The platform
provides a blocking API for transaction confirmation and uses
WebSockets over HTTP (TCP) for node communication, leveraging
a gossip protocol [28]. Nodes validate messages to avoid duplicates,
with default settings allowing up to 15 connections per IP and 2,400
incoming connections per port. During our experiments, we focused
on detecting transaction commits by polling the blockchain only
after blocks were added, which significantly boosted performance.
Tests were conducted using Algorand at commit 116c06e.

Diem [22] uses an adapted version of HotStuff [80] for deter-
ministic finality with low communication overhead. Its nodes limit
memory pools to 100 transactions per signer, addressed in tests by
submitting transactions from 2,000 accounts. Built on the libp2p
project, it employs RPC and DirectSend for efficient message deliv-
ery [19]. Our testing was based on Diem’s testnet branch at commit

4b3bd1e. Though no longer active, Diem provides valuable insights
into permissioned infrastructures.

Ethereum [74] is a public blockchain platform for decentral-
ized applications (DApps) and smart contracts, using devp2p proto-
cols [37] like UDP-based Node Discovery and TCP-based RLPx [32].
It limits protocol messages to 10 MB to maintain efficiency, discon-
necting oversized messages [33]. In our experiments, the Clique
PoA variant [70] was used, with blocks added at 1-second intervals
by validators in a round-robin manner. Dynamic fee adjustments
were configured to handle gas variability introduced by the London
update (August 2021). Our benchmarks employ the Go implemen-
tation of the Ethereum protocol, specifically at commit 72c2c0a.

Quorum [31] is an enterprise-focused, permissioned Ethereum
variant. It uses two modules from the Constellation p2p system:
the Transaction Manager, which handles private transactions and
encrypted payload exchange, and the Enclave, which protects cryp-
tographic operations and private keys. Following previous stud-
ies [42], we configured Quorum with the IBFT consensus algo-
rithm [66] at commit 919800f to address message delays and vul-
nerabilities in PoA systems [70].

Solana [76] uses the TowerBFT consensus mechanism [78], com-
bining features of BFT and PoS [59] for scalability and throughput.
It also employs Proof of History (PoH) [68] for timestamping. Like
Ethereum, Solana faces forks and requires 30 confirmations to final-
ize transactions [6]. Blocks are added every 400 milliseconds, with
a simplified data structure and EdDSA signature replacing ECDSA.
The network uses a custom UDP-based protocol for transaction
transmission and block propagation, supported by the Turbine
mechanism for scalability [27]. Validators communicate in peer
groups, allowing scalability beyond 1,000 validators [79]. Solana’s
API supports commitment levels and block monitoring, with our
evaluation periodically fetching block hashes within typical DApp
time constraints. We used commit 0d36961.

4.4 Testing Configurations

Our cluster is composed of seven Dell PowerEdge R630 server
machines, each equipped with two 16-core/32-thread Intel Xeon
E5-2683v4 clocked at 2.10 GHz CPU and 128 GB of RAM, connected
by a Dell S6010-ON 40 GbE switch. The nodes run Ubuntu Linux
22.04 LTS, kernel v5.15.0-107-generic.

We evaluate the impact of topologies by using different config-
urations, taking into account (i) the number of nodes per region,
(ii) varying link latencies, and (iii) the bandwidth capacity for each
blockchain node. We also study how the blockchains are affected
by faults happening in the network, i.e., emulating packet drop,
congestion, node failures, and increased latency, to observe failure
in the reception/transmission of messages between nodes during
the workload execution. We present our results in the next section.

