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Abstract
Persistent Memory (PM) enables the development of fast,
persistent applications without employing costly HDD/SSD-
based I/O operations. Since caches are volatile and CPUs may
reorder and stall memory accesses for performance, devel-
opers must use low-level instructions to ensure a consistent
state in case of a crash. Failure to do so can result in data
corruption, data loss, or undefined behavior. In concurrent
executions, this exposes a new class of bugs.
HawkSet is an automatic, application-agnostic, and ef-

ficient tool to detect concurrent PM bugs. HawkSet uses
lockset analysis, and automatic binary instrumentation to
find all the bugs detected by the state-of-the-art tools and 7
previously unknown bugs. This is achieved without requir-
ing application-specific knowledge or models, nor special-
ized debugging artifacts or guided executions. Compared to
the state-of-the-art, HawkSet offers up to a 159× speedup,
and consistently detects harder-to-reach bugs, where a rare
interleaving is required.

CCS Concepts: • Hardware → Emerging technologies; •
Software and its engineering→ Software testing and
debugging.

Keywords: Persistent Memory, Concurrency, Bug Detection

1 Introduction
Persistent Memory (PM) provides developers with byte-ad-
dressable and durable storage with performance comparable
to that of DRAM [39]. Initially introduced to the general mar-
ket by Intel Optane, which has since be discontinued in favor
of the up-and-coming CXL 3 standard [6], PM offers an ap-
pealing combination of performance and durability enabling
applications to maintain a persistent state without incur-
ring in costly HDD/SSD-based IO operations. This sparked
novel designs in domains such as key-value stores [19, 35],
hash tables [24, 32, 41], trees [20, 22, 28, 37], caches [40],
file systems [9, 42], databases [5] and programming frame-
works [25, 38].

Achieving both correctness and high performance in a PM
application is challenging. In particular, since the cache is
volatile and orders of magnitude faster than PM, stores are
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not immediately persisted and the hardware may reorder or
stall memory accesses for performance. Hence, developers
must carefully use low-level flush and fence instructions to
ensure persistency and ordering guarantees.

Failure to meet these requirements can have catastrophic
consequences, including data loss or corruption, subsequent
crashes, or undefined behavior. To ameliorate these issues,
the research community has developed a wide range of PM
bug detection tools [7, 14, 16–18, 23, 26, 27, 33]. While some
of these tools may detect bugs in concurrent PM programs,
none actively search for them.
The reason is that the combination of PM and concur-

rency introduces a novel class of bugs, unique to concur-
rent PM programs, that requires specialized tools [2, 15]
to be detected. We call this novel class of bugs persistency-
induced races and precisely define them in §2.2. As with other
forms of concurrency bugs, detecting persistency-induced
races is challenging due to the large search space. Exist-
ing tools tackle this challenge by leveraging application-
specific semantics, namely a key-value store interface, and
guiding the execution to points more likely to expose bugs [2,
15]. While these approaches successfully detect persistency-
induced races, they lack generality and cannot be applied to
applications other than ones with key-value stores seman-
tics. Moreover, they require observing specific interleavings
to detect a persistency-induced race which, in turn, requires
controlling or guiding the execution schedule, resulting in
long testing times and poor efficiency.

This paper introduces HawkSet, an automatic, application-
agnostic, and efficient tool to detect persistency-induced races.
HawkSet eliminates the need to directly observe a race by
building upon lockset analysis [34]. Lockset analysis tracks
the set of locks that protect a given memory region. If dif-
ferent threads access the same region with disjoint locksets,
then the region is unprotected, and it can potentially be ac-
cessed concurrently, even if such an access is not observed in
a concrete execution. However, lockset analysis poses some
challenges as it is known to scale poorly with the number
of memory accesses, cannot be directly applicable to PM
programs due to PM-specific semantics, and might yield
False Positives. To address the scalability challenge, we ob-
serve that PM accesses are a small fraction of all memory
accesses [31], making lockset analysis suitable for PM pro-
grams. We tackle the second challenge by introducing the
concept of effective lockset, which discerns PM’s distinctive
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phases for store visibility and persistence, not captured by
traditional lockset analysis. Finally, we propose a heuristic
to vastly reduce the number of False Positives.
HawkSet automatically instruments the application bi-

nary to identify PM accesses and concurrency primitives,
and does not require specialized client drivers or debugging
artifacts [2, 15]. When combined with the ability to detect
persistency-induced races even if those are not directly ob-
served in a given execution, it reduces developer effort both
when preparing the application for testing and during test-
ing itself. Overall, HawkSet detected all persistency-induced
races reported by PMRace [2], a state-of-the-art concurrent
PM bug detection tool, in a fraction of the time. In fact, for a
particular set of workloads, HawkSet’s average time to find
a specific race in Fast-Fair [20] is ≈159× smaller than PM-
Race’s. Since HawkSet does not rely on direct observation
for persistency-induced race detection, it consistently detects
bugs, even hard-to-reach ones, in a single execution (pro-
vided with enough coverage), without the need for multiple
executions, greatly reducing testing time.

Contributions. This paper makes the following contribu-
tions:

• The design of a PM-Aware Lockset Analysis algorithm for
persistency-induced race detection.

• The design and implementation of HawkSet, an automatic,
application-agnostic, and efficient concurrent PM bug de-
tection tool.

• An empirical evaluation showcasing HawkSet’s scalability
and effectiveness in large workloads.

• The detection of seven new bugs.

2 Background
This section provides background on Persistent Memory
semantics (§2.1) and defines persistency-induced races (§2.2).

2.1 Persistent Memory Semantics
When programming with PM, developers must be aware
of store visibility, persistency and ordering. We say that
stores are persisted, if they are in the persistent domain,
which for the purpose of this paper means they are in PM.
Persisted stores are guaranteed to be visible to the post-crash
execution. Everything else is in the volatile domain (usually
consisting of the CPU registers, the store buffer, the cache,
and volatile memory) and can be lost after a crash (e.g.: a
power failure). This model brings forth three problems that,
in conjunction, can cause PM bugs.

Persistency. The existence of a volatile cache between the
CPU and PMmeans that a store may have been executed, but
the data remains in the cache, meaning it will be lost after a
crash. To counteract this, CPUs offer special flush instruc-
tions that force the data in a cache line to be written to PM.
It is important to note that data may be arbitrarily flushed

to PM by the cache-policy algorithm, but the programmer
generally has no control over this.

Stalling and Reordering. Modern CPUs include a store
buffer, an optimization that amortizes store latency by stalling
and reordering memory operations, including the aforemen-
tioned store and flush families of instructions. This means,
that even if a flush instruction has been executed, there is no
guarantee that the data is persisted, since it can be stalled,
while the application resumes execution. The fence family
of instructions guarantee that all pending memory opera-
tions have been completed, before resuming the execution.
Note that even though fences are used in many implemen-
tations of synchronization primitives to ensure that data is
visible to other threads, in the context of PM, to guarantee
persistency a flush must be followed by a fence. The excep-
tion is non-temporal stores which bypass the cache and do
not need to be flushed but require a fence to ensure order.

Visibility. As previously mentioned, data is considered per-
sistent only when it reaches PM, but it is already visible to
other threads while in the cache. As we will see next, this
distinction is the root cause of persistency-induced races.

Note on eADR and CXL. Some Intel processors have a fea-
ture called extended Asynchronous DRAM Refresh (eADR)
that extends the persistent domain to the cache [10], effec-
tively ensuring all stores are persisted once they reach the
cache. However, it is crucial to note that eADR requires ad-
ditional hardware support which is not widely available and
hence developers cannot make assumptions about eADR
ubiquity across all platforms. Consequently, applications
should not depend on the availability of eADR and need to
be designed with this consideration in mind.

Additionally, the recent Compute Express Link v3 (CXL) [6]
aims to provide PM support. Given the large performance
gap between the volatile and persistent domains, it is antici-
pated that CXLwill provide familiar PM semantics, including
explicit instructions for managing the transition from the
volatile to the persistent domain. While our current imple-
mentation is based on the PM semantics of Intel’s Optane
DC memory, which until recently was the predominant PM
technology available, we are confident that our techniques,
designed to be agnostic of application semantics and libraries,
will translate well to CXL.

