
No Two Snowflakes Are Alike: Studying eBPF Libraries’
Performance, Fidelity and Resource Usage

Carlos Machado
INESC TEC & U. Minho

Braga, Portugal
carlos.e.machado@inesctec.pt

Bruno Gião
INESC TEC & U. Minho

Braga, Portugal
bruno.d.giao@inesctec.pt

Sebastião Amaro
IST Lisbon & INESC-ID

Lisbon, Portugal
sebastiao.amaro@tecnico.ulisboa.pt

Miguel Matos
IST Lisbon & INESC-ID

Lisbon, Portugal
miguel.marques.matos@tecnico.ulisboa.pt

João Paulo
INESC TEC & U. Minho

Braga, Portugal
jtpaulo@di.uminho.pt

Tânia Esteves
INESC TEC & U. Minho

Braga, Portugal
tania.esteves@inesctec.pt

Abstract
As different eBPF libraries keep emerging, developers are left with
the hard task of choosing the right one. Until now, this choice has
been based on functional requirements (e.g., programming language
support, development workflow), while quantitative metrics have
been left out of the equation. In this paper, we argue that efficiency
metrics such as performance, resource usage, and data collection
fidelity also need to be considered for making an informed decision.
We show it through an experimental study comparing five popular
libraries: bpftrace, BCC, libbpf, ebpf-go, and Aya. For each, we
implement three representative eBPF-based tools and evaluate them
under different storage I/O workloads. Our results show that each
library has its own strengths and weaknesses, as their specific
features lead to distinct trade-offs across the selected efficiency
metrics. These results further motivate experimental studies to
increase the community’s understanding of the eBPF ecosystem.

CCS Concepts
• General and reference→ Evaluation; Measurement.

Keywords
eBPF, experimental study, eBPF libraries

ACM Reference Format:
Carlos Machado, Bruno Gião, Sebastião Amaro, Miguel Matos, João Paulo,
and Tânia Esteves. 2025. No Two Snowflakes Are Alike: Studying eBPF Li-
braries’ Performance, Fidelity and Resource Usage. In 3rd Workshop on eBPF
and Kernel Extensions (eBPF ’25), September 8–11, 2025, Coimbra, Portugal.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3748355.3748364

1 Introduction
The extended Berkeley Packet Filter (eBPF) has seen rapid adop-
tion across industry and academia for a wide range of use cases,
including profiling and tracing [8, 29, 34], networking [14, 19, 20,
26, 32, 33], and security [7, 10, 22].

This work is licensed under a Creative Commons Attribution 4.0 International License.
eBPF ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2084-0/2025/09
https://doi.org/10.1145/3748355.3748364

To support the growing adoption of eBPF, the community has
developed a rich ecosystem of libraries, including BCC [30], bpf-
trace [27], libbpf [15], ebpf-go [6], Aya [2], among others [3, 16–
18, 31].1 These provide varying levels of abstraction, programming
language support, and development workflows (see Table 1). For
example, bpftrace offers a high-level scripting language abstraction
ideal for rapid prototyping of tracing tools. Libraries like libbpf,
ebpf-go, and Aya support Compile Once–Run Everywhere (CO-RE),
enhancing portability across kernel versions while catering to dif-
ferent user space languages—C, Go, and Rust, respectively.

Despite the proliferation of eBPF libraries, developers lack sys-
tematic guidance on their relative performance and efficiency, of-
ten leading to suboptimal choices that can impact production sys-
tems, especially in performance-critical, large-scale, or resource-
constrained environments.

Related Work. Existing comparisons in the literature, primarily
blog posts and documentation, focus mainly on feature sets, func-
tionality, and programming language support rather than quantita-
tive performance metrics. For instance, Brendan Gregg compares
bpftrace and BCC based on their intended use cases, noting that
bpftrace suits quick, ad hoc tasks due to its simplicity, while BCC is
better for building full-fledged applications [11]. In a broader survey,
Red Hat reviews several other eBPF libraries (e.g., libbpf, libbpfgo,
libbpf-rs, ebpf-go, Aya, and libxdp), focusing on language integra-
tion and development tooling [24]. Likewise, Liz Rice’s book [25]
and a Chirp blog post [23] expand the landscape by covering ad-
ditional libraries (e.g., gobpf, redbpf, rust-bcc), providing usage
examples and feature summaries. Although insightful, these works
lack a quantitative efficiency evaluation of the libraries examined.

Our work addresses this gap by identifying and researching three
key challenges that have not been explored in the eBPF library
ecosystem. First, when developers choose a library based solely on
functional characteristics, such as supported languages, portability,
and ease of use, it can lead to degraded system performance and
efficiency. The magnitude of this degradation and its relationship
to the workload characteristics remain poorly understood.

Second, efficiency cannot be assessed solely by performance met-
rics. As shown in §3, a library with seemingly low performance
overheadmay achieve this through inefficient resource usage and/or
1For simplicity, we use the term “(eBPF) libraries” throughout the paper to refer collec-
tively to eBPF libraries and/or toolkits.

31

https://orcid.org/0000-0001-9358-1008
https://doi.org/10.1145/3748355.3748364
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748355.3748364
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3748355.3748364&domain=pdf&date_stamp=2025-09-08


eBPF ’25, September 8–11, 2025, Coimbra, Portugal Machado et al.

reduced data collection fidelity (i.e., increased event loss), poten-
tially compromising the reliability of eBPF-based solutions. Under-
standing these trade-offs is critical for informed decision-making.

Third, designing an evaluation framework for comparing eBPF
libraries across multiple efficiency dimensions is not trivial due to
distinct interfaces, complex interactions between user space and
kernel components, and other factors.

