
Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and

Aggregation

RAY NEIHEISER, DAS, UFSC, Florianopolis, Brazil and Pietrzak Group, ISTA - Institute of Science and

Technology Austria, Klosterneuburg, Austria

MIGUEL MATOS, INESC-ID, Universidade de Lisboa Instituto Superior Tecnico, Lisboa, Portugal

LUIS RODRIGUES, INESC-ID, Universidade de Lisboa Instituto Superior Tecnico, Lisboa, Portugal

With the growing interest in blockchains, permissioned approaches to consensus have received increasing attention. Unfor-

tunately, the BFT consensus algorithms that are the backbone of most of these blockchains scale poorly and ofer limited

throughput. In fact, many state-of-the-art BFT consensus algorithms require a single leader process to receive and validate

votes from a quorum of processes and then broadcast the result, which is inherently non-scalable. Recent approaches avoid

this bottleneck by using dissemination/aggregation trees to propagate values and collect and validate votes. However, the use

of trees increases the round latency, which limits the throughput for deeper trees. In this paper we propose Kauri, a BFT

communication abstraction that sustains high throughput as the system size grows by leveraging a novel pipelining technique

to perform scalable dissemination and aggregation on trees. Furthermore, when the number of faults is moderate (arguably the

most common case in practice), our construction is able to recover from faults in an optimal number of reconiguration steps.

We implemented and experimentally evaluated Kauri with up to 800 processes. Our results show that Kauri outperforms the

throughput of state-of-the-art permissioned blockchain protocols, by up to 58x without compromising latency. Interestingly,

in some cases, the parallelization provided by Kauri can also decrease the latency.

CCS Concepts: · Computer systems organization→ Reliability; Fault-tolerant network topologies.

Additional Key Words and Phrases: Distributed Systems, Byzantine Fault Tolerance, Blockchain, Vote Aggregation, Pipelining

1 Introduction

The increasing popularity of blockchains in addressing an expanding set of use cases, from enterprise to govern-
mental applications [15], led to a growing interest in permissioned blockchains, such as Hyperledger Fabric [2].
In contrast to their permissionless counterparts, permissioned blockchains can ensure deterministic transaction
inality, which is a key requirement in many settings [38]. Most permissioned blockchains are based on variants of
classical Byzantine fault-tolerant (BFT) consensus algorithms, that can ofer high throughput in small systems [40],
but scale poorly with the number of participants [16, 25]. This is a strong limitation, given that emerging use
cases for permissioned blockchains require the system to scale to hundreds of participants [20]. For instance, a
recent paper from IBM Research [34] discusses the need to extend HyperLedger to support deployments above
100 nodes.

The scalability limitations of previous protocols stem from both bandwidth and processing bottlenecks resulting
from the large number of messages that need to be sent, received, and processed to reach consensus. For
instance, the well-known PBFT protocol [12] organizes participants in a clique topology and uses an all-to-all

Authors’ Contact Information: Ray Neiheiser, DAS, UFSC, Florianopolis, Santa Catarina, Brazil and Pietrzak Group, ISTA - Institute of Science

and Technology Austria, Klosterneuburg, Lower Austria, Austria; e-mail: ray.neiheiser@ist.ac.at; Miguel Matos, INESC-ID, Universidade de

Lisboa Instituto Superior Tecnico, Lisboa, Lisboa, Portugal; e-mail: miguel.marques.matos@tecnico.ulisboa.pt; Luis Rodrigues, INESC-ID,

Universidade de Lisboa Instituto Superior Tecnico, Lisboa, Lisboa, Portugal; e-mail: ler@tecnico.ulisboa.pt.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7333/2025/9-ART

https://doi.org/10.1145/3769423

ACM Trans. Comput. Syst.

https://orcid.org/0000-0001-7227-8309
https://orcid.org/0000-0001-6916-2866
https://orcid.org/0000-0002-0313-6590
https://orcid.org/0000-0001-7227-8309
https://orcid.org/0000-0001-6916-2866
https://orcid.org/0000-0002-0313-6590
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3769423
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3769423&domain=pdf&date_stamp=2025-09-26

2 • R. Neiheiser et al.

communication pattern that incurs a quadratic message complexity. Although there have been many proposals
to extend and improve several aspects of PBFT (such as [9, 17, 36, 37]), most preserve its communication pattern.

Hotstuf [40] avoids the quadratic communication cost by having a single leader aggregate all votes and then
distribute them to the remaining processes. However, this creates a performance bottleneck at the leader: irst,
the leader has to send the (potentially large) block to all processes, where the bandwidth consumption grows
linearly with the number of processes; second, the leader has to verify all � − 1 signatures.
Meanwhile, DAG-based protocols such as Narwhal [14] avoid the bandwidth bottleneck at the leader by

decoupling block dissemination from block ordering. In this category of protocols, irst all processes broadcast
blocks using a DAG-based mempool protocol and, later, consensus is primarily used for inality. However, all
processes still need to verify � − 1 signatures per round and, as such, there is still a processing bottleneck.
Existing tree-based approaches, such as Byzcoin [22] and Motor [23], address both the computational and

bandwidth bottlenecks. However, these approaches sufer from two key drawbacks. First, they fail to achieve
high throughput due to the inherent latency increase associated with tree-based dissemination. Second, they lack
eicient mechanisms to deal with Byzantine nodes in the tree that can disrupt the operation of the tree leading
to long reconiguration periods and eventually falling back to a star or clique coniguration.
In this paper, we propose Kauri, a BFT communication abstraction that leverages dissemination/aggregation

trees for load balancing and scalability while avoiding the main limitations of previous tree-based solutions,
namely, poor throughput due to additional round latency, and the degradation of the tree topology to a star or
clique even in runs with few faults. Kauri introduces novel pipelining techniques suitable for trees of arbitrary
depth that sustain high throughput as the system grows in size. As in HotStuf, Kauri starts a new instance of
consensus before the previous instance has terminated. But, unlike HotStuf, Kauri starts a new round while the
previous round is still being propagated in the tree, efectively exploiting the potential parallelism created by the
diferent stages (one stage per depth) of the tree. This allows the leader to efectively use the available bandwidth
without becoming a bottleneck. One of the key challenges behind our combination of the use of tree-based
dissemination/aggregation and pipelining is that using arbitrary pipeline values results in poor performance:
under-pipelining (i.e. pipelining less than the system capacity allows) fails to take advantage of the available
parallelization opportunities, while over-pipelining (i.e. starting more instances than the system can handle)
congests the system - hence, simply using HotSuf’s star-based pipelining in Kauri trees would not yield good
results. We overcome this challenge by introducing a performance model that approximates, for a given scenario,
the ideal pipelining values that maximizes performance.

To overcome the slow reconiguration of existing tree-based approaches, we introduce a novel reconiguration
strategy that, when the number of consecutive faults is moderate (arguably the most common scenario), enables
Kauri to quickly reach a coniguration where all internal nodes are correct. We refer to such a coniguration as
robust.
More precisely, for a tree fanout of�, if � ≤ �� <

�−1
3 ∗

�2

�−1+�2−�
+ 1, Kauri is guaranteed to ind a robust

tree-based coniguration in � + 1 reconiguration steps, which is optimal. Furthermore, as demonstrated in §6,
even in the presence of a large number of failures, our reconiguration strategy has a high probability of reaching
a robust tree within � + 1 steps. Consequently, Kauri only needs to fall back to a star topology in scenarios where
� > �� consecutive faults occur and no robust coniguration can be found within � + 1 steps.
Kauri ofers the same fault-tolerance of traditional approaches (i.e. ensures safety as long as � ≤ �−1

3), and
distributes the computational and bandwidth load among internal nodes allowing it to scale with the number of
processes and achieve high throughput. We implemented Kauri and evaluated it under diferent realistic scenarios
with up to 800 processes. Our results show that Kauri outperforms HotStuf’s throughput by up to 58x and in
some scenarios it ofers better latency. When compared with Narwhal, Kauri achieves on average 100x better
latency while Narwhal ofers on average 3x better throughput. However, as the system size increases, due to

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 3

Narwhal’s bandwidth and processing bottlenecks, we observe that when the system size reaches approximately
300 nodes, Kauri also starts to ofer better throughput.