2.2 Persistency-Induced Races
A persistency-induced race can happen only due to the combi-
nation of concurrency and PM and is different from classical
concurrency bugs and non-concurrent PM bugs. To illustrate
this, let us consider the examples in Figure 1. Figure 1a shows
a program with two threads T1 and T2 that concurrently ac-
cess a shared variable X. Both accesses are protected by the
same lock A, and hence this program is correct from a concur-
rency perspective. Figure 1b illustrates a PM application that
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(a) (b) (c)

Figure 1. Concurrency and PM. Lock and Unlock denote
synchronization primitives. Store, Load, Persist represent
different PM accesses. The arrows correspond to a thread
interleaving. X is a PM variable and A is a mutex.

correctly stores and persists variable X. Both programs are
correct within their respective contexts. However, a naive
combination of PM and concurrency can result in incorrect
programs, as illustrated in Figure 1c. In this example, the ac-
cesses in both threads to the shared variable X are protected
by the same lock A, however, the persistency is outside the
critical section. If the application crashes after the load in
thread T2 and before X is persisted in thread T1, side effects
from the load might be observable in the post-crash state
while the store might not be observable. The side effect could
be, for instance, a reply to a client that saw the most recent
value of the store which is lost after the crash, or the load
could cause somemodification to the state based on the value
which is lost after the crash, resulting in an inconsistent state.
This incorrect behavior typifies a persistency-induced race,
which we define as:

Definition 1. Persistency-induced race. If a thread T2
loads a value modified by another thread T1 and that value is
not guaranteed to be persisted at the time of the access by T2,
then we are in the presence of a persistency-induced race.

This definition captures the notion that values can be visi-
ble to other threads but not yet persisted, i.e. they are in the
CPU cache and hence are accessible to other threads, but
they are not yet in PM. Note that our definition of persistency-
induced race aligns with the notions of visible-but-not-durable
of Durinn [15] and PM Inter-thread Inconsistency of PM-
Race [2]. Note that despite the similar name, persistency-
induced race is different from the persistency race described
in Yashme [18]. The latter is unrelated to concurrency and
describes issues that arise due to compiler induced store
tearing.

3 HawkSet
In this section, we present HawkSet’s design. We start by
discussing the challenges of applying lockset analysis to PM
and then iteratively construct our PM-Aware Lockset Analy-
sis algorithm to solve these challenges (§3.1). Last, we detail

how HawkSet’s pipeline achieves our goals of efficiency,
automatism and application-agnosticism (§3.2).

3.1 Lockset Analysis
Due to the large search space, it is crucial to detect persistency-
induced races in an efficient and timely manner.
Lockset analysis partially addresses this challenge since

it allows the detection of a race even if that race did not
manifest itself in an observed interleaving. This substan-
tially reduces the need to perform multiple executions of
the application, as we show in the evaluation (§5.2), and
avoids resorting to execution serialization techniques which
lead to long testing times. However, lockset analysis is not
without its shortcomings. First, it is known to scale poorly
with the number of memory accesses. Second, it treats regu-
lar memory accesses and PM accesses indiscriminately and
ignores the persistency semantics. Finally, lockset analysis
is also known for yielding a non-negligible amount of False
Positives, which can impair its usability.
The key observation to tackle the scalability challenge is

that the ratio of PM accesses is very small (≈ 4% [31]) when
compared to the total memory accesses, which allows an oth-
erwise expensive technique to scale well in PM programs. In
the rest of this section we address the remaining challenges
of traditional lockset analysis, following a constructive ap-
proach, and build a PM-Aware Lockset Analysis algorithm
that is efficient and scalable to large workloads.

3.1.1 Traditional Lockset Analysis. A lockset is the set
of all locks held at a given point in a thread’s execution. The
lockset of a memory access is the set of all locks held by the
issuing thread when the access takes place. The intersection
of the locksets of two memory accesses by different threads
contains all the locks that were held when both accesses were
executed. If the intersection of two locksets is the empty set,
it implies that no common lock protects both accesses and
hence they can occur concurrently.
A typical lockset analysis algorithm [34] starts by inter-

secting the lockset of each store with the lockset of each
load to the same memory region and reports a race if the
resulting set is empty. While conceptually simple, this al-
gorithm cannot be directly applied to PM since it does not
consider the persistency operations. Let us revisit Figure 1c
to see why. In this example, the intersection of the locksets
for the load and store of X is lock A and therefore both ac-
cesses are correctly synchronized. However, according to
the definition of a persistency-induced race (Definition 1),
thread T2 loads a value that is not guaranteed to be persisted,
and therefore we are in the presence of a persistency-induced
race. Hence, a naive approach is not suitable for detecting
persistency-induced races.
Before proceeding, it is important to note that although

traditional lockset analysis algorithms can and do check
for store-store races, HawkSet does not. This is because,
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persistency-induced races result in bugs due to the causal
dependency between the side effect of the load, and the
original store that led to that effect but which can be lost.
This dependency does not happen between two stores and
therefore store-store races cannot lead to persistency-induced
races.

3.1.2 PM-Aware LocksetAnalysis. The first step towards
correctly detecting persistency-induced races is to take into
account the lockset for the full lifetime of the unpersisted
value, instead of just the moment it is stored. This starts at
the store instruction that makes the data visible, and lasts
until the persistency, or the point where it is overwritten
by another store. To capture this, we employ an expanded
version of the lockset, the effective lockset defined as: the
effective lockset of a store X by a thread T1 is given by the
intersection between the lockset of the store with the lockset
of its explicit persistency via fence, or overwrite via store. In-
tuitively, the effective lockset represents the set of locks that
protect both instructions. Figure 2a illustrates this concept
by showing the locksets observed by thread T1 from Fig-
ure 1c — the store operation is protected by lock A, however,
the persistency is not. As we saw earlier, traditional lockset
analysis does not account for this persistency. By computing
the effective lockset, we can assert that a persistency-induced
race is possible since the effective lockset is empty and hence
a thread performing the load could do so concurrently with
the thread performing the store and the persistency.
A naive implementation of the effective lockset can still

miss persistency-induced races, as illustrated in Figure 2b. In
this example, the effective lockset is not empty, but we can
observe that lock A does not create an atomic section encom-
passing the store and the persistency. If the lock is released
and reacquired between the store and the persistency, there
is room for a racy access that would remain undetected.
We address this problem by extending the lockset with

a timestamp given by a thread-local logical clock that is
incremented whenever a lock is acquired. This simple yet
effective approach allows us to determine whether the store
and persistency belong to the same atomic section. Figure 2d
depicts this in action. As before, both the store and the per-
sistency are protected by lock A, however, because the lock is
released and reacquired between both operations, the logical
timestamp is increased. Because the effective lockset now
considers both the set of locks and the timestamps when
computing the intersection, the result is the empty effective
lockset which means a persistency-induced race can happen.
Figure 2c is the extended version of Figure 2a.

To detect persistency-induced races we compute the inter-
section of the effective lockset among the different threads
that access a given PM location. When computing the inter-
thread intersection, the timestamp of the effective lockset
is ignored since it is only meaningful in the thread-local

(a) (b)

(c) (d)

Figure 2. HawkSet’s effective lockset. The TS column repre-
sents the logical clock at each point of the execution. The Op-
eration column depicts the program’s PM and synchroniza-
tion instructions. The Lockset column represents the lockset
assigned to each PM access while the Effective Lockset col-
umn denotes the effective lockset for the store+persistency.

context. If this intersection is the empty set we report a
persistency-induced race.