5 Measurement Results

We study the impact of topologies on the various blockchains by
focusing on the three key performance metrics established at the
beginning of §4. Given the duration of the experiments and the
limited time constraints, we report the average across 3 runs.
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5.1 Small Deployment

We begin by deploying one node per region, for a total of 10 nodes.
The results are depicted, for each topology, on the left side of Fig. 6.
For less demanding workloads (GAFAM and PayPal), Algorand
and Diem achieve a commit ratio greater than 80%, which is close
to 100% for PayPal, with Diem slightly outperforming the former.
Although the results are consistent across different topologies, we
observe that Algorand experiences a 50% drop in CTPS (to 86 CTPS)
on a scale-free topology with the GAFAM workload.

Quorum achieves a commit rate above 85% for the PayPal work-
load in hypercube (Fig.6e) and torus (Fig.6i) topologies, due to low
congestion in the torus and the high connectivity of hypercube,
which ease transaction retrieval. Solana also exceeds 85% in most
cases, except for the fat-tree (Fig.6a) and scale-free (Fig.6g) topolo-
gies, where congestion drops the rate to below 60%.

Under heavy workloads Algorand performs better with a rate
below 8% for transfer transactions (DDoS, see Fig. 6c) and below 3%
for smart contract transactions (Gaming and FIFA, see Fig. 6a). This
is explained by Algorand’s high capacity transaction pool, which
can handle up to 75,000 transactions [15].

As noted in prior works [23, 42], Quorum fails to show com-
mits for the most demanding workloads. We ascribe this to the
leader bottleneck in the BFT consensus used in Quorum, which can
saturate memory pools or network queues under high workloads.

Ethereum maintains a commit rate below 10% (see Fig. 6a). It
achieves higher block latency (≥150 ms) for PayPal and VISA
(less demanding transfer workloads) compared to latency below
88 ms for high-demanding workloads (DDoS, FIFA, Gaming). This is
mainly due to the period between its consecutive blocks regardless
of the network bandwidth.

Algorand and Diem obtain the best results with the PayPal work-
load independent from the topology. Interestingly, VISA is too
demanding for all blockchains, with a commit rate always below
30%. Algorand achieves the best results with the DDos workload
(up to 8% commit rate over 10,000 injected TPS). Regarding smart
contract executions, we observe the best results with Algorand and
Diem (achieving 100 CTPS for FIFA, up to 150 CTPS for GAFAM,
and around 200 CTPS for Gaming). Quorum and Solana obtain
between 30 and 120 CTPS for non-intensive smart contracts. Fi-
nally, benchmarks show poor results for all intensive smart contract
workloads (FIFA and Gaming).

5.2 Scaling the Network

We now focus on larger networks, deploying four nodes per region
for a total of 40 nodes, limited by our cluster resources to avoid
overload. The results for each topology are shown on the right side
of Fig. 6. As expected, a higher number of nodes per region results
in more links contending for the region gateway capacity. Even
with a larger set of available nodes, Quorum fails to handle high
workloads. This is expected since the consensus protocol used by
Quorum has a quadratic cost with the number of nodes. Solana
commits only for the GAFAMworkload for all the topologies, while
PayPal and VISA just with torus (see Fig. 6i), failing for all others.
We explain this behavior with network congestion: Solana may
drop newly submitted transactions if the outstanding rebroadcast
queue of an RPC node exceeds 10,000 transactions [12], preventing

them from being forwarded to the leader. Additionally, validators
can become unresponsive during periods of high load [13, 51].

Ethereum achieves a low CTPS regardless of the number of nodes
in the network. Algorand is the least affected by network size or by
the additional network congestion. Notably, credential messages
(e.g., used to authenticate participants within Algorand) are signif-
icantly smaller in size (between 100 and 200 bytes) compared to
block proposals (5 MB). Their smaller size allows them to propa-
gate more swiftly through the network. This faster propagation
helps peer nodes prioritize block proposals more effectively, thereby
alleviating network congestion.