In short, the paper makes the following contributions:

• We present a set of abstractions that support the use of aggregation/dissemination trees in the context of
Byzantine consensus algorithms;
• We introduce a performance model that shows how pipelining can be used to fully leverage the parallelisa-
tion opportunities ofered by the use of trees;
• We precisely outline the necessary and suicient conditions that allow eicient reconiguration of trees
without having to fall back to a star topology;
• We present Kauri, the irst tree-based communication abstraction for BFT consensus protocols that achieves
higher throughput than HotStuf and lower latency than Narwhal. In certain scenarios, particularly at scale,
Kauri achieves better throughput and latency than either system;
• We present an extensive experimental evaluation of Kauri in realistic scenarios with up to 800 nodes.

The rest of this paper is organized as follows: §2 discusses related work and how it compares to Kauri. §3
introduces the system model which follows the same assumptions as classical BFT consensus algorithms such as
PBFT. §4 presents the tree construction algorithms, §5 introduces the pipelining techniques and the respective
performance model. §6 details the reconiguration algorithms, that allow the system to be reconigured in a small
number of steps in the common case. §7 discusses the implementation details, and §8 evaluates and compares
Kauri with other state-of-the art approaches. Finally, §9 discusses the limitations of our work, and §10 concludes
the paper.

2 Related Work

There is a wide selection of Byzantine fault-tolerant consensus algorithms that were designed with the goal of
improving PBFT [12] scalability bottlenecks. HotStuf [40] avoids a quadratic message complexity by having
only the leader send/collect messages directly to/from all other processes, i.e. communication is based on a star
topology centered at the leader. This approach results in a linear message complexity, but the leader is still
required to receive and validate votes from at least � − � other processes. At the time of writing, the publicly
available implementation of HotStuf uses secp256k1 [39] signatures, a highly eicient elliptic curve algorithm
that is also used in Bitcoin [8]. In this implementation, the leader is required to relay the full set of signatures to
all processes. Alternatively, it is possible to use multisignatures, such as bls [10], to reduce the message size at
the expense of a signiicant increase in the computational load at the leader. In HotStuf, each protocol round
takes two communication steps. To mitigate the negative efect that the additional round latency can have on
throughput, HotStuf uses pipelining: the irst round of the �th consensus instance is executed in parallel with the
second round of the (� − 1)th consensus instance and with the third round of the (� − 2)th consensus instance, etc.
This allows piggybacking information from multiple consensus instances in a single message and is critical for
reducing latency and improving throughput. Unfortunately, in a star topology, pipelining increases the burden
on the leader, further amplifying the scalability limitations that stem from processing and bandwidth bottlenecks.
As a result, and as we show in the evaluation (§8), HotStuf is inherently non-scalable as the system performance
is limited by the processing and bandwidth capacity of the leader.

MirBFT [34] solves the bandwidth bottleneck by using concurrent leaders that propose in parallel. However, if
one of the leaders is faulty a view change is necessary. As such, even a small number of byzantine failures can
force the system to change its view until a coniguration is reached without a faulty leader. This might require a
factorial number of reconigurations which can have a substantial negative impact on performance. A followup
work called ISS [35] improves on this by using parallel instances of sequenced broadcast. However, this still

ACM Trans. Comput. Syst.

4 • R. Neiheiser et al.

results in a computational bottleneck where for each round at least one node has to verify the signatures of all
other nodes, presenting an inherent scalability limitation.

A way to circumvent the scalability constraints is to select a small committee such as in Algorand [19]. However,
this approach reduces the resilience of the system, as safety is now probabilistic in function of the committee size
and not of the entire system size. Alternatively, systems such as Steward [1], Fireplug [29], ResilientDB [31] or
Multi-Layer PBFT [27] organize processes in hierarchical groups to achieve low message complexity and balance
the bandwidth load. However, these approaches sacriice resilience by tolerating signiicantly less than � =

�−1
3

failures.
Approaches such as Byzcoin [22], Motor [23], and Omniledger [24] address the bottleneck at the leader by

organizing processes in a tree topology, with the leader placed at the root. The tree is used to disseminate
messages from the leader to the other processes, and to aggregate votes using cryptographic primitives such as
multisignatures [10, 22]. The use of trees reduces the number of messages any single process has to send, receive,
and process (which becomes logarithmic with the system size) by distributing the load among all internal nodes
of the tree. The use of trees comes, however, at the cost of an increase in the latency of each consensus round. In
fact, while in PBFT a round can be executed within a single communication step, and in HotStuf it requires two
communication steps (i.e., one roundtrip), trees require 2� communication steps, given the depth of the tree � . If
the blockchain protocol only starts a new consensus instance after the previous one terminates, this per-round
latency increase has a direct negative impact on the system throughput. In particular, the performance advantages
that stem from the load distribution provided by the tree can be easily outweighed by the disadvantages associated
with longer consensus rounds. Strikingly, neither Motor nor Omniledger discuss or mitigate the impact of the
additional latency on the throughput due to the increased number of communication steps required to complete
each round. As we show in the evaluation (§8) this results in low throughput.
Another disadvantage of trees is their fragility to faults and the resulting potentially long reconiguration

procedures. In approaches that use a clique or a star topology, such as PBFT or HotStuf, respectively, the
system is able to make progress as long as the leader is correct. Moreover, if the leader is faulty, the system is
guaranteed to recover after � + 1 reconiguration steps (also known as view changes in the literature). When
using trees, progress is guaranteed if all internal nodes of the tree are correct (this is a suicient but not necessary
condition as discussed in §4). However, inding a coniguration without faulty internal nodes has combinatorial
complexity [23]. Due to these challenges, Byzcoin [22] quickly falls back to a clique when faults occur. Motor [23]
and Omniledger [24] build upon the principles of Byzcoin, but rather than falling back immediately to a clique
topology, rotate the nodes in the subtrees in an attempt to let the leader, i.e. the root of the tree, gather � − �
signatures. If, in a given round, the root process is unable to collect a quorum of signatures, it contacts directly a
random subset of leaf processes, which in turn will attempt to collect votes from their siblings, until a quorum is
obtained. Thus, in the worst case scenario, and considering a fanout of�, after �

�
steps the root will contact

every other node directly as if the system was using a star topology. If the root itself fails during this process, a
new tree is formed but, if more faults occur, the entire procedure may need to be repeated. Furthermore, note
that this strategy was only designed for trees with a maximum depth of � = 2.
Next, the Chain Protocol [4] constructs a chain of � nodes which allows using MACs for easy and scalable

authentication. However, not only does the latency increase in function of the system size � , but the protocol
does not tolerate failures ś a single fault forces the system to fallback to less performant variants.
Recently, DAG-based consensus protocols such as Narwhal and Tusk [6, 14] have addressed the bandwidth

bottleneck at the leader by decoupling block dissemination from block ordering. Unlike traditional chain-based
structures, these protocols allow processes to broadcast blocks concurrently, resulting in a directed acyclic graph
(DAG) of blocks rather than a linear chain. Subsequently, consensus is applied only to determine the order and
inality of blocks. However, since the protocol relies on broadcast communication, each node must verify the

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 5

Table 1. Comparison of existing BFT consensus algorithms.