Inter-Thread Happens-Before Analysis. To eliminate,
from the lockset analysis, PM accesses that can never hap-
pen concurrently, HawkSet leverages the happens-before
relationship between thread operations. This has been ex-
ploited in past works in general race detectors [21], here we
present our adaption to the PM domain.
Before presenting our approach, let us first analyze the

motivating example depicted in Figure 3 consisting of three
different threads. It is easy to see that the store+persistency
to X performed by thread T1, even though it is not protected
by any lock, can never be concurrent with the accesses done
to X by thread T2 and thread T3. This is because there is an
implicit inter-thread happens-before relationship between the
access done by thread T1, and the subsequent creation of
the other threads. An analysis oblivious to this relationship
would incorrectly report a concurrent access between T1 and
the accesses done by both thread T2 and thread T3, resulting
in a False Positive. Following the same rationale, there is
no implicit inter-thread happens-before relationship between
the accesses done by thread T2 and thread T3, therefore they
can run concurrently.
We express this inter-thread happens-before relationship

through vector clocks with a logical counter per thread [12].
Each thread maintains its own local vector clock which is



HawkSet: Automatic, Application-Agnostic, and Efficient Concurrent PM Bug Detection

T2

Init
Store1X

Persist1X

Create T2

Store3Y
Create T3

Persist3Y

Init

Load1X
Init

Store2X
Persist2X
Load2Y

T1

T3

(0,0,0)
(1,0,0)
(2,0,0)

(3,1,0)

(3,1,0)
(5,0,1)

(5,0,4)

(4,0,0)

(3,0,0)

(5,0,0)

(6,0,0) (5,0,2)
(5,0,3)

Figure 3. Multithreaded execution. Each column represents
a different thread. Dashed lines represent thread creation.
Assume X and Y are PM backed variables that fall on separate
cache-lines. Tuples represent the vector-clock associated
with each operation. Bold indexes in vector clocks represent
updates.

updated as follows: i) thread creation increments the counter
of the parent thread by one, sets the vector clock of the child
to that of the parent and further increases the child’s counter
by one; ii) PM accesses increment the counter of the thread in
which they occur by one; iii) thread join updates the vector
clock of the waiting thread with that of the joining thread
following standard vector clock procedures [12].
With this in place, we can now determine whether two

accesses are concurrent by comparing the vector clocks of
their respective threads at the time of the access. As a re-
minder, given two operations with their respective vector
clocks V1 and V2, the operations are concurrent if there is at
least one index i where V1[i] < V2[i] and another index
j where V1[j] > V2[j].

Revisiting Figure 3, thread T1 starts the execution with an
initially zeroed vector clock, which is updated to (3,0,0)
after the creation of thread T2. Upon starting, thread T2 sets
its vector clock to that of its parent, and increases its local
counter resulting in a vector clock of (3,1,0). Similarly,
when starting thread T3, thread T1 increases its vector clock
to (5,0,0) and thread T3 in turn sets its vector clock to
(5,0,1). With this information, we can verify that Store1 in
thread T1 is not concurrent with the loads of either thread
T2 and thread T3 since there is no index i and j that sat-
isfies the condition for the respective vector clocks to be
concurrent. Hence, we can remove those pairs of accesses
from our lockset analysis and eliminate an otherwise False
Positive. Similarly, we can see that the vector clocks from
thread T2 and thread T3 are concurrent, and therefore we
need to perform lockset analysis on those accesses.

Note that, for this to work correctly in a PM application,
we must take into account the vector clock of the persis-
tency. We can see why this is the case by following Store3
and Persist3 done by thread T1 which have vector clocks of
(4,0,0) and (6,0,0) respectively. By applying the previous
method, we learn that Store3 in thread T1 cannot execute
concurrently with Load2 on thread T3, however, that does
not mean a race is impossible. Persistency races can occur up
until the moment of persistence, in this case Persist3, which
means that after thread T3 is created, there is the possibil-
ity that it loads the still unpersisted X which can lead to a
persistency race. By using the vector clock of Persist3, the
analysis correctly predicts that these accesses can execute
concurrently, and hence those accesses should be considered
for lockset analysis.

3.1.3 Initialization Removal Heuristic. In concurrent
applications, it is a common pattern to initialize freshly allo-
cated variables without holding a lock. This is correct since
the memory region has not yet been made public to other
threads, therefore, no other thread can access the data con-
currently. However, the lockset analysis algorithm would
blindly compare these accesses with others, resulting in False
Positives. This was first noticed and exploited by Eraser [34],
and our evaluation in §5.4 further demonstrates this is also
a common pattern in PM applications.
An ideal implementation would determine the point at

which the address becomes public to other threads and ignore
all the memory accesses done up to that point. However, and
to the best of our knowledge, there is no application-agnostic
and automatic method to identify this point. In our approach,
we approximate it by discarding all explicitly persisted stores
to a PM address done by a thread T1 before a second thread
T2 accesses that address.

To understand why persistency must be taken into ac-
count, consider a scenario where a thread T1 performs an
allocation, initializes the memory, and then publishes the
pointer without persisting the data. Next, a second thread
T2 might perform a load for that same address which, since
it is not guaranteed to be persisted, is a persistency-induced
race. Using a naive approach, we would exclude the first
store performed by T1, since it occurred during initialization,
missing the race. By excluding only stores that have been
explicitly persisted before being published, we eliminate this
problem.

3.2 Pipeline
We now present HawkSet’s pipeline which is divided into the
three stages, shown in Figure 4. We assume that a workload
with sufficient coverage is provided.

The first stage, called Instrumentation 1 , runs the appli-
cation with the provided workload and collects a trace of the
execution, namely: PM accesses, thread creation and joining,
and the synchronization primitives. The second stage applies
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Figure 4. HawkSet’s pipeline.

the Initialization Removal Heuristic 2 to eliminate accesses
that are not visible to other threads. Finally, the Analysis
stage 3 applies our PM-Aware Lockset Analysis algorithm.

1st Stage: Instrumentation. The Memory Simulation com-
ponent A maintains the state of the cache, simulating the
execution of store and persistency (flush and fence) instruc-
tions to PM addresses. Because we are interested in knowing
the moment when data is guaranteed to be persisted, we
simulate a worst-case cache that only persists a cache line if
a flush and fence are explicitly executed.

The Lock Tracking component B tracks lock acquisition
and release in order to compute the current lockset. When a
lock is acquired, the current thread’s lockset is updated to
include it, and when one is released, it is removed.

The Thread Tracking component C maintains the thread
local vector clock that tracks thread creation and joining.

When a PM access occurs, the Memory Simulation regis-
ters that information in a tuple composed of: target address,
current lockset, current vector clock, and a thread identifier.
For PM loads, this data will be directly used in the lockset
analysis stage 3 . For PM stores the Memory Simulation
saves the access in a store lockset and marks that memory
region as dirty in cache, and once it is explicitly persisted (via
flush and fence instructions) it saves the persistency lock-
set. Both the store and persistency locksets are then used to
compute the effective lockset.

2nd Stage: Initialization Removal Heuristic. This stage
eliminates accesses done during the initialization of a mem-
ory region. To achieve this, we track which threads have
accessed each address. When a second thread accesses an
address, we consider that that address has become visible.

Algorithm 1: PM-Aware Lockset Analysis Algo-
rithm. The ∥ operand denotes concurrent accesses.
input :𝑠𝑡𝑜𝑟𝑒𝑠 - The set of all stores

𝑙𝑜𝑎𝑑𝑠 - The set of all loads
1 Vec⟨Int⟩ as VectorClock
2 Set⟨Lock⟩ as Lockset
3 Struct StoreData
4 Int tid /* thread ID */

5 Lockset effective_set
6 VectorClock vec
7 Int addr /* PM address */

8 Struct LoadData
9 Int tid /* thread ID */

10 Lockset set
11 VectorClock vec
12 Int addr /* PM address */

13 foreach StoreData st ∈ stores do
14 foreach LoadData ld ∈ loads ∧
15 st.addr = ld.addr ∧
16 st.tid ≠ ld.tid ∧
17 st.vec ∥ ld.vec do
18 if st.effective_set ∩ ld.set = ∅ then
19 report(st, ld)

All subsequent accesses after this point, and any unpersisted
store prior to it, are passed to the next stage.