Contributions. This paper is a first step towards the design
of such a framework by performing the first systematic efficiency
analysis of popular eBPF libraries, while addressing the following
research questions:

(1) Performance Impact: How do different libraries affect ap-
plication performance in terms of throughput, latency, and
runtime overhead?

(2) Resource Efficiency: Which libraries are the most efficient
in terms of computing resources and energy?

(3) Fidelity: How do different tools compare in their ability to
accurately capture events without loss?

(4) Library Trade-offs: Are there correlations across these
dimensions that reveal fundamental trade-offs in the usage
of eBPF libraries?

We evaluate five widely-used eBPF libraries (bpftrace, BCC,
libbpf, ebpf-go, and Aya) using three representative I/O tracing
tools. In this preliminary study, we focus on storage I/O profiling,
a common and well-understood eBPF use case [9, 21, 28], while
designing controlled, reproducible experiments that highlight key
differences among libraries.

Our results show that no single library consistently outperforms
the others across all dimensions. For instance, while libraries like
Aya and libbpf can collect more events, especially for larger pay-
loads, this comes with a performance penalty under certain work-
loads. Similarly, the choice of user space programming language
and the approach used to interact with kernel code can substantially
impact both performance and resource consumption.

Rather than attempting to rank these libraries definitively, our
goal is to provide developers with quantitative insights into their
inherent trade-offs, allowing for more informed decisions based on
the specific application requirements. By quantifying these differ-
ences, we aim to contribute to the ongoing evolution of the eBPF
ecosystem and encourage more efficiency-oriented design and im-
plementation decisions.

Ethics: This work raises no ethical concerns.

2 Methodology
This section outlines the selected eBPF libraries, the tools and work-
loads used, and the experimental setup.

eBPF Libraries. We selected five widely used libraries, whose
main characteristics are depicted in Table 1. BCC [30] (v0.33) and
bpftrace [27] (v0.22.1) are two of the earliest libraries that are still
actively used and maintained. BCC provides Python bindings for
eBPF development, while bpftrace offers a high-level scripting lan-
guage designed for tracing tasks. libbpf [15] (v1.5.0), ebpf-go [6]
(v0.17.3) and Aya [2] (v0.13.1) are more recent libraries with support
for Compile Once–Run Everywhere (CO-RE), enhancing portability

Table 1: Characteristics of studied eBPF libraries.

Library User space
Language

Kernel space
Language

CO-RE
Support

BCC Python/Lua/C++ C ✗

bpftrace Scripting language ✗

libbpf C/C++ C ✓

ebpf-go Go C ✓

Aya Rust C / Rust ✓

across kernel versions. libbpf is a C library used as the foundation
for other eBPF libraries, while ebpf-go provides Go bindings. Aya
allows writing both user space and kernel eBPF programs in Rust,
with support for asynchronous user space code using runtimes like
Tokio and Async-std.

The experiments consider an isolated testing setup for each
library, namely, BCC, bpftrace, libbpf, ebpf-go, and AyaSync.
For the latter, we also consider an alternative setup (AyaAsync) that
uses the Tokio asynchronous runtime. We compare these against a
vanilla setup not using eBPF.

Tools. For each of the selected libraries, we implemented three
eBPF-based tools: syscount, rw-tracer and rw-tracer-all.

syscount is a lightweight tool designed to count system call
events in the kernel. It is inspired by the well-known syscount
performance analysis tool [4], which has been previously imple-
mented using various eBPF libraries (e.g., bpftrace, BCC). The tool
instruments the raw_syscalls tracepoint and employs eBPF maps of
type BPF_HASH to record and expose the number of occurrences
per syscall type (e.g., open, write) to user space. Since the aggre-
gated statistics are processed only once in user space (i.e., upon tool
termination), it requires minimal kernel-to-user data transfer.

rw-tracer targets a common eBPF use case: tracing storage I/O op-
erations. It intercepts read and write calls at the Virtual File System
layer via vfs_read and vfs_write kernel probes, capturing detailed
event information including timestamps, arguments (excluding the
data buffers), and return values. Each event, with ≈156 bytes, is
immediately transferred to user space through an eBPF ring buffer
configured with a size of 256 KiB and a polling timeout set to 100 ms
(default values used by bpftrace). eBPF maps are used for sharing
data between entry and exit probes and for counting the number
of intercepted and lost events. This tool is more intensive than
syscount in terms of kernel-to-user data transfer.

rw-tracer-all is a variant of rw-tracer that captures up to 4 KiB
of read and write operations’ data buffer content, increasing events’
size to ≈4252 bytes. eBPF ring buffer and map configurations are
the same as those used in rw-tracer.

Each tool was implemented across all five libraries, maintaining
the functional equivalence of the implementations as closely as pos-
sible.2. This involved using consistent configuration settings across
libraries and simple, single-threaded user space code to reduce
behavioral variability.

Since efficient epoll-based ring buffer polling in Aya is natively
supported only for asynchronous user space code (i.e., using the

2Code, scripts, and experimental results are available at https://github.com/dsrhaslab
/ebpf-lib-eval

32

https://github.com/dsrhaslab/ebpf-lib-eval
https://github.com/dsrhaslab/ebpf-lib-eval


Studying eBPF Libraries’ Performance, Fidelity and Resource Usage eBPF ’25, September 8–11, 2025, Coimbra, Portugal

Tokio runtime combined with the AsyncFd interface), for compari-
son purposes, we implemented a basic synchronous version that
actively polls from the ring buffer. Throughout the paper, these two
versions are referred to as AyaAsync and AyaSync, respectively.