System Bandwidth CPU � = 3� + 1 Latency Quick

balancing balancing resilience compensation recovery

PBFT [12] ✗ ✗ ✓ ✗ ✓

HotStuf [40] ✗ ✗ ✓ ✗ ✓

Ebawa [37] ✗ ✗ ✓ ✓ ✓

Steward [1] ✓ ✓ ✗ ✗ ✗

Fireplug [29] ✓ ✓ ✗ ✗ ✗

ResilientDB [31] ✓ ✓ ✗ ✗ ✗

Multi-Layer [27] ✓ ✓ ✗ ✗ ✓

Algorand [19] ✓ ✓ ✓ ✗ ✗

Byzcoin [22] ✓ ✓ ✓ ✗ ✗

Omniledger [24] ✓ ✓ ✗ ✗ ✗

Chain [35] ✓ ✓ ✓ ✗ ✗

Narwhal [14] ✓ ✗ ✓ ✓ ✓

ISS [35] ✓ ✗ ✓ ✗ ✓

Kauri (this work) ✓ ✓ ✓ ✓ ✓

signatures of all� blocks received per round, creating a computational bottleneck. Additionally, because processes
broadcast blocks independently, the same transaction may appear in multiple blocks, leading to redundant entries
in the blockchain. Although such duplicates are eventually discarded, they still incur unnecessary communication
and storage overhead.

Table 1 summarizes our discussion of the systems based on the criteria discussed above. The irst and second
column captures if an approach distributes the bandwidth and computational load among a set of processes,
respectively. The third column indicates if a given approach displays optimal resilience (i.e., � = 3� + 1). The
fourth column indicates if the system can provide high throughput independent of the network latency. Finally,
the last column indicates if the approach can recover deterministically in a linear number of coniguration steps.
The table highlights that no previous system leverages load balancing techniques to promote scalability while
preserving high resilience and high throughput. Furthermore, most systems that achieve some form of load
balancing either decrease fault tolerance or increase the complexity of the reconiguration leading to a slow
recovery under faults.

3 System Model

Weassume the system is composed of� server processes {�1, �2, . . . , �� } and a set of client processes {�1, �2, . . . , �� }.
We also assume the existence of a Public Key Infrastructure used by processes to distribute the keys required for
authentication, message signing, and veriication. Processes may not change their keys during the execution of the
protocol and require a suiciently lengthy approval process to re-enter the system to avoid rogue key attacks [32].
We assume the Byzantine fault model, where at most � ≤ �−1

3
faulty processes may produce arbitrary values,

delay or omit messages, and collude with each other, but do not possess suicient resources to compromise the
cryptographic primitives.

Processes communicate via perfect point-to-point channels, whose interface includes a send primitive (used to
send a value) and a deliver (used to notify a recipient that a value has been received). Perfect point-to-point
channels have the following properties:

• Validity: If a process � � delivers a value � on a channel over an edge �� � , � was sent by �� .
• Termination: If both �� and � � are correct, if �� invokes send then eventually � � delivers � .

ACM Trans. Comput. Syst.

6 • R. Neiheiser et al.

Notation Description

� Total number of processes in the system

� Maximum number of tolerated faults. By assumption � =
�−1
3

� Tree fanout
� Tree depth
�� Number of actual faults, subject to �� ≤ �
�� Maximum number of faults for robust tree construction
� Block size
� Link bandwidth

Table 2. Notation used throughout the paper.

P0

P1 P2

P5 P4

P3P6

(a) Topology

C

P0

P1

P2

P3

P4

2: pre-commit

P5

P6

1: prepare 3: commit 4: decide

(b) Communication patern

Fig. 1. HotStuf topology and communication patern in a system with N=7 processes.

These are implemented using mechanisms for message re-transmission and detection and suppression of
duplicates [11]. To circumvent the impossibility of consensus [18], we assume the partial synchrony model [16].
In this model, there may be an unstable period, where messages exchanged between correct processes are
arbitrarily delayed. However, there is a known bound Δ on the worst-case network latency and an unknown
Global Stabilization Time (GST), such that after GST, all messages between correct processes arrive within Δ.
Similarly to other works, safety is always preserved and the partial synchrony assumptions are necessary only to
ensure liveness [40].

The notation used throughout the rest of the paper is summarized in Table 2.

4 Design of Dissemination/Aggregation Trees

Instead of designing a completely new consensus algorithm from scratch, we focus on the communication
primitives that are needed to reach consensus. The key idea is to replace the dissemination and aggregation
patterns used by systems such as HotStuf, which is based on a star topology, by our new pattern based on tree
topologies. While for simplicity our presentation hinges on HotStuf characteristics, our principles could also be
applied to other leader-based consensus algorithms.

4.1 HotStuf Communication Patern

For self-containment, we provide a brief high-level description of HotStuf. We give emphasis on the communica-
tion pattern used in HotStuf and discuss how this pattern may be abstracted, such that it can be replaced by

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 7

diferent implementations. HotStuf reaches consensus in four communication rounds as illustrated in Figure 1
for a system with seven processes. Each round consists of two phases: i) a dissemination phase where the
leader broadcasts some information to all processes; and ii) an aggregation phase where the leader collects and
aggregates information from a Byzantine quorum of processes. All rounds follow the same exact pattern, but the
information sent and received by the leader in each round difers:

First round: In the dissemination phase, the leader broadcasts a block proposal to all processes. In the aggregation
phase, the leader collects a prepare quorum of � − � signatures of the block. The signatures convey that the
processes have validated and accepted the block proposed by the leader.

Second round: In the dissemination phase, the leader broadcasts the prepare quorum previously collected. In
the aggregation phase, the leader collects the pre-commit quorum, including � − � signatures from processes
that have validated the prepare quorum. If the leader is able to collect a pre-commit quorum, the value proposed
by the leader is locked and will not be changed, even if the leader is subsequently suspected.

Third round: In the dissemination phase, the leader broadcasts the pre-commit quorum collected in the second
round. In the aggregation phase, the leader collects a commit quorum, including � − � signatures of processes
that have validated the pre-commit quorum. If the leader is able to collect the quorum, the value is decided.

Fourth round: In the last round, the leader broadcasts the commit quorum to all processes, which in turn verify
it and decide accordingly.

To implement these rounds, HotStuf uses the following two communication primitives:

• broadcastMsg(data). This primitive is used in the irst phase of each round to broadcast data from the leader
to all other processes.
• waitFor (N - f) votes. This primitive is used in the second phase of each round, for the leader to collect votes
from a quorum of � − � processes.

The implementation of these primitives must satisfy the following properties:

Definition 1. Robust Star: A star is considered robust if the leader is correct, and non-robust if the leader is

faulty.

Definition 2. Reliable Dissemination: After the GST, and in a robust star, all correct processes deliver the data

sent by the leader.

Definition 3. Fulillment: After the GST, and in a robust star, the aggregate collected by the leader includes at

least � − � votes.