3rd Stage: PM-Aware Lockset Analysis. Finally, in this
stage, we apply our PM-Aware Lockset Analysis algorithm,
depicted in Algorithm 1. The algorithm starts by pairing
every store (line 13) and load (line 14) to the same address
(line 15), from different threads (line 16) which may execute
concurrently according to the inter-thread happens-before
analysis (denoted by ∥ in line 17). Then, using the effective
lockset of the store, we compute its intersection with the
lockset of the load (line 18). If the intersection is the empty
set, we report a persistency-induced race (line 19). Note that,
for simplicity, thematching of addresses is presented as being
based in the starting address. In reality, HawkSet performs
more complex calculations that take into account the size
of the PM access, and is able to detect partially overlapping
races.

3.3 Discussion
Our PM-Aware Lockset Analysis algorithm is able to detect
persistency-induced races even if they are not directly ob-
served in a concrete execution of the application: it suffices
to find a pair of PM accesses to the same address whose lock-
set intersection is empty. This allows HawkSet to be efficient
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since it does not require running the application exhaus-
tively in the hope of directly observing a race. By relying
only on binary instrumentation, HawkSet is agnostic of the
application semantics and libraries used (further implemen-
tation details are provided in §4). It is also automatic since it
does not require special annotations, drivers, or dedicated
artifacts for conducting the analysis.

The persistency-induced races reported by HawkSet can be
classified in three categories: i) Malign Persistency-induced
races: genuine races that consist of pairs of PM accesses
that can execute concurrently and can cause an unexpected
behavior in the application; ii) Benign Persistency-induced
races: genuine races that consist of pairs of PM accesses that
can execute concurrently, but which can be tolerated by the
application’s design. The mechanism that tolerates a race is
application-specific and cannot be detected by application-
agnostic approaches such as HawkSet; iii) False Positives:
pairs of PM accesses that can never execute concurrently.
In the evaluation (§5.4) we study the distribution of the

persistency-induced races detected by HawkSet across these
categories, and discuss the impact of the Initialization Re-
moval Heuristic in this distribution.

4 Implementation
HawkSet is implemented in C++ in ≈ 2600 lines of code and
uses Intel PIN [29] for binary instrumentation. In detail, we
instrument the PM instructions (stores, loads, flushes, fences),
atomic instructions and synchronization primitives (such as
lock prefixes, and CAS), as well as functions responsible for
thread creation and joining. To differentiate between PM
accesses from regular memory accesses we record calls to
mmap for PM files, and then compare the target address of the
operation with the previously recorded PM regions. For sim-
plicity, we require the paths to the PM files paths to be passed
as command-line arguments, but this could be extended to
capture the opening of files in the PM device. Regarding
the synchronization primitives, we provide builtin support
for pthread. Other primitives can be supported through a
simple configuration file.
We believe this simple configuration does not break our

initial goal of automation since: i) HawkSet only requires
simple information about the synchronization primitives,
namely, the name of functions that have acquire-and-release
semantics, and in the case of tentative acquires (similar to
pthread_mutex_trylock) the value specifying a successful
acquisition; ii) the set of primitives is usually very small; iii)
many applications already use pthreads or abstractions built
on top of pthread primitives; and iv) once a configuration
file is created for a synchronization library it can be reused
by other applications using the same library.

The implementation roughly follows the pipeline depicted
in Figure 4 except for the Initialization Removal Heuristic 2
which is applied alongside the Instrumentation stage 1 .

To help developers pinpoint the cause of persistency-induced
races, HawkSet provides the backtraces of the PM accesses
that caused the race. PIN provides a built-in method to obtain
detailed backtraces, PIN_Backtrace, but we experimentally
observed that this method is prohibitively expensive, ac-
counting for an overhead of up to 90% in earlier versions of
HawkSet. To overcome this, we instrument call and return
instructions to create the call stack. This method is substan-
tially faster than the one provided by Intel PIN, with minimal
loss of information. Over the course of our experimentation,
this improved approach has proved to be robust enough for
our use case, with minor loss of trace information compared
to PIN_Backtrace.
The PM-Aware Lockset Analysis is described in Algo-

rithm 1 for clarity rather than performance, and hence it
is obviously inefficient and performs several unnecessary
iterations. In the implementation, we group PM accesses by
thread id and address, and short-circuit several iterations
based on empty or equal locksets.
We also implemented several techniques to reduce test-

ing time and memory usage. Locksets and vector clocks are
shared across PM accesses since we found experimentally
that the number of accesses far outnumbers the amount of
locksets and vector clocks, by several orders of magnitude.
Furthermore, vector clocks are not incremented at every PM
access. Instead, only the first PM access after a thread cre-
ation/joining increments the local vector clock. Logically,
we batch all sequential PM accesses done by a single thread
as one when it comes to the inter-thread happens-before
analysis, which drastically reduces management overhead.
Since pairs of accesses from the same thread are ignored by
the lockset analysis, this optimization does not impact cor-
rectness. Moreover, backtraces, locksets, and vector clocks
are unique and identifiable by a unique integer, which al-
lows for several optimization opportunities throughout the
code, such as direct comparison (i.e: for lockset analysis),
fast hashing (i.e: for hashtable lookups), and memory usage.

5 Evaluation
In this section, we experimentally answer the following ques-
tions: i) how effective is HawkSet in detecting persistency-
induced races (§5.1), ii) how does HawkSet compare with the
state-of-the-art (§5.2), iii) how efficient is HawkSet (§5.3). iv)
what is the impact of the Initialization Removal Heuristic
(§5.4), and v) how HawkSet fares in achieving its automation
and application-agnosticism (§5.5) goals. All the experiments
were performed in a machine with two Intel(R) Xeon(R) Gold
6338N CPUs @ 2.20GHz, comprising 128 cores, 256 GB of
RAM, on top of a 1 TB Intel DCPMM in App Direct mode.

Target Applications. We evaluated a total of 9 PM appli-
cations, outlined in Table 1. In §5.5 we further discuss the
criteria for selecting these applications. To contextualize our
experimental results, we briefly describe each application.
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Table 1. PM applications tested.

Application Version Synchronization Supported by
Method Durinn PMRace

Fast-Fair [20] 0f047e8 Lock/Lock-Free Yes Yes
TurboHash [41] 2d7d7b3 Lock/Lock-Free Yes Yes
P-CLHT [24] 70bf21c Lock Yes Yes
P-Masstree [24] 5b4cf3e Lock/Lock-Free Yes Yes
P-ART [24] 5b4cf3e Lock/Lock-Free Yes Yes
MadFS [42] 7514a78 Lock-Free No No
Memcached-pmem [5] 0208b53 Lock-Free Yes Yes
WIPE [37] 029cfc4 Lock Yes Yes
APEX [28] 5aee22a Lock Yes Yes

Fast-Fair [20] is a PM-backed B+ Tree. It leverages the
cache-line ordering constraints of PM to perform atomic
insertions without the need for a recovery process that fixes
inconsistencies. Fast-Fair mixes lock-based concurrency
control with lock-free methods to synchronize its shared PM
accesses. It has multiple implementations, for the purpose
of our analysis, we used the concurrent version that uses
real PM, supported by Intel’s PMDK [4]. TurboHash [41]
and P-CLHT [24] are PM-backed hash tables. TurboHash is a
typical hash table focused on improving performance in a
few areas: performs efficient out-of-place updates, minimizes
long-distance linear probing, and exploits hardware features,
such as Intel’s AVX registers. TurboHash has three different
implementations, for the purpose of our analysis, we used
the version that uses real PM, supported by Intel’s PMDK.
P-CLHT restricts the size of each bucket to that of a cache
line, uses bucket-specific locks to synchronize insertions and
updates, and a global lock for rehashing. Get operations occur
in a lock-free manner. Similarly to Fast-Fair, P-Masstree
is a trie-like concatenation of B+Tree nodes backed by PM. It
performs put, scan and delete operations using locks while
get operations are lock-free. P-ART is a crash-consistent radix
tree that varies the sizes of its nodes adapting its memory
footprint to the provided workload. To enable comparison
of results, we use the custom versions of P-Masstree and
P-ART provided by Durinn [15]. MadFS [42] is a file system
backed by PM. It maintains a mapping of all virtual blocks it
manages, via a compact, crash-consistent log, where entries
are 8 bytes long and therefore updated atomically. It manages
file metadata in user space, in the form of a log that is updated
atomically. Memcached-Pmem [5] is a PM enabled fork of the
well known Memcached [30], an in-memory key-value store.
WIPE [37] and APEX [28] are learned indexes, data structures
that use machine learning for data retrieval. APEX is a PM
and concurrency enabled extension of Microsoft’s ALEX [8].