Workload Generation. We used the Flexible I/O Tester (FIO),
a widely adopted I/O benchmarking tool, to generate consistent
and reproducible stress-based I/O workloads [1]. All FIO workloads
were configured with four concurrent processes, each writing se-
quentially 32 GiB of data with a block size of 4 KiB. To assess how
the libraries perform under different I/O operations, we employed
three types of workloads: (i) read-only, (ii) write-only, and (iii) mixed
(with 50/50 distribution of reads and writes).

The eBPF tools were configured to intercept only I/O events
generated by the FIO benchmark.

Experimental Setup and Metrics. To ensure isolated testing
environments and avoid dependency conflicts among libraries, the
experiments were conducted on five identical servers (one for each
library) with an Intel® Core™ i5-9500 CPU@ 3.00 GHz with 6 cores,
16 GiB of RAM, a 500 GiB SATA HDD, and a 240 GiB NVMe SSD.
All servers ran Ubuntu 24.04 with kernel version 6.8.0-58-generic.

CPU and RAM metrics were monitored using dstat [12], while
energy consumption was measured with Intel RAPL [13]. We care-
fully controlled measurement interference by pinning monitoring
tools (i.e., dstat and RAPL) to CPU core 0, leaving cores 1 to 5
pinned for FIO and the eBPF tools. FIO was configured to use the
NVMe SSD, while monitoring logs were stored on the SATA HDD.
The output of the three tools gathered in user space (i.e., syscall
statistics, events’ information) was redirected to a file on the SSD.

From FIO, we collected runtime, I/O throughput, and I/O latency
metrics. From the eBPF tools, we recorded the number of intercepted
and lost events. Each experiment was repeated three times, and
we report the average and standard deviation for each metric. To
identify subtle differences across servers, despite them being iden-
tical, we compared performance and resource usage measurements
across servers under the vanilla setup. In the results, we report
the vanilla standard deviation (shaded blue area in the plots) and
consider any deviations that fall within that range inconclusive.

3 Experimental Results
This section presents experimental results and key observations
organized by workload type. A broader discussion, including the
main takeaways, is deferred to §4.

3.1 Read-only Workload
Fig. 1 shows the results for the read-only workload, reporting run-
time ((a)-(d)), throughput ((e)-(h)), and latency ((i)-(l)). Fig. 2 shows
the number of intercepted and lost events for the rw-tracer and
rw-tracer-all tools, as both rely on a ring buffer that can experience
event loss. Fig. 3 presents CPU (user + system), memory (used +
buffers), and energy consumption.

Performance Impact. The vanilla setup runs under 77.73 s
± 0.14, with a throughput of 1686.13 MiB/s ± 2.94 and an average
latency of 9.07 ms ± 0.02. All setups exhibit performance close to
vanilla, though libbpf introduces the highest overhead among
both the syscount and rw-tracer tools, with increases around 0.43%

and 2.18%, respectively. In rw-tracer-all case, the highest perfor-
mance overhead is imposed by AyaSync, ≈2.39% over vanilla.

Lost Events. The benchmark generates a fixed amount of ≈33M
events. Overall, rw-tracer captures more events than rw-tracer-all.
Among the libraries, libbpf performs best, capturing all events,
followed by Aya variants at 98% (≈32.8M). BCC and ebpf-go capture
47.45% (≈15.9M) and 36.95% (≈12.4M), respectively, while bpftrace
records only 13.64% (≈4.6M).

For rw-tracer-all, ebpf-go and BCC perform significantly worse,
collecting 0.03% (≈10k) and 0.07% (≈22.6k) of events, respectively,
both falling behind bpftrace, which captures 0.24% (≈80k). AyaSync
and AyaAsync capture the most events, with 0.72% (≈241.9k), fol-
lowed by libbpf with 0.66% (≈221.2k).

Resource Usage. For syscount, all libraries show CPU usage
close to vanilla (23.98% ± 0.10), with a slight increase up to 1.10×
with AyaSync. In rw-tracer and rw-tracer-all, usage nearly doubles
(1.79×–2.35×), with libbpf being most efficient and bpftrace the
most demanding.

Memory usage remains close to vanilla (311.36 MiB ± 23.93)
for all tools. Syscount shows little variation (up to 1.19× with BCC),
while rw-tracer and rw-tracer-all see moderate increases (up to
1.42× and 1.31×). BCC and ebpf-go use the most memory, while
bpftrace and libbpf use the least.

Energy consumption follows CPU trends. Syscount stays close
to vanilla (12.82 W ± 0.70), peaking at 1.17× (BCC). For the other
tools, it rises up to 1.72×, with bpftrace and BCC showing the
highest consumption, and ebpf-go the lowest.

Summary. In read-only workloads, all setups show similar per-
formance with minimal overhead. libbpf, AyaAsync, and AyaSync
achieve the highest fidelity under rw-tracer (>97%), but all tools
perform poorly under rw-tracer-all (<1%). bpftrace is the most
CPU-intensive, BCC and ebpf-go use the largest amount of mem-
ory, and BCC usually leads in energy consumption.

3.2 Write-only Workload
Fig. 4 shows performance metrics for the write-only workload,
Fig. 5 reports the number of intercepted and lost events, and Fig. 6
presents CPU, memory, and energy usage.

Performance Impact. As expected with NVMe SSDs’ lower
write bandwidth, vanilla shows longer runtime (319.43 s ± 21.66),
lower throughput (412.53 MiB/s ± 24.71), and higher latency (37.79
ms ± 2.58) in the write-only workload. For syscount, bpftrace de-
grades throughput by ≈16% and increases runtime and latency by
≈19%. BCC shows similar impact under rw-tracer. For rw-tracer-all,
all setups but BCC show significant degradation. Throughput drops
up to 31% (AyaSync), with runtime and latency overheads reaching
≈46%. libbpf and AyaAsync also exceed 20% overhead.