It is easy to show that, when using perfect point-to-point channels, it is possible to achieve Reliable Dissemina-
tion and Fulillment on a star topology. Briely, the assumption of perfect point-to-point channels and the fact
that the leader is correct ensure that all correct processes deliver the message sent by the leader, hence satisfying
Reliable Dissemination. In a similar fashion, all correct processes are able to send their vote to the leader which,
in turn, is able to collect � − � votes/signatures and hence satisfy Fulillment. We refer the reader to the HotStuf
paper for the full details [40].

4.2 Using Trees to Implement HotStuf

We now discuss how to implement the broadcastMsg andwaitFor primitives using tree topologies, while preserving
the same properties. As noted before, processes are organized in a tree with the leader at the root. The primitive
broadcastMsg is implemented by having the root send data to its children that forward it to their children, and so
forth. The primitive waitFor is implemented by having the leaf processes send their signatures to their parent.
The parent then aggregates those signatures with its own and sends the aggregate to their parent. This process is

ACM Trans. Comput. Syst.

8 • R. Neiheiser et al.

P1

P0

P2

L3 L4 L5 L6

(a) Topology

C
P0

P1

P2

L1

L2

2: pre-commit

L3
L4

1: prepare 3: commit 4: decide

(b) Communication patern

Fig. 2. Tree topology and communication patern in a system with N=7 processes.

repeated until the inal aggregate is computed at the root of the tree. This process is illustrated in Figure 2 for a
system with seven processes.

When using a tree to implement the broadcastMsg and waitFor primitives, the notion of robust coniguration
needs to be adapted, as it is no longer enough that the leader is correct to make the coniguration robust. We
deine a robust tree as follows.

Definition 4. Safe Edge: An edge is said to be safe if the corresponding vertices are both correct processes.

Definition 5. Robust Tree: A tree is robust if the leader process is correct and, for every pair of correct process

�� and � � , the path in the tree connecting these processes is composed exclusively of safe edges.

A tree is robust if and only if all internal nodes, including the leader, are correct processes. This observation
allows us to devise an eicient reconiguration algorithm that is optimal when the number of consecutive faults is
small (§6). Note that the deinition of a robust tree is a suicient but not necessary condition to achieve consensus.
In fact, consensus can be reached as long as there is a path composed exclusively of safe edges between the leader
and a quorum of correct processes. We capture this in the deinition of a quorum �-robust tree as follows:

Definition 6. Quorum �-Robust Tree: A tree is quorum �-robust if: i) the leader process is correct and ii) there

are at least � − 1 correct process that are reachable from the root using safe edges only.

The use of trees that are quorum �-robust with � = � − � is a suicient and necessary condition to achieve
consensus. For simplicity of explanation, in the following sections we provide the intuition and algorithms for
our approach based on the assumption of a robust tree. Later, in § 6.3, we introduce the extensions required to
achieve consensus on a quorum �-robust tree.

4.3 Dissemination and Aggregation

We start by describing the cryptographic primitives used to perform aggregation and then the communication
primitives used to propagate information on the tree.

4.3.1 Cryptographic Collections. In each round of consensus, it is necessary to collect a Byzantine quorum
of votes. The collection and validation of these votes can be an impairment for scalability. Kauri mitigates
these costs by using the tree to aggregate votes as they are forwarded to the leader. For this purpose, we need
to use a signature scheme that supports signature aggregation. In the current implementation we leverage a
non-interactive bls multisignature scheme that allows each internal node to aggregate the votes from its children
into one single aggregated vote [10]. The burden imposed on each internal node (including the root) is O(�),

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 9

where� is the fanout of the tree and the complexity of verifying an aggregated vote is O(1). Note that classical
asymmetric signatures require O(�) veriications at each process [10].
To make the protocol description independent of the concrete signature scheme used in the implementation,

we capture the properties we need from the signature scheme using the notion of a cryptographic collection

abstraction that corresponds to a secure multi-set of tuples (�� , ��). A process �� can create a new collection �
with a value �� by calling �=new((�� , ��)). Processes can also merge two collections using a combine primitive
denoted by �12 = �1 ⊕ �2. A process can check if a collection � includes at least a given threshold of � distinct
tuples with the same value � , by calling has(�, �, �). Finally, it is possible to check the total number of input tuples
combined in � by checking its cardinality |� |. Cryptographic collections have the following properties:

• Commutativity: �1 ⊕ �2 = �2 ⊕ �1
• Associativity: �1 ⊕ (�2 ⊕ �3) = (�1 ⊕ �2) ⊕ �3
• Idempotency: �1 ⊕ �1 = �1
• Integrity: Let � = �1 ⊕ . . . �� . . . �� . If has (�, �, �) then at least � distinct processes �� have executed
��=new((�� , �))

4.3.2 Impatient Channels. Processes use the tree to communicate. When using perfect channels, a message
is only guaranteed to be eventually delivered if both the sender and the recipient are correct. If the sender is
faulty, messages may be duplicated (in this case, duplicates need to be discarded), delayed, or may even never
be sent (in this case, the recipient may timeout and proceed without waiting for that particular message). We
encapsulate the functionality required to discard duplicates and to manage timeouts in an abstraction that we
have named impatient channels. From the point of view of upper-layers, each invocation of the dissemination/
aggregation protocol uses a diferent impatient channel, that transmits a single message and where the receiver
either returns the value sent or ⊥ (but never delivers duplicate values or messages sent in previous steps of
the protocol). Note that single-use impatient channels are introduced just to simplify the speciication of the
protocol. In practice, multiple single-use channel instances will use the same underlying point-to-point channel.
In the implementation this is achieved by using TCP, timeouts, assigning a unique identiier to each instance, and
tagging the corresponding message with this identiier. Impatient channels ofer a blocking receive primitive
that always returns a value: either the value sent by the sender or a special value ⊥ if the sender is faulty or the
system is unstable. After the GST, if the sender and the receiver are correct, the receiver always returns the value
sent. Impatient channels have the following properties:

• Validity: If a process � � delivers a value � on a channel over an edge �� � , � was sent by �� or � = ⊥.
• Termination: If a correct process � � invokes receive, it eventually returns some value.
• Conditional Accuracy: Let �� and � � be correct sender and receiver processes, respectively. After GST, � �
always return the value � sent by �� .

Algorithm 1 shows how impatient channels can be implemented on top of perfect channels using the known
bound Δ on the worst-case network latency.

We now have the machinery to implement broadcastMsg and waitFor primitives which we discuss next.

4.3.3 Implementing broadcastMsg. The implementation of broadcastMsg on a tree is presented in Algorithm 2.
Note that the algorithm always terminates, even if some intermediate nodes are faulty. This is guaranteed since
impatient channels always return a value after the known bound Δ on the worst-case network latency, either the
data sent by the parent or the special value ⊥.

Theorem 1. Algorithm 2 guarantees Reliable Dissemination.

Proof. We prove this by contradiction. Assume Reliable Dissemination is not guaranteed. This implies that at
least one correct process did not receive the data sent by the leader. This is only possible if: i) at least one correct

ACM Trans. Comput. Syst.

10 • R. Neiheiser et al.