Workloads. Due to the variety of the applications evaluated,
we could not use a single benchmark. All experiments were
run with eight threads and consisted of an initial load phase
followed by 1k, 10k, or 100k operations of various types
depending on the application. The only exception is P-ART,

which hangs for workloads larger than 1k operations. All
presented results are the average of five executions.

For P-CLHT, Fast-Fair, TurboHash, P-Masstree, P-ART,
WIPE, and APEX, theworkloadswere generated using YCSB [3]
with a load phase of 1k insertions, and a main phase with 30%
insertions, 30% updates, 30% gets, and 10% deletes. Note that,
in the case of Fast-Fair, TurboHash, and P-Masstree in-
serts and updates are treated as the same operation. MadFS’s
benchmark performs 4kb write operations in a shared file
amongst all threads. The target offset of the operation is ran-
domized following a zipfian distribution. Memcached-pmem’s
benchmark performs an initial load phase of 1000 set opera-
tions, followed by a range of set, get, add, replace, append,
prepend, CAS, delete, increment, and decrement operations
over a zipfian workload. HawkSet requires code coverage
to provide meaningful reports, we consider the generation
of workloads that provide this coverage an orthogonal prob-
lem. While generating the previous workloads, we aimed to
exercise all available operations for each system.

5.1 Persistency-Induced Races
HawkSet detected 20 persistency-induced races, 7 of which
were previously unknown and have been reported to the
developers. Namely, it detected one bug in Fast-Fair, one
in P-CLHT, and 6 in Memcached-pmem that were previously
reported by PMRace [2] while another bug in Fast-Fair,
one in TurboHash, three in WIPE, and two in APEX were
previously unknown. Furthermore, we detect three bugs
in P-Masstree, and two in P-ART that we believe have been
detected by Durinn [15]. However, since Durinn reports bugs
by the key-value store operation, instead of the PM access,
we cannot confidently claim that these are the same races.
The races reported by HawkSet fall on the same operations
of those reported by Durinn, which might indicate that they
are the same operation. Table 2 summarizes the results.
Overall, HawkSet detected all persistency-induced races

reported by the state-of-the-art for the applications evalu-
ated. Note that even though Durinn analyzed Fast-Fair
and P-CLHT, those are not the reference implementations
but rather custom modified versions where Durrin’s authors
manually added PM support to the original, non-PM, imple-
mentations.

The known bug detected in Fast-Fair (#1) occurs when-
ever the tree grows which implies creating a new node and
inserting it in the tree. While performing this operation,
another thread can perform an insertion on the new node,
whose pointer is not yet persisted. In case of a crash, the
inserted value is lost, resulting in an inconsistent state. The
new bug detected in Fast-Fair (#2), shown in Figure 5, has
a similar pattern but occurs in a program branch that is
much less likely to be executed. Crucially, this highlights
the importance of detecting persistency-induced races even
when they are not directly observable and supporting large
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Table 2. Persistency-induced races detected using HawkSet. The * denotes races in the operations reported by Durinn.

Application # New Store Access Load Access Description

Fast-Fair 1 × btree.h:560 btree.h:878 load unpersisted pointer
2 ✓ btree.h:571 btree.h:878 load unpersisted pointer

TurboHash 3 ✓ turbo_hash_pmem_pmdk.h:2238 turbo_hash_pmem_pmdk.h:2546 load unpersisted value
P-CLHT 4 × clht_lb_res.c:785 clht_lb_res.c:431 load unpersisted pointer

P-Masstree
5 ∗ masstree.h:822 masstree.h:1883 load unpersisted value
6 ∗ masstree.h:1387 masstree.h:1883 load unpersisted value
7 ∗ masstree.h:1425 masstree.h:1953 unpersisted removal

P-ART 8 ∗ N4.cpp:22,N16.cpp:13,N256.cpp:17 N4.cpp:56,N16.cpp:61,N256.cpp:39 load unpersisted value
9 ∗ N4.cpp:67,N16.cpp:76 N4.cpp:56,N16.cpp:61 load unpersisted value

Memcached-pmem

10 × memcached.c:4292 memcached.c:2805 load unpersisted value
11 × memcached.c:4293 memcached.c:2805 load unpersisted value
12 × items.c:423 items.c:464 load unpersisted value
13 × slabs.c:549 slabs.c:412 load unpersisted pointer
14 × items.c:1096 memcached.c:2824 load unpersisted metadata
15 × items.c:627 items.c:623 load unpersisted metadata

WIPE
16 ✓ pointer_bentry.h:1771,1799 pointer_bentry.h:1606 load unpersisted key
17 ✓ pointer_bentry.h:1550,1772 pointer_bentry.h:1601 load unpersisted value
18 ✓ letree.h:393 letree.h:228 load unpersisted pointer

APEX 19 ✓ apex_nodes.h:3479,3798 apex_nodes.h:2915,2933 load unpersisted value
20 ✓ apex_nodes.h:3480,3606 apex_nodes.h:962 load unpersisted key

  509  inline void insert_key(...) {
   •••
  538     for (i = *num_entries - 1; i >= 0; i--) {
   •••
  567     }
  568     if (inserted == 0) {
   •••
  571       records[0].ptr = ptr;
   •••

  574       pmemobj_persist(pop, &records[0], sizeof(entry));

  585  page *store(...) {
   •••
  588    pthread_rwlock_wrlock(hdr.rwlock);
   •••
  615    if (num_entries < cardinality - 1) {
  616      insert_key(bt->pop, key, right, &num_entries, flush);

  619      pthread_rwlock_unlock(hdr.rwlock);

Thread 1

Edge case for index 0

Thread 2

  791  char *linear_search(...) {
   •••
  798    if (hdr.leftmost_ptr == NULL) {
   •••
  863    } else {
   •••
  876        for (i = 1; records[i].ptr != NULL; ++i) {
  877          if (key < (k = records[i].key)) {
  878            if ((t = records[i - 1].ptr) != records[i].ptr) {
  879              ret = t;
  880              break;
   •••
  914    return ret;

1021  void btree::btree_insert_internal(...) {
   •••
1028    while (D_RO(p)->hdr.level > level)
1029      p.oid.off = (uint64_t)D_RW(p)->linear_search(key);

1031     if (!D_RW(p)->store(this, NULL, key, right, true, true)) {

Search leaf with lock

Search internal node lock-free

Figure 5. The new bug found in Fast-Fair.

workloads that explore uncommon code paths. We further
study this in §5.2.
The new bug detected in TurboHash (#3) occurs due to

a missing persistency in the insertion operation. When an
operation inserts an entry into the bucket, it performs some
metadata manipulation, and flushes said metadata. When
the entry is towards the end of the bucket, such that it falls
on a different cache line, the update is not persisted. If the
application crashes before the original entry is persisted, the
side effects that depend on that entry will be present after the

crash, but the original entry will not. We stress that this bug
can only be detected as the buckets start to fill, which again
illustrates the criticality of using large workloads and an
efficient testing tool. As a matter of fact, this bug manifested
only in the largest workload we tested (100k operations).
The P-CLHT bug (#4) is caused by a rehashing operation,

which allocates a new hash table and swaps the root pointer.
Before the root pointer is persisted, a different thread inserts
a new entry into the new hash table. If the application crashes
after the insertion, but before the rehashing operation fully
completes, then the data inserted by the new thread is lost.