Lost Events. With rw-tracer, most libraries capture the majority
of events. libbpf leads with 99%, followed by Aya variants at ≈96%.
The lower I/O throughput in the write-only workload improves
capture rates for BCC and ebpf-go (≈94%), though bpftrace still
trails at 52.60% (≈17.7M).

33



eBPF ’25, September 8–11, 2025, Coimbra, Portugal Machado et al.

0

20

40

60

80

100
77.73

R
u

n
ti
m

e
 (

s
)

(a)

vanilla

77.98 77.72 78.06 77.66 77.72

(b)

syscount

78.50 79.00 79.44 78.57 79.34 79.37

(c)

rw-tracer

78.44 78.09 79.23 77.67 79.61 79.63

(d)

rw-tracer-all

0

500

1000

1500

2000
1686.13

T
h

ro
u

g
h

p
u

t 
(M

iB
/s

)

(e)

1681.00 1686.33 1679.00 1688.00 1686.67

(f)

1669.67 1659.33 1650.00 1668.00 1652.33 1651.33

(g)

1671.00 1678.33 1654.33 1687.67 1646.67 1646.00

(h)

0

4

8

12
9.07

L
a

te
n

c
y
 (

m
s
)

(i)

9.09 9.07 9.11 9.06 9.06

(j)

9.15 9.21 9.27 9.25 9.25 9.25

(k)

9.14 9.11 9.23 9.05 9.29 9.28

(l)

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

(l)

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

(l)

Figure 1: Runtime, throughput, and latency for the read-only workload, broken down by tool and setup.

0
25
50
75

100

bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

13.64

47.45
100.00

36.95

97.54 97.78

E
v
e

n
ts

 (
%

)

(a)

rw-tracer

bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

0.24 0.07 0.66 0.03 0.72 0.72

(b)

rw-tracer-all

bpftrace Events BCC Events libbpf Events ebpf-go Events AyaSync Events AyaAsync Events Lost Events

rw-tracer-all

bpftrace Events BCC Events libbpf Events ebpf-go Events AyaSync Events AyaAsync Events Lost Events

rw-tracer-all

Figure 2: Percentage of saved and lost events for the read-only workload, broken down by tool and setup.

 0

 15

 30

 45

 60

C
P

U
 (

%
)

rw-tracer-allrw-tracersyscountvanilla

CPU Usage

 0

 100

 200

 300

 400

M
e

m
o

ry
 (

M
iB

)

rw-tracer-allrw-tracersyscountvanilla

Memory Usage

 0

 4

 8

 12

 16

 20

W
a

tt
s

rw-tracer-allrw-tracersyscountvanilla

Energy Consumption

 0

 4

 8

 12

 16

 20

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

W
a

tt
s

Energy Consumption

 0

 4

 8

 12

 16

 20

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

W
a

tt
s

Energy Consumption

Figure 3: Resource usage during the read-only workload, broken down by tool and setup.

For rw-tracer-all, all libraries lose over 96% of events. Aya vari-
ants perform best (≈4%, ≈1.3M), followed by libbpf at 3.26%. The
remaining libraries fall below 1.11% (≈372.7k).

Resource Usage. CPU usage in this workload is notably lower,
with vanilla consuming 7.02% ± 0.50, reflecting reduced through-
put. Under syscount, CPU usage stays close to vanilla, with libbpf
and AyaSync reaching 1.07×. In contrast, rw-tracer significantly
increases CPU usage, from 1.84× with libbpf to ≈3.64× with
bpftrace and AyaSync. Rw-tracer-all raises it further, with all se-
tups exceeding a 3× overhead, ranging from 3.09× (AyaSync) to
3.63× (bpftrace).

Memory usage exceeds that of the read-only workload, with
vanilla using 378.53 MiB ± 22.71. BCC and ebpf-go consume the
most (up to 1.27× in rw-tracer), while bpftrace is the most efficient
under syscount (1.02×) and libbpf under the other tools (≈1.06×).

Energy consumption under syscount stays near vanilla (6.03
W ± 0.54), with a maximum increase of 1.11× (AyaSync, libbpf
and BCC). Rw-tracer and rw-tracer-all cause larger increases, peak-
ing at 2.02× (AyaSync) and 2.22× (BCC). ebpf-go remains the most
energy-efficient overall.

Summary. With write-only workload, performance differences
became more pronounced. Most setups perform similarly under
syscount and rw-tracer, though bpftrace and BCC show higher
overhead and variability. Under rw-tracer-all, AyaSync, libbpf, and
AyaAsync show greater overhead. Fidelity improves, with all setups
except bpftrace capturing over 94% of events under rw-tracer, and
with AyaSync, libbpf, and AyaAsync reaching nearly 4% under rw-
tracer-all. Resource-wise, bpftrace and AyaSync are among the
most CPU- and energy-intensive, while BCC and ebpf-go remain
the heaviest on memory consumption.