Algorithm 1 Impatient Channels

1: let ic be an impatient channel built on top of perfect channel pc
2: function ic.send(� ,�) ⊲ send v to p
3: pc.send (�, �)
4: end function

5: function ic.receive(p) ⊲ receive from p
6: timer.start(Δ)
7: when pc.deliver (�, �) do return �

8: when timer.timeout() do return ⊥

9: end function

Algorithm 2 broadcastMsg on a tree � (process ��)

1: procedure broadcastMsg(� , data)
2: children← � .children(��) ⊲ Get edges to children of ��
3: parent← � .parent(��) ⊲ Get parent of �� (returns ⊥ for root)
4: if parent ≠ ⊥ then

5: data← ic.receive(parent) ⊲ Receive from parent
6: end if

7: for all e ∈ children do ⊲ Send to children
8: ic.send(� , data)
9: end for

10: return data

11: end procedure

process is not connected to the leader either directly or through correct intermediary processes, ii) one of the
intermediary processes or the root process did not invoke ic.send for at least one correct child process, or iii) the
data got lost in the channel. Reliable Dissemination is deined only for a robust coniguration which, following
the deinition of a Robust Tree, ensures that the leader is correct and there is a path of correct processes between
the leader and any other correct process. Thus, the irst case is not possible. Moreover, correct processes follow
the algorithm and, because correct processes can only have correct parents in a robust coniguration, the second
case is also impossible. Finally, the third case is also impossible due to the use of perfect channels. Therefore,
Algorithm 2 guarantees Reliable Dissemination. □

4.3.4 Implementing waitFor. Algorithm 3 presents the implementation of waitFor on a tree. The algorithm
relies on the cryptographic primitives to aggregate the signatures as they are propagated toward the root. Like
broadcastMsg, waitFor always terminates, even if some nodes are faulty. This is guaranteed because impatient
channels always return a value after the known bound Δ on the worst-case network latency, either the data sent
by the child processes or the special value ⊥. Before GST or in non-robust conigurations, the collection returned
at the leader may be empty or include just a subset of the required signatures.

Theorem 2. Algorithm 3 guarantees Fulillment.

Proof. We prove this by contradiction. Assume that the leader process was unable to collect � − � signatures.
Following Algorithm 3, this means that either: i) an internal node did not receive the signatures from all correct
children (line 6), ii) or an internal node did not aggregate and relay the signatures it has received from its correct
children (line 10). Since we assume impatient channels, that are implemented on top of perfect point-to-point
channels, the irst case is not possible after GST. The second case may happen, if either the internal node omits

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 11

Algorithm 3 waitFor on a tree � (process ��)

1: procedure waitFor(� , input)
2: children← � .children(��) ⊲ Get edges to children of ��
3: parent← � .parent(��) ⊲ Get parent of �� (returns ⊥ for root)
4: collection← new((�� , input))

5: for all e ∈ children do ⊲ Empty for leaf nodes
6: partial← ic.receive(�)
7: collection← collection ⊕ partial

8: end for

9: if parent ≠ ⊥ then

10: ic.send(parent, collection)
11: end if

12: return collection

13: end procedure

signatures in the aggregate, does not relay any signatures, or is blocked waiting indeinitely for messages from
its children. Either option leads to a contradiction. Since we assume a robust tree, all internal nodes between the
root and a correct process must be correct and hence follow the algorithm. Additionally, due to the impatient
channels, eventually each channel will return a value ensuring that the node will unblock and relay all collected
signatures from all correct child processes. Therefore Algorithm 3 guarantees Fulillment. □

4.3.5 Challenges of Using a Tree. The implementations of the broadcastMsg and waitFor primitives that we
introduced above allow us to replace the star topology used in HotStuf with a tree topology that is more eicient
and scalable as we show in the evaluation (§8). However, two remaining challenges need to be addressed to make
the tree topology a valid alternative in practice:

Mitigate the increased latency: While trees allow to distribute the load among all processes, the additional
round-trip of the broadcastMsg and waitFor primitives result in additional latency which, in turn, may negatively
afect they system throughput. We discuss how to mitigate this in §5.

Reconiguration strategy: In HotStuf, the coniguration is robust if the leader is non-faulty. Therefore, there are
only � non-robust conigurations and � − � robust conigurations. It is thus trivial to devise a reconiguration
strategy that yields a robust coniguration in an optimal number of steps (i.e. � + 1), for instance, by rotating
the leader when the leader is suspected. In a tree, a coniguration is robust if the root and all internal nodes are
correct. The total number of conigurations and the subset of non-robust conigurations is extremely large. In §6
we introduce a reconiguration strategy that builds robust conigurations in a small number of steps.

5 Mitigating Tree Latency

In this section we introduce mechanisms to mitigate the additional latency inherent to tree topologies when
compared to HotStuf’s star topology. As described earlier, HotStuf needs four communication rounds for each
instance of consensus. If HotStuf waited for each consensus instance to terminate before starting the next one,
the system throughput would sufer signiicantly. Therefore, HotStuf relies on a pipelining optimization, where
the � + 1 instance of consensus is started optimistically, before instance � is terminated. As a result, at any given
time, each process participates in multiple consensus instances. Furthermore, to reduce the number of messages,
HotStuf combines the information of these parallel consensus instances in a single message.
By following the same structure, Kauri is amenable to the same optimization. However, because Kauri uses

a tree, the latency to terminate a given round (and hence a consensus instance) is substantially larger than in

ACM Trans. Comput. Syst.

12 • R. Neiheiser et al.

Aggregation

Dissemination

Consensus c, round r(c,r)

(1,1)

sending time

computation time

remaining

time

(1,2) (2,1)

sending time

computation time

remaining

time

(1,3) (2,2) (3,1)

sending time

computation time

remaining

time

(1,4) (2,1) (3,2) (4,1)

sending time

computation time

remaining

time

Fig. 3. Pipelining in HotStuf from the perspective of the leader process.

HotStuf. While this, at irst look, may appear a fundamental obstacle, it opens the door for more advanced
pipelining techniques that substantially improve throughput and hide the additional latency induced by trees. In
fact, as we will show in the evaluation (§8), in certain scenarios, Kauri can achieve not only higher throughput
than HotStuf but also lower latency.

5.1 Pipelining in HotStuf

We start by providing an overview of how pipelining is used in HotStuf, with the help of the seven node scenario
previously introduced in Figure 1. Figure 3 illustrates the execution of multiple rounds of consensus in HotStuf
where each round is depicted in a diferent shade of gray.

Consider the irst round (light gray) that starts with the leader sending the block to all other processes
(downward arrows). The time this step takes depends on the size of the data being transmitted, the available
bandwidth, and the total number of processes. To conclude a round, the leader has to collect a quorum of
signatures. These signatures start lowing toward the leader as soon as the irst process receives the message from
the leader (upward arrows). Therefore, in a given round, dissemination and aggregation are partially executed in
parallel. Soon after the dissemination of a round inishes, the leader may optimistically start the next round of
consensus.
To implement pipelining, HotStuf optimistically starts a new instance of consensus by piggybacking the

irst round messages of the next consensus instance with the second round messages of the previous instance.
Because HotStuf requires four rounds of communication, this process can be repeated multiple times, resulting
in messages that carry information of up to four pipelined consensus instances. In HotStuf the pipelining
depth (i.e. the maximum number of consensus instances that can run in parallel) is thus equal to the number of
communication rounds.