P-Masstree and P-ART’s bugs result from each applica-
tion’s lock-free get operations. Bugs #5, #6, and #8 occur
when a get operation reads a yet unpersisted insertion and
bug #7 and #9 occur when the get operation fails to find a
deleted key, whose deletion has not been fully persisted.

Memcached-pmem’s bugs #10 and #11 occur when a new
node is created from an old, unpersisted node. Bugs #12,
#13, #14, #15 are caused by missing persistence. Since these
bugs have all previously been reported by PMRace [2], in the
interest of space, a more in-depth explanation can be found
in that paper.

We found several persistency-induced races in MadFS (fur-
ther detailed in Table 4) but after further inspection we con-
cluded that these are tolerated by the relaxed guarantees of
MadFS which contrasts with those of the other applications.
MadFS is a file system, and as such has different concurrency
and crash-consistency guarantees (such as requiring an ex-
plicit fsync) than the other systems. However, we believe
our reporting is still relevant, because we show that HawkSet
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Table 3. Comparison with PMRace using 240 seeds.

Bug Executions Racy
Executions

Avg. Time
per Execution (s)

Avg. Time
to Race (s)

PMRace #1
240

9 600.00 69900.00
HawkSet 110 6.65 439.19
PMRace #2 0 600.00 ∞
HawkSet 115 6.65 422.55

is able to detect these races when MadFS is incorrectly used
in a crash-consistent application.

WIPE’s bugs #16 and #17 occur when the lock-free get
operations access unpersisted data. Bug #18 occurs during
node expansion. In WIPE, nodes start small, and grow as the
data structure fills up. During this node resizing operation, a
new, larger, persistent memory buffer is allocated which re-
places the older buffer via an atomic pointer swap. Although
the data in the buffer is persisted, the pointer itself is not.
This means that subsequent modifications to the buffer, for
example via a put operation, may be lost in the event of a
crash.

Finally, APEX’s bug #19 and #20 occur when a search oper-
ation races with either the insert, erase or update operations.
Although the latter operations are protected via mutex, and
correctly persisted, the lock-free search can still observe an
unpersisted value.

5.2 Comparison with PMRace
Wenow compareHawkSet’s efficiency in detecting persistency-
induced races with PMRace [2]. Due to space constraints,
we limit the comparison to Fast-Fair. Since HawkSet and
PMRace have different designs, below we briefly describe
PMRace’s approach (more details in §6) and the steps we
took towards designing a fair comparison of both tools.
PMRace’s approach is divided into two separate stages.

The first stage uses fuzzing and specialized delay injection to
find persistency-induced races (called PM Inter-thread Incon-
sistency by the authors). The second stage uses the recovery
program to check whether potential side effects that might
affect consistency are resolved during recovery which helps
remove False Positives. HawkSet uses lockset analysis to
find persistency-induced races, however, it does not perform
further validations. Due to this difference, we focus our com-
parison on the effectiveness of the persistency-induced race
detection mechanism, i.e. PMRace’s first stage.
PMRace starts with an initial workload, called the seed,

and then executes the application with that workload. Each
workload has an average of 400 operations. On subsequent
executions, it mutates the workload and executes again. This
process continues until it is deemed that the workload is not
worth exploring. At this point, a new seed is obtained, and the
process starts all over again. This means that conceptually
PMRace can execute indefinitely. In practice, the authors cap
the execution time and execute the system with a restricted
set of seeds. For Fast-Fair there are 240 provided seeds.

Note that these seeds are workloads, that are then mutated
by the fuzzing engine.
To compare PMRace to HawkSet, we ran Fast-Fair un-

der PMRace and HawkSet with each of the 240 workloads
provided. The goal was to determine the effectiveness of
each tool by measuring the average time to find a persistency-
induced race. HawkSet takes 6.65 seconds per workload while
PMRace uses the full allotted 10 minutes as suggested by the
authors. Table 3 presents the results. For bug #1, PMRace
reported the race on 9 of the 240 workloads, while HawkSet
reported it on 120 out of 240 workloads. The avg. time
to race reported in Table 3 captures the expected time, on
average, for each tool to find the race if the workloads are
selected at random and without replacement.

More precisely:∑𝐸
𝑖=0

(
𝐸
𝑖

)
× 𝑆 × 𝑇 × (𝑖 + 1)∑𝐸
𝑖=0

(
𝐸
𝑖

)
× 𝑆

where: E represents the number of workloads where the
tool cannot find the race; S represents the number of work-
loads where the tool finds the race; and T represents the
average execution time for one workload. This metric takes
into account both the execution time and the ability for each
tool to find races in the same workloads. Overall this results
in a speedup of 159x compared to PMRace.
Furthermore, the new bug (#2) found in Fast-Fair is re-

ported in 83 out of 240 workloads by HawkSet, while PMRace
is unable to detect it. This is because bug #2 is much less
likely to occur than bug #1, both require an insertion that
leads to a resizing operation splitting a node and inserting
the new node in their respective parent, however, bug #2
only occurs when that insertion falls on a specific edge case,
shown in Figure 5. By removing the need of directly ob-
serving the concrete interleaving, HawkSet is able to detect
this persistency-induced race reasonably consistently even
under a small workload, unlike PMRace, which does not re-
port it. Note that, in the case of HawkSet, the workloads for
which no race was reported lack the necessary operations
to cause it, therefore, they did not provide coverage to the
racy operations.
These results show that HawkSet brings substantial effi-

ciency improvements: not only does it find more bugs than
existing approaches, it also accomplishes it in a fraction of
the time.

5.3 Performance and Cost
We evaluate HawkSet’s performance and cost by measuring
testing time and peakmemory usage for the different systems
and workloads. The results are presented in Figure 6, the
standard deviation is negligible and therefore not displayed.
The testing time, shown in Figure 6a, grows sublinearly with
the workload size (note the different logarithmic basis for
each axis) taking a little over three minutes for the largest
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Figure 6. Breakdown of HawkSet’s metrics across all appli-
cations. Note that both axes are logarithmic.

experiment with 100k operations. We believe small testing
times allow developers to run HawkSet often as part of the
development process and hence catch PM concurrency bugs
early on, leading to more robust PM software. The peak mem-
ory usage, shown in Figure 6b, is relatively small, peaking
at around 4GB which shows that HawkSet can efficiently
maintain the necessary bookkeeping information even for
large workloads.

5.4 Initialization Removal Heuristic
We now study the effectiveness of the Initialization Removal
Heuristic (IRH) in removing False Positives. In order to do
this, we re-executed all the experiments with the IRH dis-
abled and manually classified the reported races (Malign
races, Benign races and False Positives) as discussed in §3.3.
The results are presented in Table 4 for the workloads with
100k operations (the results for the other workload sizes
follow similar trends and are omitted for brevity). Note that
all reports pruned by the IRH were False Positives.
We can draw a few conclusions from the results. For

Fast-Fair, MadFS, P-Masstree, and P-ART the initialization

Table 4. Breakdown of reports across all applications. Re-
sults under "Manual" represent the manual breakdown of
persistency-induced races, between Malign races (MR), Be-
nign races (BR), and False Positives (FP). Results under "Au-
tomatic" represent the reports filtered automatically via the
Initialization Removal Heuristic (IRH).

Manual Automatic
Application MR BR FP After IRH Reported Races

Fast-Fair 2 21 0 23 53
TurboHash 2 3 1 6 10
P-CLHT 1 6 1 8 40
P-Masstree 3 13 0 16 46
P-ART 11 40 0 51 91
MadFS 0 5 0 5 7
Memcached-pmem 6 37 24 67 68
WIPE 6 19 2 27 47
APEX 10 15 3 28 106

removal heuristic was able to eliminate all False Positives.
For P-CLHT, TurboHash, WIPE, and ALEX we can see that the
heuristic is able to prune the vast majority of False Positives.
Finally, for the case of Memcached-pmem, we see that most
False Positives have not been pruned by the IRH. We be-
lieve this is due to memory reuse, where PM is reallocated
and reinitialized safely but without holding a lock. The IRH
has previously marked this memory as published to other
threads, however, at this moment, it is not. Overall, despite
this limitation, the IRH removed a large fraction of False
Positives without removing any Malign Persistency-induced
races and hence is effective without any noticeable down-
sides.