5.3 Network Throughput

We study how the topology affects network traffic among the
blockchain nodes. Fig. 7 depicts these results. We notice that work-
loads with transfer transactions are lighter compared to smart-
contract-based ones. For instance, by looking at benchmarks with
one node per region (see Fig. 7 left side), the PayPal workload con-
sumes up to 34 Mbps on hypercube topology, while FIFA consumes
up to 583 Mbps on the same topology. Moving towards four nodes
per region (see Fig. 7 right side), we notice a general increase of
network data along the GAFAM workload. In this case, the PayPal
workload consumes up to 59 Mbps across all the tested topologies,
while FIFA consumes up to 896 Mbps on every topology. With a
configuration of one node per region Solana shows the highest net-
work throughput, followed by Algorand and then Diem. But with
four nodes per region Algorand shows a higher network through-
put, followed by Solana and Quorum. On the other hand, Ethereum
typically has the lowest bandwidth utilization, followed by Quorum
with one node per region and Diem with four nodes per region.

5.4 Network Dynamics

We now examine the effects of network degradation – packet loss,
congestion, node failures, and increasing latency – on blockchain
performance. These experiments used a full mesh topology and one
node per region. For the packet loss, congestion, and node failure
experiments, we employ the PayPal workload (200 injected TPS for
300 seconds) to test on a simple and sustained workload. Dynamic
events were triggered 60 seconds into the workload, with normal
conditions restored after another 60 seconds.

In the packet loss experiments (see Fig. 8a), we applied discrete
packet drop percentages (0%, 10%, 20%, 30%) to 1/3 of the links, se-
lected at random according to a uniform distribution. As expected,
the performance of all systems degraded substantially with higher
packet loss. Algorand and Solana remained robust at 10% loss. In-
terestingly, Quorum’s throughput sometimes improved, likely due
to random link selection allowing more efficient transaction distri-
bution or isolating non-congested nodes.

During the bandwidth congestion experiments (see Fig. 8b), we
select 10%, 20%, and 30% of the links at random according to a
uniform distribution and reduce their bandwidth to 20% of their
original capacity. Blockchains showed consistent performance un-
der increased congestion, with Quorum being the most resilient.

Node crash experiments (with 10%, 20%, and 30% of total nodes
crashed) revealed that Algorand struggled significantly with 30%
crashes (see Fig. 8c), while Ethereum, despite lower performance,
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(a) Fat-tree, one node/region.
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(b) Fat-tree, four nodes/region.
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(c) Full mesh, one node/region.
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(d) Full mesh, four nodes/region.
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(h) Scale-free, four nodes/region.
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(i) Torus, one node/region.
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(j) Torus, four nodes/region.

Figure 6: Blockchain performance across various workloads using the 2023 AWS dataset ( Algorand , Diem , Ethereum , Quorum , Solana ).
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Figure 7: Network load (Mbps) during workload execution ( Algorand , Diem , Ethereum , Quorum , Solana ).

was the most resilient. Diem, Quorum, and Solana exhibited pre-
dictable, gradual performance drops as crashes increased.

For the increased latency experiments (see Fig. 9 and Fig. 10),
we extracted minimum and maximum latency values for region
pairs from the network dataset, ranging approximately from 30 ms
to 500 ms. We employed adapted and extended workloads: for the
PayPal workload, we conducted a 20-minute experiment where
latencies began to increase at the 10-minute mark (N1), gradually
peaking over 200 seconds (N2) and maintaining that level for an
additional 60 seconds (N3) before returning to baseline for the last
6 minutes; in the GAFAM workload, we performed a 5-minute ex-
periment where latencies rose after the first minute (S1), peaked
after another minute (S2), and remained at the maximum until the
third minute (S3), gradually reverting to initial levels thereafter.
These scenarios were repeated starting with a baseline factor of
1×, followed by incremental factors of 10×, simulating real-world
conditions such as peak transaction periods or network congestion
during significant market changes [44]. We observed (see Fig. 9
and Fig. 10) that blockchains utilizing traditional consensus mech-
anisms, like Quorum, exhibit longer recovery times as latencies
increase. Algorand also demonstrates repercussions with the PayPal
workload due to rising latency, while Diem, Ethereum, and Solana
show more robust behavior as latencies increase.