5.2 Pipelining in Kauri

In Kauri, we extend pipelining to fully leverage the load balancing properties of trees as illustrated in Figure 4. In
a tree, the fanout� is much smaller than the number of processes � , and therefore in Kauri the root completes
its dissemination phase much faster than in HotStuf, and it may become idle long before it starts collecting votes.
This allows the root to start multiple instances of consensus during the execution of a single consensus round.
This introduces a multiplicative factor that we call the pipelining stretch that augments the pipelining depth
of HotStuf. In the example of Figure 4, the leader is able to start 3 new instances during the execution of the
irst round of a given consensus instance. Note that, in this example, the messages from the second round of
instance 1 are piggybacked with messages from the irst round of instance 4, i.e. a message carries information

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 13

sending

time

computation

time

remaining

time

Aggregation

Dissemination

Consensus c, round r(c,r)

(2,1)(1,1) (3,1)
(1,2)
(4,1)

sending

time

remaining

time

Fig. 4. Pipelining in Kauri.

from consensus instances/rounds that are farther away in the pipeline. Hence, the irst quorum for instance 1 is
collected upon the arrival of instance 4, the second quorum at instance 7, and the inal quorum (required for
inality) at instance 10. Once a node receives these three subsequent quorumsÐculminating with instance 10Ðit
can inalize instance 1, ofering the same safety guarantees as HotStuf. This increase in the pipelining depth
allows for a higher degree of parallelism, and hence throughput.

5.3 Pipelining Stretch and Expected Speedup

Kauri’s pipelining stretch, i.e. the number of instances that can be initiated during a single round, is afected by
the following parameters:

Sending time: the time a node takes to send a block to all its children. This value is a function of the fanout�,
the block size �, and the link bandwidth �, and is approximated by ��

�
.

Processing time: the time a node takes to validate and/or aggregate the votes it receives from its children. This
heavily depends on the type of signatures used by the algorithm. We measured these values experimentally, for
diferent signature schemes (see §8).

Remaining time: the time that elapses from the point the root inishes sending the block to its children until
it receives and processes the last reply. This value is a sum of the network latency and the processing time as
deined above. It is roughly given by:

remaining time = � · (RTT + processing time)

ACM Trans. Comput. Syst.

14 • R. Neiheiser et al.

where � is the depth or height of the tree and RTT is the network roundtrip time. In a star topology the remaining
time is small and mainly used to collect and process replies. However, in a tree, the root is often idle for most of
the remaining time.

Kauri leverages this larger remaining time to start additional consensus instances. The challenge is therefore to
estimate how many additional instances can be started, i.e. to estimate the pipelining stretch. For presentation
simplicity, we assume that sending and processing can be performed concurrently. In a system where the
bottleneck is the bandwidth, i.e. where the sending time is much larger than the processing time, the number of

additional consensus instance that can be started during the remaining time is given by
remaining time
sending time . Similarly, in

a system where the bottleneck is the CPU, i.e. where the processing time is much larger than the sending time, the

number of additional consensus instances that can be started during the remaining time is given by
remaining time
processing time .

Kauri’s pipelining stretch allows us to make the best use of the time the leader saves by having to interact with
just� processes instead of � − 1. Therefore, the ratio between � − 1 and� deines the maximum speedup we
can achieve by using a tree instead of a star. For instance, in a system of � = 400 processes, organized in a tree
with fanout� = 20, the maximum speedup we can expect Kauri to ofer is 400−1

20
= 19.95.

6 Reconfiguration

We now discuss Kauri’s reconiguration strategy. Recall that, in Kauri, processes use a tree to communicate.
Due to faults or an asynchronous period, the tree may be deemed not robust, and therefore a reconiguration
procedure is necessary to build a new tree. Naturally, not all possible trees are robust and several reconigurations
might be necessary before a robust tree is found.

Note that any leader-based protocol may require � + 1 reconigurations to ind a robust topology, given that �
consecutive leaders may be faulty. Our challenge is to avoid making the reconiguration of Kauri superlinear
with the number of processes, while also avoiding to fall immediately back to a star topology as soon as a single
fault occurs.
Building a general reconiguration strategy that yields a robust tree in a linear number of steps without

falling back to a star topology is impossible, due to the large number of non-robust conigurations that may
occur in a tree. Consider, for instance, the case of binary trees where the number of possible binary trees is

given by the Catalan number �� =
(2�)!
(�+1)!� !

. From all these trees, only a small fraction is robust, namely those

where faulty processes are not internal nodes (Deinition 5). Thus, a reconiguration strategy that considers all
possible conigurations may require a factorial number of steps to ind a robust tree. Next, we discuss how our
reconiguration strategy addresses this problem.

6.1 Modeling Reconfiguration as an Evolving Graph

We model the sequence of trees as an evolving graph, i.e., an ininite sequence of static graphs (i.e. a sequence of
tree structures that ultimately repeats ad ininitum). To ensure that eventually a robust tree is used, the evolving
graph must observe the following property:

Definition 7. Recurringly Robust Evolving Graph: An evolving graph G is said to be recurringly robust if

robust static graphs appear ininitely often in its sequence.

A recurringly robust evolving graph is suicient to ensure that a robust graph will eventually be used by
processes to communicate. However, in practice, this is not enough because it does not bound the number of
reconigurations until a robust graph is found. Given that the system is essentially halted during reconiguration,
we would like to ind a robust graph after a small number � of reconigurations. We call this property of an
evolving graph �-Bounded conformity.

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 15

Algorithm 4 Construction of an Evolving Tree with t-Bounded Conformity

1: function init(N ,�) ⊲ Initialize the evolving tree with the set of nodes N and fanout�
2: � ← ∅ ⊲ Initialize the set of bins
3: for all i ∈ N do ⊲ For each node
4: �� mod� ← �� mod� ∪ � ⊲ Assign the node � to one of the� bins
5: end for

6: end function

7: function build(�)
8: � ← � mod�

9: G� ← all possible trees whose internal nodes are drawn exclusively from ��

10: �� ← pick any tree at random from G�

11: return ��

12: end function

Definition 8. �-Bounded Conformity: a recurringly robust evolving graph G exhibits �-Bounded Conformity

if a robust static graph appears in G at least once every � consecutive static graphs.

As we discussed earlier, the use of a �-robust tree with � = � − � is a suicient but not necessary condition to
achieve consensus. In fact, it is enough that the reconiguration is able to ind a quorum �-robust tree, which we
capture in the following property:

Definition 9. �-Bounded �-Robust Conformity: a recurringly robust evolving graph G exhibits �-Bounded

�-Robust Conformity if a quorum �-robust static graph appears in G at least once every � consecutive static graphs.

6.2 Reconfiguring for �-Bounded Conformity

We now introduce Algorithm 4, that constructs an evolving graph ofering �-Bounded Conformity. The algorithm
initiates the preliminary structures with a randomly shuled set of processes which is then equally distributed
over all � bins (line 4). Then, it builds an evolving graph by creating trees whose internal nodes are drawn
exclusively from a given bin following a round-robin strategy. This is done by picking a sequence number � based
on the total number of bins� and the current coniguration � . In detail, for a given bin �� (line 8), it builds a
tree �� by assigning nodes from this bin �� to all internal nodes of the tree including the root (lines 9 to 11).
Following that, it assigns the remaining nodes to random leaf positions in the tree (line 10).

Theorem 3. Algorithm 4 constructs an evolving graph that satisies t-Bounded Conformity as long as �� < � ≤ � .

Proof. Based on Algorithm 4 we construct� disjoint bins and, as long as at most �� < � faults occur, at
least one of the bins is guaranteed to be composed exclusively of correct nodes. At each consecutive step, the
algorithm picks a tree whose internal nodes are drawn exclusively from distinct bins, hence guaranteeing that a
robust tree is found within at most� steps. □

A limitation of this approach is that each bin must be large enough to contain at least as many processes as
the number of internal nodes of a tree. This limits the number of bins that can be created and, therefore, the
maximum value for � . In a balanced tree of fanout� we can obtain at most� disjoint bins with enough capacity
to assign all the internal nodes in the tree, such that this algorithm allows us to achieve at most (� − 1)-Bounded
Conformity.