5.5 Automation and Agnosticism
We now discuss the automatic and application-agnostic prop-
erties of HawkSet. Given the nature of these properties, our
analysis below is necessarily qualitative, not quantitative.

Automatism. HawkSet does not require the creation of any
artifacts, code annotations, or changes to the build process.

Evaluating MadFS, Fast-Fair, P-Masstree, WIPE, and
Memcached-pmem required no modifications or artifacts.

TurboHash and P-ART use custom concurrency control
primitives, and hence we had to create a configuration file
describing those primitives in order for HawkSet to instru-
ment them. Overall, this process took a few minutes to find
and enumerate all concurrency control operations.

P-CLHT and APEX implement their concurrency control
using CAS instructions. To instrument these operations, we
implemented wrapper functions, and created a configuration
file that covers them. Overall the extraction process took
less than an hour, and the configuration file was created in a
few minutes. We believe that for the developers of P-CLHT
and APEX, this process would take much less time since they
would be familiar with the source code. It is very important
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to note that this is an exception, within the 9 applications
evaluated, only P-CLHT and APEX required this modification.

Application Agnosticism. We selected the target appli-
cations used in the evaluation according to the following
criteria: The selection of target applications aimed to show
HawkSet’s broad applicability. We used the following crite-
ria: i) applications which were tested by PMRace and Durinn;
ii) wide range of application types, namely various data
structures, key-value stores, a database and a file system;
iii) recently published PM applications, namely WIPE from
2024, and TurboHash from 2023; iv) applications that use PM
frameworks other than Intel’s PMDK, such as MadFS.

Overall, we believe HawkSet achieves our automatic and
application-agnostic goals and is able to provide developers
with a tool for concurrent PM debugging that supports a
wide range of PM applications while requiring minimal to
no additional effort.

5.6 Discussion
HawkSet is able to detect persistency-induced races even if
they are not directly observed in a concrete execution thanks
to its PM-Aware Lockset Analysis algorithm. This obviates
the need of requiring multiple (guided) executions since the
conditions in which a race can be detected are much more
relaxed. In turn this leads to two major benefits: i) decrease
testing times since the number of executions required to
find a bug is much smaller than approaches that require
a direct observation of the race and/or guided execution,
and ii) increased bug detection since it can detect races that
happen infrequently. This is supported by our evaluation
results where HawkSet detected all the bugs detected by
PMRace and Durinn in the applications in common, in a
fraction of PMRace’s time. HawkSet is effective at finding
persistency-induced races with small workloads, and it also
scales to larger workloads, which increases coverage and
allows for detecting harder-to-reach bugs, namely the new
bug found in TurboHash and Fast-Fair which only occur
in very specific conditions.
One downside of traditional lockset analysis is the large

number of False Positives. The IRH was able to remove all
False Positives when analyzing Fast-Fair, MadFS, and P-
Masstree while greatly reducing those in P-CLHT, without
impacting the detection of Malign races.

6 Related Work
In this section, we provide an analysis of the state-of-the-art
in concurrent PM bug detection.

6.1 Concurrent Bug Detection
The literature covering the detection of concurrency bugs is
vast. Many techniques have been proposed and thoroughly
tested throughout the years, such as, but not limited to, delay
injection [36], lockset analysis (dynamic [34] and static [11])

or happens-before analysis [1]. For a survey, we refer the
interested reader to the work of Fu et al. [13]. It is important
to note that none of these techniques can be directly applied
to PM programs since they fail to take into account PM
semantics, in particular the point of the execution where
stores are guaranteed to be persisted.

6.2 PM Bug Detection
Most of the work for detecting bugs in PM programs is obliv-
ious to concurrency [7, 14, 16–18, 23, 26, 27, 33]. Works such
as Agamotto [33] rely on symbolic execution models which
are known to not support concurrent executions adequately.
Other works [7, 14, 16–18, 23, 26, 27] while not actively
searching for persistency-induced races, might be able to find
some bugs provided that: i) the concrete observed interleav-
ing exposes a race, and ii) this race can be reduced to the
models they support. Note however that this is highly un-
likely and even if such a ‘race’ is reported, these tools are
unable to provide meaningful feedback, as they do not reason
about concurrency.

6.3 Concurrent PM Bug Detection
Tools to detect persistency-induced races must be aware of
the semantics of both PM and concurrency primitives. To
the best of our knowledge, PMRace [2] and Durinn [15] are
the only tools that fall into this category. Next, we discuss
their design in light of three criteria: efficiency, application-
agnosticism and automation.

Efficiency. Given that the search space is extremely large
and that some persistency-induced races might only manifest
themselves in a few specific interleavings, the efficiency of
the search for persistency-induced races is a deciding factor
for a tool’s testing time. Durinn searches for persistency-
induced races between key-value store operations. This is
achieved by serializing the execution into a single thread
and extracting potentially racy operations for further test-
ing. For each pair of operations, Durinn adds breakpoints at
the relevant points in an attempt to force the interleaving
required to observe the race. While this approach works
well for small workloads, it quickly becomes impractical for
large workloads. PMRace uses fuzzing campaigns to increase
interleaving coverage, combined with delay injection tech-
niques to improve the chance of observing interleavings that
constitute a persistency-induced race. Still, the search space is
very large and PMRace needs to directly observe a persistent
race to report it, which might lead to long testing times.

Application-Agnostic. An application-agnostic tool sup-
ports any PM application regardless of its concrete semantics
and underlying libraries. Durinn’s operation-level approach
is limited to key-value stores and relies on the concrete se-
mantics of these operations to guide the execution. Hence,
it is unclear how it could be extended for other applications.
PMRace’s fuzzing engine only supports key-value stores or
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applications with equivalent semantics, and therefore, simi-
larly to Durinn it is also limited to these types of applications.
The fuzzing engine could arguably be replaced with a differ-
ent one, specialized for different application semantics, but
it is unclear how this would affect the overall design of the
tool. Furthermore, both PMRace and Durinn assume that the
target application is built on top of Intel’s PMDK [4] which
precludes testing applications that do not use PMDK such
as MadFS [42].

Automation. The automation level of a tool determines the
amount of work that the developer needs to perform to ana-
lyze the application. Durinn [15] requires extending a driver
that maps the high-level operations of the target application
(such as gets and puts) to the hook points expected by the
tool, and a battery of application-specific tests for the anal-
ysis. PMRace [2]’s relies on a fuzzing engine which in turn
requires modifications to the source code of the application
to comply with the fuzzing requirements and, similarly to
Durinn, it also requires a driver that maps the application’s
operations to the internal hook points. Overall, these modi-
fications and extensions are not trivial and require a good
understanding of the inner workings of each tool.

7 Limitations
We now discuss two practical limitations of HawkSet and
how we expect them to impact developers using the tool.

First, applications using a lock-free mechanism for shared
data synchronization yield a substantial number of Benign
races. While this is a fundamental limitation of approaches
based on lockset analysis, which requires manual inspection
to distinguish between Malign and Benign races, we argue
that this process aligns well with the expertise of the devel-
opers who implement these advanced concurrency control
mechanisms in the first place. In practice, these developers
should bewell-equipped to efficiently classify race conditions
based on their deep understanding of the synchronization
patterns they employ.

Second, some applicationsmight yield a significant amount
of False Positives as we saw in the case of memcached-pmem.
To the best of our knowledge, this happens when the applica-
tion reuses PM regions. While HawkSet could theoretically
address this by marking newly allocated memory as unpub-
lished, doing so would require instrumenting all the PM
allocation primitives used by the application. Unlike syn-
chronization primitives, which have mature and standard-
ized interfaces, PM allocation primitives are still evolving
and vary across implementations. We chose not to imple-
ment this approach to maintain HawkSet’s key strengths
namely its application-agnostic nature and automated oper-
ation. This design decision allows HawkSet to remain robust
and widely applicable across the PM application ecosystem,
even as PM allocation interfaces continue to evolve.