34



Studying eBPF Libraries’ Performance, Fidelity and Resource Usage eBPF ’25, September 8–11, 2025, Coimbra, Portugal

0
100
200
300
400
500
600

319.43

R
u

n
ti
m

e
 (

s
)

(a)

vanilla

380.18
325.70 311.05 323.05 302.53

(b)

syscount

319.19
380.49

314.46 328.95 335.37 327.92

(c)

rw-tracer

376.12
323.51

414.34 372.49

465.31
410.15

(d)

rw-tracer-all

0
100
200
300
400
500
600

412.53

T
h

ro
u

g
h

p
u

t 
(M

iB
/s

)

(e)

346.00
403.00 422.00 407.00 433.33

(f)

411.33
346.67

417.33 399.00 391.67 400.67

(g)

351.00 405.33
317.00

353.67
283.67 320.67

(h)

0

15

30

45

60

75

37.79

L
a

te
n

c
y
 (

m
s
)

(i)

44.97
38.55 36.79 38.21 35.77

(j)

37.70
45.00

37.14 38.77 39.68 38.77

(k)

44.45
38.26

49.00 44.06

55.10
48.53

(l)

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

(l)

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

(l)

Figure 4: Runtime, throughput, and latency for the write-only workload, broken down by tool and setup.

0
25
50
75

100

bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

52.60 94.71 99.02 94.12 96.66 96.48

E
v
e

n
ts

 (
%

)

(a)

rw-tracer

bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

1.11 0.27 3.26 0.14 3.94 3.51

(b)

rw-tracer-all

bpftrace Events BCC Events libbpf Events ebpf-go Events AyaSync Events AyaAsync Events Lost Events

rw-tracer-all

bpftrace Events BCC Events libbpf Events ebpf-go Events AyaSync Events AyaAsync Events Lost Events

rw-tracer-all

Figure 5: Percentage of saved and lost events for the write-only workload, broken down by tool and setup.

 0

 5

 10

 15

 20

 25

C
P

U
 (

%
)

rw-tracer-allrw-tracersyscountvanilla

CPU Usage

 0

 100

 200

 300

 400

 500

M
e

m
o

ry
 (

M
iB

)

rw-tracer-allrw-tracersyscountvanilla

Memory Usage

 0

 4

 8

 12

W
a

tt
s

rw-tracer-allrw-tracersyscountvanilla

Energy Consumption

 0

 4

 8

 12

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

W
a

tt
s

Energy Consumption

 0

 4

 8

 12

vanilla bpftrace BCC libbpf ebpf-go AyaSync AyaAsync

W
a

tt
s

Energy Consumption

Figure 6: Resource usage during the write-only workload, broken down by tool and setup.

3.3 50-50 Mixed Read-Write Workload
Due to space constraints, we omit the results for the mixed work-
load from the paper. 3 Performance-wise, all libraries are close to
vanilla, with a slight overhead noticeable in the rw-tracer and rw-
tracer-all tools for libbpf, AyaSync, and AyaAsync. Remarkably,
these three libraries capture the highest number of events.

CPU usage follows a pattern between the write-only and read-
only workloads, with bpftrace and AyaSync exhibiting the highest
overhead in rw-tracer. BCC and ebpf-go show the highest memory
consumption, with the former also recording the highest energy
usage and the latter consistently being more energy-efficient.

Summary. Performance, fidelity, and resource usage reflect a com-
bination of the behaviors observed in read-only and write-only

3Mixed experiments results are available at https://github.com/dsrhaslab/ebpf-lib-
eval/blob/main/docs/results.md

workloads, i.e., the mixed workload results fall in between the ten-
dencies observed for the other two.

4 Discussion
Our evaluation reveals a complex interplay between workload char-
acteristics, tool design, and the eBPF libraries used to implement it.
The results highlight important trade-offs and design implications
for both developers and practitioners aiming to deploy eBPF tools
in production environments.

Fidelity vs. Performance. Our findings show an inherent ten-
sion between fidelity and performance impact, driven mainly by
two factors: workload intensity and the data volume processed in
user space. In all experiments, libbpf, AyaSync, and AyaAsync con-
sistently save the most events but incur the greatest performance
overhead in the rw-tracer and rw-tracer-all tools.

35

https://github.com/dsrhaslab/ebpf-lib-eval/blob/main/docs/results.md
https://github.com/dsrhaslab/ebpf-lib-eval/blob/main/docs/results.md


eBPF ’25, September 8–11, 2025, Coimbra, Portugal Machado et al.

In less intensive workloads (write-only), event size is a key factor.
Smaller events (rw-tracer) allow libraries to process more data
from the ring buffer, enhancing fidelity. Conversely, larger events
(rw-tracer-all) incur greater processing costs (e.g., writing to disk),
leading to higher performance overhead and increased event loss. In
more intensive workloads (read-only), the link between fidelity and
performance overhead becomes less obvious. The rapid generation
of events quickly fills up the ring buffer, leading to high event
loss. In turn, this leads to fewer events reaching user space and
consequently to a negligible performance overhead.

These findings confirm that focusing on a single axis may over-
look other factors that can critically impact production deployments.
Applications requiring high-fidelity monitoring, like compliance
auditing or distributed tracing, may need to accept a loss in per-
formance, while performance-critical applications might need to
implement sampling strategies or accept some degree of event loss.

Programming Language vs Fidelity and Resource Usage.
The choice of user space programming language, with its inherent
runtime characteristics (i.e., speed, resource footprint), may have
a different impact on fidelity and resource usage. bpftrace, BCC,
and ebpf-go exhibit higher event loss rates than other setups, even
with smaller payloads like those in rw-tracer, which is likely caused
by how quickly the user space code processes events from the ring
buffer. Further, BCC and ebpf-go show consistently higher memory
consumption, noticeable even before the workloads start.

These findings point out that the development convenience
of higher-level language abstractions comes with a measurable
cost, which may be significant in resource-constrained or high-
throughput environments.