6.3 Reconfiguring for �-Bounded �-Robust Conformity

Algorithm 4 introduced before achieves Optimal Reconiguration only if the number of faults �� that occur are
at most �� < � <

�
3
, where� is the fanout of the tree. We now present Algorithm 5 that is able to tolerate

ACM Trans. Comput. Syst.

16 • R. Neiheiser et al.

Algorithm 5 Construction of an Evolving Tree with t-Bounded �-Robust Conformity

1: function init(N ,�) ⊲ Initialize the evolving tree with the set of nodes N and fanout�
2: � ← ∅ ⊲ Initialize the set of bins
3: for all i ∈ N do ⊲ For each node
4: �� mod� ← �� mod� ∪ � ⊲ Assign the node � to one of the� bins
5: end for

6: end function

7: function build(�)
8: � ← � mod�

9: G� ← all possible trees whose internal nodes are drawn exclusively from �� .

10: � ← �� [⌊ �
�
⌋] ⊲ Pick root from ��

11: ��
� ← pick any tree at random from G� with root �

12: return ��

13: end function

faulty internal nodes and hence achieves �-Bounded Conformity for much larger �� . The rationale is similar to
Algorithm 4.

We initiate the algorithm by equally distributing the nodes over all bins �� (line 4). Next, we again pick a
sequence number in function of� and � and choose the respective bin �� . However, instead of iterating over
each bin at most once and selecting the root for each iteration at random, the algorithm iterates over each bin
multiple times and selects the root node within each bin in a round-robin fashion (line 10). Following this, the
remaining processes are again distributed at random to the leaf positions in the tree.

Theorem 4. Algorithm 5 constructs an evolving graph that satisies t-Bounded �-Robust Conformity as long as

� <
2�
3

and �� <
�−1
3
∗ �2

�−1+�2−�
+ 1 ≤ �

Proof. We irst show that Algorithm 5 satisies �-Robust Conformity. We prove this by contradiction. For
�� < � we know based on Theorem 3 that we can construct a robust trees in � steps. We therefore only discuss

here the case where� ≤ �� <
�−1
3
∗ �2

�−1+�2−�
+ 1, where there might be one or more faulty nodes in every

bin. Assume that no quorum could be collected. As we draw the internal nodes of a given tree exclusively from
a single bin, this means that we might have faulty internal nodes. Due to this, consensus may be prevented as
faulty internal nodes might block correct nodes (their children) from participating in consensus. Consider the
case where the root is correct and one or more internal nodes are faulty. Note that each faulty internal node
may prevent at most ⌈�−�−1

�
⌉ (all its children) from participating in consensus. As nodes are equally distributed

over all� bins, there is at least one bin with at most ⌊
��
�
⌋ faulty processes. Thus, in a tree constructed from

this bin, at most ⌈�−�−1
�
⌉ ∗ ⌊

��
�
⌋ processes may be prevented from participating in consensus, in addition to

the �� faulty nodes themselves. Thus, as long as ⌈�−�−1
�
⌉ ∗ ⌊

��
�
⌋ + �� ≤

�−1
3

we can collect a quorum and solve

consensus, which holds under �� <
�−1
3
∗ �2

�−1+�2−�
+ 1. In the case the root is faulty, Algorithm 5 constructs

trees by rotating, for each bin, the root node in a round-robin fashion, eventually guaranteeing a correct process
at the root. In either case, the algorithm can collect a quorum and solve consensus, which leads to a contradiction.
We now show that Algorithm 5 achieves �-Bounded Conformity for �� < � . We prove this by contradiction.

Assume that Algorithm 5 could not ind a �-robust coniguration in �� + 1 steps but, would instead, require at
least �� + 2 steps. As shown above, Algorithm 5 eventually reaches a robust coniguration. As nodes are equally

distributed over all� bins, there is at least one bin with at most ⌊
��
�
⌋ faulty processes. In the worst case, this

is the last bin, i.e. bin�. As such, Algorithm 5 iterates over all� bins in sequence and rotates the root until

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 17

111(10) 211(14) 307(17) 421(20) 507(22)
System Size (Fanout)

0
25
50
75

100
125
150

M
ax

im
um

 v
al

ue
 o

f t

18
35

51

70
84

10 14 17 20 22
36

70

102

140

168
t-Bounded Balanced Tree
t-Bounded q-Robust Balanced Tree
t-Bounded q-Robust Star

Fig. 5. Maximum value for � in a perfectly balanced tree vs � in a star topology, for varying system sizes.

a correct coniguration is reached which requires at most ⌊
��
�
⌋ ∗� + 1 steps. This leads to a contradiction as

⌊
��
�
⌋ ∗� + 1 is no bigger than �� + 1. □

Algorithm 5 achieves �-Bounded�-Robust Conformity for �� <
�−1
3
∗ �2

�−1+�2−�
+1 ≤ � . Naturally, in adversarial

scenarios, the number of actual faults �� can approximate the maximum number of faults � =
�−1
3

tolerated by
the system. In such scenarios, Kauri may need to degrade the tree to a star topology.
Figure 5 illustrates the maximum value of � that we can expect to achieve when aiming at �-Bounded and

�-Bounded �-Robust in a tree when compared with the optimal case that can be achieved when using a star
topology, where the maximum value for � is �−1

3
). For simplicity, we show a perfectly balanced tree with depth

� = 2, and varying system sizes, with the fanout� adjusted accordingly. As it is possible to observe, Algorithm 5
is able to reach a robust coniguration for much higher values of � than Algorithm 4. The robustness of the tree
increases proportionally to the system size and fanout, which is appealing since we expect large system sizes to
be subject to more faults. In fact, the extended reconiguration algorithm Kauri can tolerate an actual number of
faults �� that is roughly half of the optimal value �−1

3
before falling back to a star topology.

6.4 Reconfiguration in Practice

From Theorem 4, Algorithm 5 only guarantees the construction of a �-Bounded �-Robust tree in �� + 1 steps,

when �� <
�−1
3
∗ �2

�−1+�2−�
+ 1. We denote this upper bound of failures as �� . Thus, when running Algorithm 5,

if after �� + 1 reconiguration steps a quorum �−robust tree is not found, this means that the system is facing an
actual number of faults �� > �� and, therefore, a robust coniguration is only guaranteed to be found if the system
falls back to a star topology.

However, in certain scenarios, Algorithm 5 may be able to ind a robust coniguration in a number of reconig-

uration steps less or equal to �� + 1 even when �� > �� . In fact, as long as there is a bin with at most ⌊
��
�
⌋ faulty

nodes, Algorithm 5 can ind a robust coniguration (see Theorem 4) and thus, it only fails to ind a robust tree in
�� + 1 steps when the �� > �� faulty nodes are evenly distributed among all bins. As we discuss next, if faults are
randomly distributed among the bins and leaves, this scenario is unlikely to occur.

We can model the probability of having a bin with at most ⌊
��
�
⌋ nodes as an Urn problem [3]. In detail, there

are � nodes, out of which � are faulty and � − � are correct. For� rounds (the number of bins) we draw �
�

nodes (the number of nodes in each bin) without replacement and calculate the probability of picking at most

ACM Trans. Comput. Syst.

18 • R. Neiheiser et al.