8 Conclusion
Current state-of-the-art concurrent PM bug detection tools
are limited in scope, focusing primarily on specific appli-
cation types like key-value stores, or specific libraries and
frameworks such as Intel’s PMDK. Furthermore, they are
not automatic since they require additional complex arti-
facts for debugging and modifications to the original source
code. Finally, they require multiple executions of the target
applications which negatively impacts testing time.

In this paper, we introduceHawkSet, an automatic, applica-
tion-agnostic, and efficient concurrent PMbug detector. Hawk-
Set extends a traditional lockset analysis algorithm to the
persistent domain to detect persistency-induced races. This is
complemented with a heuristic to prune the vast majority
of False Positives that commonly plague these techniques.
Our results demonstrate that HawkSet is efficient at find-
ing persistency-induced races, achieving a speedup of up to
≈ 159× when compared with existing approaches. Further-
more, HawkSet is able to detect hard-to-reach bugs reliably
and efficiently. HawkSet characteristics enable developers
to integrate it into their development workflow which, we
argue, contributes to the creation of more reliable concurrent
PM applications.
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A Artifact Appendix
This artifact includes HawkSet’s implementation, accompa-
nied by the experiments used to evaluate the tool, as seen in
§5. Furthermore, it includes the necessary artifacts for the
comparison between HawkSet and PMRace.

A.1 Abstract
The HawkSet artifact is divided in two components, i) a
HawkSet implementation as described in this paper, and ii)
a suite of applications (including the required configuration
files, patches, workloads and scripts for its evaluation).

A.2 Description & Requirements
A.2.1 How to access. The artifact is available at
https://github.com/Jonyleo/HawkSet-exp and as a DOI at
https://doi.org/10.5281/zenodo.14917473.

A.2.2 Hardware dependencies. The evaluation of this
artifact depends on the use of a machine equipped with an
Intel x86 processor with support for clwb, clflushopt, clflush
and sfence instructions.

A.2.3 Software dependencies.

• Linux (Tested for Ubuntu 22.04.5 LTS, kernel version 5.15.0)
• Docker (Tested for version 27.5.1)
• Vagrant (Tested for version 2.4.3)

A.2.4 Benchmarks. None.

A.3 Set-up
To download HawkSet and all experiments, run:

git clone https://github.com/Jonyleo/HawkSet−exp
cd HawkSet−exp && git submodule update −−init

To build HawkSet and all experiments, run:

./build_hawkset.sh && ./build_pmrace.sh

The full process takes about 1 hour and 15 minutes. To
leave the build process running in the background, we sug-
gest using tmux.
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A.4 Evaluation workflow1

A.4.1 Major Claims.
• (C1): [Bugs detected] HawkSet detects the bugs described

in Table 2. The results should match the table, with the
exception that the last column is omitted, and the exact
line numbers differ. This is because Table 2 reports line
numbers for the original source code of each application,
while the line numbers reported by HawkSet’s analy-
sis are subject to slight changes in the source code as
described in §5.5.

• (C2): [Scalability] HawkSet scales for large workloads.
The results should match Figure 6’s linear trend, while
exact values might change due to variation in hardware.

• (C3): [False Positives] HawkSet’s Initialization Removal
Heuristic prunes a vast majority of False Positives com-
monly associated with lockset analysis. The results should
be similar to what is shown in Table 4, except the Manual
column, which cannot be automated as is reported in
the paper.

• (C4): [Performance] HawkSet achieves a very high speedup
compared with PMRace. The results should approach
the ones in Table 3, and the overall speedup should
reach 159x as reported in § 5.

A.4.2 Experiments. Experiment (E1): [Bugs detected] [5
human-minutes + 2.5 compute-hour]: This experiment anal-
yses every application under hawkset, the results are used to
generate Table 2, as well as Figure 6, Table 4 in later exper-
iments. We recommend that you run this experiment under
tmux.

[Preparation] None.
[Execution] To run HawkSet, use:

./analyze_all_applications.sh

[Results] First, launch the hawkset-exp container:

cd ..
./launch.sh hawkset−exp
cd artifact_evaluation

Finally, run the following to display the table:

python3 disp_bug_table.py ../output/reports/

A table containing all the bugs reported in this paper
should be displayed in the terminal.

Experiment (E2): [Scalability] [1 human-minute + 1 compute-
minute]: This experiments analyses HawkSet’s performance as
workload sizes increase. It is used to generate Figure 6. Altough
the exact number may vary slightly, the result should be a
linear trend between the workload size and each metric (time
and memory).

[Preparation] None.
1Submission, reviewing and badging methodology fol-

lowed for the evaluation of this artifact can be found at
https://sysartifacts.github.io/eurosys2025/.

[Execution] None.
[Results] First, if you haven’t done so yet, launch the

hawkset-exp container:

cd ..
./launch.sh hawkset−exp
cd artifact_evaluation

Finally, run the following to display the table:

python3 python3 gen_graphs.py ../output/reports/ ../output/graphs

Two figures, analogous to Figure 6 should have been cre-
ated in ../output/graphs. To view them, you can use scp to
copy them into your machine, or mount the remote machine
via sftp and access the images from there.

Experiment (E3): [False Positives] [1 human-minute + 1
compute-minute]: This experiment compares the Initialization
Removal Heuristic’s impact in the reporting of persistency-
induced races. It is used to generate Table 4. Note that the
Manual column is not generated by the experiment, since, as is
described in the paper, this work must be done manually.

[Preparation] None.
[Execution] None.
[Results] First, if you haven’t done so yet, launch the

hawkset-exp container:

cd ..
./launch.sh hawkset−exp
cd artifact_evaluation

Finally, run the following to display the table:

python3 disp_irh_comparison.py ../output/reports/

A table containing the breakdown of reports with and
without our Initialization Removal Heuristic should be dis-
played in the terminal.
Experiment (E4): [Performance] [5 human-minutes + 48

compute-hours]: This experiment compares HawkSet’s perfor-
mance to that of a State-of-the-art tool, PMRace. The key metric
evaluated is the average time to race or, in other words, given
sequence of random workloads, how long would it take, on
average, for each tool to find a specific persistency-induced
race. This experiment is used to generate Table 3.

[Preparation] None.
[Execution] First, make sure you have exited the hawkset-exp

container.
To run the comparison, use:

cd artifact_evaluation
./exp_pmrace_comparison.sh

This should prompt for a confirmation, ensure you are
using tmux, and proceed.

[Results] First, launch the hawkset-exp container:

cd ..
./launch.sh hawkset−exp
cd artifact_evaluation
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Finally, run the following to display the table:
python3 disp_pmrace_comparison.py ffair ../pmrace_results \
../output/pmrace_seeds/

The output should resemble Table 3, and the speedup
should reach the 159x as reported in the paper. Note that
some variation is expected due to the uncertain nature of
these tools.

A.5 Notes on Reusability
To evaluate a PM application under HawkSet, a developer
must ensure three things:

Synchronization primitives. HawkSet needs to instru-
ment synchronization primitives, such as the ones offered
by the pthread library. Our tool does this automatically for

pthread, and libpmemobj’s primitives. If the application uses
custom synchronization primitives, the developers must pro-
vide a simple configuration file. Some examples are provided
in the config directory of the artifact.

Persistent Memory Map. HawkSet detects PM mapped
memory via the directory from which that memory was
mapped. By default HawkSet looks for the PM_MOUNT envi-
ronment variable to tell it what directory should be consid-
ered PM. Make sure to set this variable such that all PM,
and only PM, is allocated from files in it. This is usually
/mnt/pmem.

Coverage. HawkSet is able to detect persistency-induced
races only for PM accesses that are executed. It is up to the
developers to provide workloads with sufficient coverage.
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