Polling Strategy vs Resource Usage. Our results show that the
strategies used for exchanging data between kernel and user space
affect CPU usage. Active polling implementations such as AyaSync
show higher CPU consumption, especially under less intensive
workloads like write-only, as opposed to the other setups (including
AyaAsync) that leverage a more efficient epoll-based polling strat-
egy. As expected, this also results in increased energy consumption,
especially for tools like rw-tracer-all, which involve frequent polling
and substantial kernel-to-user space data exchange.

bpftrace internally uses the bpf_ringbuf_output helper, which
performs implicit and costly data copies from kernel memory to
the ring buffer. This contrasts with the zero-copy reserve/commit
strategy employed by other setups, and contributes directly to its
higher CPU overhead.

These results underscore the importance of selecting appropriate
data exchange strategies with user space (e.g., active vs. epoll-based
polling, copy-based vs. zero-copy event insertion into ring buffers),
as naive configurations may lead to unnecessary CPU consumption,
particularly under less intensive workloads or idle periods.

Limitations and Future work. While this study opens an in-
teresting new path for a comprehensive evaluation framework of
eBPF libraries, it also reveals that other key aspects, and even some
observed results, must be further understood.

For instance, in thewrite-only workload, bpftrace and BCC show
the highest performance overhead for the syscount and rw-tracer
tools, respectively, but also exhibit high variability. Further profiling

would be important for understanding exactly why this happens.
Moreover, isolating and analyzing the kernel and user space compo-
nents separately, both in terms of performance and event processing
rate, would help eliminate certain sources of variation and provide
deeper insight into the impact of each eBPF library.

Additionally, our experiments were conducted with fixed eBPF
configurations (e.g., ring buffer size, polling timeout). It would be
interesting to explore how tuning these parameters affects fidelity,
resource usage, and performance, and whether it could bring differ-
ent libraries closer in behavior.

It would also be valuable to expand the evaluation to other do-
mains, like network or security. Many eBPF use cases in these areas
are not purely observational, as in tracing, but also actuate. For
example, eBPF is often used to redirect network traffic for load
balancing or to drop unauthorized packets for security enforce-
ment [5, 19, 32]. In such scenarios, much of the work is performed
entirely within the kernel, which raises an important question: does
the choice of user space eBPF library still have a meaningful im-
pact in these kernel-centric use cases, or is its influence diminished
compared to more user-intensive workflows like tracing?

Another important direction would be to investigate how the
conclusions drawn in this paper hold when testing with more com-
plex eBPF-based tools. Real-world eBPF applications tend to have a
greater code complexity than the tools tested for this study. More-
over, these eBPF applications often operate in concurrent environ-
ments (e.g., by leveraging mechanisms like goroutines in Go or
multi-threaded event handling in C/C++). Would the performance,
resource usage, and fidelity impact differences between libraries
remain consistent, or would concurrency mechanisms amplify or
mask them? Exploring larger applications targeting different kernel
layers, interacting more extensively with user space, and leveraging
these concurrent and asynchronous mechanisms can help highlight
how the eBPF libraries perform under complex use cases.

Lastly, while our current evaluation uses controlled and repeat-
able stress-test workloads, it remains an open question how each
library performs under real-world conditions, where workloads can
exhibit bursts, halts, and shifting intensity. It would be valuable to
assess whether differences across libraries narrow in such settings
due to amortized overheads, or instead widen because of different
buffering, polling, or synchronization strategies.

Acknowledgments
We thank the anonymous reviewers for their insightful feedback.
This work is funded by national funds through FCT – Fundação para
a Ciência e a Tecnologia, I.P., under the support UID/50014/2023
(https://doi.org/10.54499/UID/50014/2023) (Carlos Machado and Tâ-
nia Esteves), grant PTDC/CCI-COM/4485/2021, plurianual grant
UIDB/50021/2020, and co-funded by the European Regional De-
velopment Fund (ERDF) through the NORTE 2030 Regional Pro-
gramme under Portugal 2030, within the scope of the project BCDSM,
reference 14436 (NORTE2030-FEDER-00584600) (João Paulo).

References
[1] Jens Axboe. 2006. Flexible I/O Tester. (2006). Retrieved July, 2025 from https:

//github.com/axboe/fio
[2] Aya 2021. Aya: An eBPF library for the Rust programming language. (2021).

Retrieved July, 2025 from https://github.com/aya-rs/aya

36

https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/aya-rs/aya


Studying eBPF Libraries’ Performance, Fidelity and Resource Usage eBPF ’25, September 8–11, 2025, Coimbra, Portugal

[3] Eunomia bpf organization. 2022. eunomia-bpf: dynamic loading library/runtime
and a compile toolchain framework. (2022). Retrieved July, 2025 from https:
//github.com/eunomia-bpf/eunomia-bpf

[4] Canonical. 2019. Ubuntu Manpage: syscount - count system calls. (2019). Re-
trieved July, 2025 from https://manpages.ubuntu.com/manpages/jammy/man8/
syscount-perf.8.html

[5] Cilium Community. 2015. Cilium: Networking, observability, and security
solution with an eBPF-based dataplane. (2015). Retrieved July, 2025 from
https://github.com/cilium/cilium

[6] Cilium Community. 2017. ebpf-go: Go library for working with eBPF. (2017).
Retrieved July, 2025 from https://github.com/cilium/ebpf

[7] Cilium Community. 2022. Tetragon: Powerful real-time, eBPF-based Security
Observability and Runtime Enforcement. (2022). Retrieved July, 2025 from
https://github.com/cilium/tetragon

[8] Milo Craun, Khizar Hussain, Uddhav Gautam, Zhengjie Ji, Tanuj Rao, and Dan
Williams. 2024. Eliminating eBPF Tracing Overhead on Untraced Processes. In
Proceedings of the ACM SIGCOMM 2024 Workshop on eBPF and Kernel Extensions.
Association for Computing Machinery, New York, NY, USA, 16–22. https://doi.or
g/10.1145/3672197.3673431