6 Discussion and Limitations

Among the blockchains presented in §4 and used in our experiments
of §5, Algorand and Diem are the most performant ones, exhibiting
more consistent results (e.g., higher CTPS) across different topolo-
gies. Note that the results from Algorand are remarkable, as it is a
public blockchain with a decentralized consensus mechanism.

As the number of nodes per region/gateway in the network
increases, the blockchains exhibit a reduced commit rate while
their average block latency augments. This is expected since most
blockchains (and in particular the ones under test) are known to
scale poorly with the number of nodes due to the inefficiencies of
the underlying consensus protocol [57].

In the light of our experimental results, we are now able to
answer the research questions posed in §4:
RQ1 Torus generally allows for better results with more demand-

ing workloads. We achieve the best overall results, across
the five tested blockchains, atop full mesh and hypercube,
due to their high degree and link capacity.

RQ2 Our results demonstrate that Diem and Solana are the most
affected by packet loss, followed by Quorum and Algorand.
Classical consensus mechanism, as in Quorum, are less reac-
tive to increasing latencies. Despite consistently exhibiting
lower CTPS compared to the others, Ethereum is the least
affected by these dynamic network events.

While public blockchains like Ethereum use scale-free topologies
and private ones like Diem adopt fat-tree or hypercube structures,
our work shows that reorganizing node layouts can improve effi-
ciency without altering the fundamental public/private distinction.

Limitations. Lilith turns out to be resource-intensive for large-
scale blockchain simulations, especially with thousands of nodes.
For instance, Solana requires 8GB of RAM and 16 threads per
node, limiting scalability. Our experiments were limited to a 40-
node network, sufficient to capture behaviors representative of
real-world blockchains. While larger networks could offer deeper
insights, some studies show that performance indices like consen-
sus efficiency, throughput, and latency stabilize with relatively few
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Figure 8: Network dynamics, one node per region, full mesh topology ( Algorand , Diem , Ethereum , Quorum , Solana ).
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Figure 9: Benchmark with increasing latencies using one node

per region in a full mesh topology with the PayPal workload.

Red lines represent latency variation events (see §5.4).
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Figure 10: Benchmark with increasing latencies using one node

per region in a full mesh topology with the GAFAM workload.

Red lines represent latency variation events (see §5.4).
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nodes [47]. Our setup, though smaller than public blockchains, en-
ables controlled experiments on performance trends. Manual adjust-
ments addressed deployment variations, limiting Lilith flexibility.
A full mesh topology ensured comparability; decentralized topolo-
gies will be explored using Lilith. Beyond networking, factors like
consensus and block size also affect performance andwill be studied.
We release our dataset (https://doi.org/10.5281/zenodo.11409100),
with variance data showing Algorand and Diem as stable, and Quo-
rum and Solana more sensitive. Findings inform resilient designs
for permissioned systems.

7 Conclusions and Future Work

Weevaluated blockchain performance under various network topolo-
gies by using Lilith, answering research questions RQ1-2 (posed
in §4) in a controlled, reproducible on-premise environment. By
incorporating AWS network properties, we emulated realistic geo-
distributed setups. Lilith enabled efficient management of network
infrastructures, leveraging research-grade resources to replicate
cloud-like configurations and dynamic network setups. Future work
includes scaling across multiple clusters, analyzing real fault traces,
and adding blockchains like Avalanche.

Reproducibility. We release the full Lilith code at https://doi.org/
10.5281/zenodo.11409100 including the topologies and instructions
to reproduce all the experiments. The 16-month AWS cloud probing
dataset (§1) is available at https://zenodo.org/records/11457020 and
contains 10,142 hourly snapshots across 34 AWS regions in JSON
format (schema detailed on Zenodo). The data was collected via
periodic queries to https://cloudping.co.
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