[9] Tânia Esteves, Ricardo Macedo, Rui Oliveira, and João Paulo. 2023. Diagnosing
applications’ I/O behavior through system call observability. In 2023 53rd Annual
IEEE/IFIP International Conference on Dependable Systems and NetworksWorkshops
(DSN-W). IEEE Computer Society, Washington, DC, USA, 1–8. https://doi.org/10
.1109/DSN-W58399.2023.00022

[10] William Findlay, Anil Somayaji, and David Barrera. 2020. bpfbox: Simple Pre-
cise Process Confinement with eBPF. In Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop (CCSW’20). Association for
Computing Machinery, New York, NY, USA, 91–103. https://doi.org/10.1145/34
11495.3421358

[11] Brendan Gregg. 2019. A thorough introduction to bpftrace. (2019). Retrieved
July, 2025 from https://www.brendangregg.com/blog/2019-08-19/bpftrace.html

[12] Red Hat. 2007. pcp-dstat. (2007). Retrieved July, 2025 from https://github.com/p
erformancecopilot/pcp

[13] Intel. [n. d.]. RAPL: Running Average Power Limit. ([n. d.]). Retrieved July, 2025
from https://www.intel.com/content/www/us/en/developer/articles/technical/s
oftware-security-guidance/advisory-guidance/running-average-power-limit-
energy-reporting.html

[14] Jung-Bok Lee, Tae-Hee Yoo, Eo-Hyung Lee, Byeong-Ha Hwang, Sung-Won Ahn,
and Choong-Hee Cho. 2021. High-Performance Software Load Balancer for
Cloud-Native Architecture. IEEE Access 9 (2021), 123704–123716. https://doi.org/
10.1109/ACCESS.2021.3108801

[15] Libbpf 2018. Automated upstream mirror for libbpf stand-alone build. (2018).
Retrieved July, 2025 from https://github.com/libbpf/libbpf

[16] Libbpf-rs 2020. libbpf-rs: Idiomatic Rust wrapper around libbpf. (2020). Retrieved
July, 2025 from https://github.com/libbpf/libbpf-rs

[17] Libbpfgo 2020. libbpfgo: Go wrapper around the libbpf project. (2020). Retrieved
July, 2025 from https://github.com/aquasecurity/libbpfgo

[18] libxdp 2019. libxdp: XDP-specific library that sits on top of libbpf and implements
a couple of XDP features. (2019). Retrieved July, 2025 from https://github.com/x
dp-project/xdp-tools

[19] Meta. 2018. High-performance layer 4 load balancing forwarding plane. (2018).
Retrieved July, 2025 from https://github.com/facebookincubator/katran

[20] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and Mauri-
cio Vásquez Bernal. 2018. Creating Complex Network Services with eBPF: Expe-
rience and Lessons Learned. In 2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR). IEEE Computer Society, Washington,
DC, USA, 1–8. https://doi.org/10.1109/HPSR.2018.8850758

[21] Mohammed Islam Naas, François Trahay, Alexis Colin, Pierre Olivier, Stéphane
Rubini, Frank Singhoff, and Jalil Boukhobza. 2021. EZIOTracer: unifying kernel
and user space I/O tracing for data-intensive applications. In Proceedings of the
Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems (CHEOPS ’21). Association for Computing Machinery, New York, NY,
USA, Article 4, 11 pages. https://doi.org/10.1145/3439839.3458731

[22] Jaehyun Nam, Seungsoo Lee, Phillip Porras, Vinod Yegneswaran, and Seungwon
Shin. 2023. Secure Inter-Container Communications Using XDP/eBPF. IEEE/ACM
Transactions on Networking 31, 2 (2023), 934–947. https://doi.org/10.1109/TNET
.2022.3206781

[23] Teodor J. Podobnik. 2025. Go, C, Rust, and More: Picking the Right eBPF Applica-
tion Stack. (2025). Retrieved July, 2025 from https://ebpfchirp.substack.com/p/go-
c-rust-and-more-picking-the-right?utm_source=substack&publication_id=2
062956&post_id=154206053&utm_medium=email&utm_content=share&utm_
campaign=email-share&triggerShare=true&isFreemail=true&r=4mi1za&tried
Redirect=true

[24] Sanjeev Rampal. 2023. eBPF application development: Beyond the basics. (2023).
Retrieved July, 2025 from https://developers.redhat.com/articles/2023/10/19/ebpf-
application-development-beyond-basics#ebpf_application_cross_developmen
t__portability__co_re__and_kernel_api_stability

[25] Liz Rice. 2023. Learning eBPF: Programming the Linux Kernel for Enhanced Ob-
servability, Networking, and Security (first edition ed.). O’Reilly, Beijing Boston
Farnham Sebastopol Tokyo.

[26] Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Sal-
vatore Pontarelli. 2023. eHDL: Turning eBPF/XDP Programs into Hardware
Designs for the NIC. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
3 (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA,
208–223. https://doi.org/10.1145/3582016.3582035

[27] Alastair Robertson. 2016. bpftrace: High-level tracing language for Linux. (2016).
Retrieved July, 2025 from https://github.com/bpftrace/bpftrace

[28] Husain Sharaf, Imtiaz Ahmad, and Tassos Dimitriou. 2022. Extended Berkeley
Packet Filter: An Application Perspective. IEEE Access 10 (2022), 126370–126393.
https://doi.org/10.1109/ACCESS.2022.3226269

[29] Polar Signals. 2021. Parca: Continuous profiling for analysis of CPU, memory
usage over time, and down to the line number. (2021). Retrieved July, 2025 from
https://github.com/parca-dev/parca

[30] IO visor. 2015. BCC: BPF Compiler Collection. (2015). Retrieved July, 2025 from
https://github.com/iovisor/bcc/tree/master

[31] Tobias Waldekranz. 2015. ply: light-weight dynamic tracer for Linux. (2015).
Retrieved July, 2025 from https://github.com/iovisor/ply

[32] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leveraging
eBPF for programmable network functions with IPv6 segment routing. In Pro-
ceedings of the 14th International Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’18). Association for Computing Machinery, New York,
NY, USA, 67–72. https://doi.org/10.1145/3281411.3281426

[33] Rui Yang and Marios Kogias. 2023. HEELS: A Host-Enabled eBPF-Based Load
Balancing Scheme. In Proceedings of the 1st Workshop on EBPF and Kernel Ex-
tensions (eBPF ’23). Association for Computing Machinery, New York, NY, USA,
77–83. https://doi.org/10.1145/3609021.3609307

[34] Wanqi Yang, Pengfei Chen, Kai Liu, and Huxing Zhang. 2025. ZeroTracer: In-band
eBPF-based Trace Generator with Zero Instrumentation forMicroservice Systems.
IEEE Transactions on Parallel and Distributed Systems 36, 7 (2025), 1478–1494.
https://doi.org/10.1109/TPDS.2025.3571934

37

https://github.com/eunomia-bpf/eunomia-bpf
https://github.com/eunomia-bpf/eunomia-bpf
https://manpages.ubuntu.com/manpages/jammy/man8/syscount-perf.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/syscount-perf.8.html
https://github.com/cilium/cilium
https://github.com/cilium/ebpf
https://github.com/cilium/tetragon
https://doi.org/10.1145/3672197.3673431
https://doi.org/10.1145/3672197.3673431
https://doi.org/10.1109/DSN-W58399.2023.00022
https://doi.org/10.1109/DSN-W58399.2023.00022
https://doi.org/10.1145/3411495.3421358
https://doi.org/10.1145/3411495.3421358
https://www.brendangregg.com/blog/2019-08-19/bpftrace.html
https://github.com/performancecopilot/pcp
https://github.com/performancecopilot/pcp
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://doi.org/10.1109/ACCESS.2021.3108801
https://doi.org/10.1109/ACCESS.2021.3108801
https://github.com/libbpf/libbpf
https://github.com/libbpf/libbpf-rs
https://github.com/aquasecurity/libbpfgo
https://github.com/xdp-project/xdp-tools
https://github.com/xdp-project/xdp-tools
https://github.com/facebookincubator/katran
https://doi.org/10.1109/HPSR.2018.8850758
https://doi.org/10.1145/3439839.3458731
https://doi.org/10.1109/TNET.2022.3206781
https://doi.org/10.1109/TNET.2022.3206781
https://ebpfchirp.substack.com/p/go-c-rust-and-more-picking-the-right?utm_source=substack&publication_id=2062956&post_id=154206053&utm_medium=email&utm_content=share&utm_campaign=email-share&triggerShare=true&isFreemail=true&r=4mi1za&triedRedirect=true
https://ebpfchirp.substack.com/p/go-c-rust-and-more-picking-the-right?utm_source=substack&publication_id=2062956&post_id=154206053&utm_medium=email&utm_content=share&utm_campaign=email-share&triggerShare=true&isFreemail=true&r=4mi1za&triedRedirect=true
https://ebpfchirp.substack.com/p/go-c-rust-and-more-picking-the-right?utm_source=substack&publication_id=2062956&post_id=154206053&utm_medium=email&utm_content=share&utm_campaign=email-share&triggerShare=true&isFreemail=true&r=4mi1za&triedRedirect=true
https://ebpfchirp.substack.com/p/go-c-rust-and-more-picking-the-right?utm_source=substack&publication_id=2062956&post_id=154206053&utm_medium=email&utm_content=share&utm_campaign=email-share&triggerShare=true&isFreemail=true&r=4mi1za&triedRedirect=true
https://ebpfchirp.substack.com/p/go-c-rust-and-more-picking-the-right?utm_source=substack&publication_id=2062956&post_id=154206053&utm_medium=email&utm_content=share&utm_campaign=email-share&triggerShare=true&isFreemail=true&r=4mi1za&triedRedirect=true
https://developers.redhat.com/articles/2023/10/19/ebpf-application-development-beyond-basics#ebpf_application_cross_development__portability__co_re__and_kernel_api_stability
https://developers.redhat.com/articles/2023/10/19/ebpf-application-development-beyond-basics#ebpf_application_cross_development__portability__co_re__and_kernel_api_stability
https://developers.redhat.com/articles/2023/10/19/ebpf-application-development-beyond-basics#ebpf_application_cross_development__portability__co_re__and_kernel_api_stability
https://doi.org/10.1145/3582016.3582035
https://github.com/bpftrace/bpftrace
https://doi.org/10.1109/ACCESS.2022.3226269
https://github.com/parca-dev/parca
https://github.com/iovisor/bcc/tree/master
https://github.com/iovisor/ply
https://doi.org/10.1145/3281411.3281426
https://doi.org/10.1145/3609021.3609307
https://doi.org/10.1109/TPDS.2025.3571934

	Abstract
	1 Introduction
	2 Methodology
	3 Experimental Results
	3.1 Read-only Workload
	3.2 Write-only Workload
	3.3 50-50 Mixed Read-Write Workload

	4 Discussion
	Acknowledgments
	References