0 5 10 15 20 25 30
Percentage of Failures

0

25

50

75

100

Re
co

ve
ry

 C
ha

nc
e

(%
)

 in
 fm

ax
a

+
1

st
ep

s

100
200
300
400
500

Fig. 6. Probability of finding a quorum � − ������ tree for an increasing number of faults. The vertical bars for each system

size delimit �� up to which Algorithm 5 ensures the construction of such a tree.

⌊
��
�
⌋ faulty nodes (the number of faulty internal nodes we can tolerate and still achieve consensus following

Theorem 4). In this context, each reconiguration attempt follows a hypergeometric distribution [30]. If we sum
up the probability of all successful branches in a probability tree based on the above scenario, this translates to
the estimated probability of inding a quorum �-robust tree for any �� .

Figure 6 depicts the probability of inding a �-Bounded �-Robust tree in �� + 1 reconiguration steps in several
scenarios, considering systems with diferent sizes � (100, 200, 300, 400, 500), fanouts � (10, 14, 17, 20, 22),
and experiencing diferent numbers of faults. In the plot, we represent the number of faults as a percentage
of the system size. Interestingly, our proposed algorithm has a very high chance to ind a robust tree in �� + 1
reconiguration steps, independently of the system size up to �

4
. Even at �� =

�−1
3

failures, for most conigurations,
Algorithm 5 ofers a probability higher than 50% of inding a robust tree in �� + 1 steps.

6.5 Conservative Reconfiguration and Graceful Degradation

In our experiments, we have adopted the following pragmatic approach to reconiguration: we execute Algorithm 5
for �� + 1 steps and then, if no robust tree is found, Kauri falls back to a star (and to the performance of HotStuf).
Thus, in the worst case scenario, Kauri performs �� +

�
3
+1 reconigurations until a star topology with a non-faulty

leader is found. When the number of actual faults is not large, i.e., when �� ≤ �� , Kauri is guaranteed to recover
in at most �� + 1 steps, and avoids falling back to a star. Furthermore, as shown in the previous section, if the
adversary is unable to target nodes freely, and faults are distributed at random among bins, this conservative
approach may still avoid falling back to a star even when �� > �� .

It would be possible to consider other more optimistic reconiguration approaches, that would also take longer
to recover in the worst case, but that would avoid falling back to a star in a wider range of cases. This could be
achieved by running Algorithm 5 for a number of steps larger than �� + 1. The analysis presented in the previous
section indicates that such an approach would be viable. However, we let the study of such approaches for future
work.

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 19

7 Implementation

We have implemented Kauri by extending the publicly available HotStuf implementation.1 The core of the efort
was extending the code to include the implementation of the broadcastMsg and waitFor primitives, as speciied
in Algorithm 2 and Algorithm 3, respectively. We have also added support for the bls cryptographic scheme
by including the publicly available implementation used in the Chia Blockchain [10, 13]. This allows internal
nodes to aggregate and verify the signatures of their children, and thus balance the computational load. Both the
veriication cost of the signature aggregates, and the size of aggregates have a small O(1) complexity, contributing
to the overall eiciency of the implementation.
Since HotStuf and Kauri share the same codebase, we also implemented a variant of HotStuf that uses the

bls signature scheme. As we discuss in more detail in the next section, this allows us to assess the efects of our
contributions versus simply adopting another cryptographic scheme in HotStuf. We denote the original HotStuf
implementation as HotStuf-secp and the bls variant as HotStuf-bls.

Pipelining: To implement pipelining, we use an estimation of the parameters discussed in §5 to compute the
ideal time to start the dissemination phase for the next consensus instance. In the current implementation, we use
a static pre-conigured value. We leave for future work how this value could be automatically adapted at runtime.

Reconiguration: To trigger reconigurations we leverage the existing HotStuf mechanisms. In detail, if no
consensus is reached after a timeout, each process compiles a new-view message that includes the last successful
quorum it observed and sends it to the next leader [40]. In turn, the candidate leader waits for � − � new-view
messages and, depending on the collected information, either continues the work of the previous leader (if a
block was previously locked) or proposes its own block (if no block had been locked yet). Similarly, in Kauri and
upon timeout, each process invokes the build function of Algorithm 4 to construct the next tree and sends the
same new-view message to the root of the new tree. The root then also awaits � − � new-view messages before
re-initiating the protocol. Note that, the new-view messages do not use the tree and are instead sent directly to
the candidate leader as in HotStuf. This is the only time in Kauri where all processes communicate directly with
the leader.
We deine the following timeouts in the system. The limit on message transmissions between two processes

� after which a process no longer waits for the reception and the absolute upper limit Δ (as described in § 3).
Based on the value of � we calculate the round termination timeout as RoundTimeout = � · � · 2, where � is the
tree depth, after which a reconiguration is enacted. Every time a reconiguration is enacted, � is doubled until
reaching or exceeding Δ at which it is capped.

Signature Aggregation and Veriication: To process signatures from their children, a parent node can follow two
strategies: verify-then-aggregate and aggregate-then-verify.
In the verify-then-aggregate approach, the parent irst veriies the signatures from each children and then

aggregates them together. This results in each internal node having to perform � veriications (assuming a
perfectly balanced tree) and a single aggregation. Since veriication is more expensive than aggregation, this
strategy results in a higher computational than the other approach.

In the aggregate-then-verify approach, instead of having each process verify each incoming signature and then
constructing the aggregate, we directly aggregate the signatures and only verify the aggregate afterwards. This
reduces the computational load signiicantly as only a single veriication is performed rather than a veriication
for each children. If a child process contributes an invalid signature, the veriication of the aggregate fails and all
signatures need to be veriied before recomputing the aggregate which results in a small overhead (i.e., the initial
aggregation and veriication) with respect to the other approach. Note, though, that an attacker may execute

1Available at https://github.com/hot-stuf/libhotstuf

ACM Trans. Comput. Syst.

https://github.com/hot-stuff/libhotstuff

20 • R. Neiheiser et al.

Name Rountrip (ms) Bandwidth (Mb/s) Used in

Global 200 25 [19, 22, 23]
Regional 100 100 [15]
National 10 1,000 [15]
Heterogeneous 1ś270 66ś10,004 [31]

Table 3. Scenarios used in the evaluation.

such an attack at most once as this is an obvious sign of a faulty process. In future rounds the parent processes
will discard the inputs from the malicious child.

Code Availability: Our implementation is publicly available in the GitHub.2 Overall, the implementation of the
functionalities described above required the addition/adaptation of ≈ 1300 lines of code to the HotStuf codebase.

8 Evaluation

In this section we evaluate Kauri across several scenarios.

8.1 Experimental Setup

All experiments were performed on the Grid’5000 testbed [7]. We used 40 physical machines, each with two Intel
Xeon E5-2620 v4 8-core CPUs and 64 GB RAM. To build large networks we need to deploy multiple processes
per machine. The need to co-locate multiple nodes in a single machine is a limitation of our testbed, however,
in a real-world deployment, blockchain nodes also need to perform multiple tasks, such as respond to clients,
participate in the mempool protocol, validate blocks, verify client transaction signatures, and execute transactions.
As we will discuss later, in some conigurations Kauri is able to saturate the hardware resources of our testbed.

We evaluate Kauri on a wide range of deployments, summarized in Table 3, that capture the diferent scenarios
where we believe that permissioned blockchains with a large number of participants are likely to be used. More
precisely, we consider the following deployment scenarios: global, regional, national, and heterogeneous. The global
deployment models a globally distributed blockchain as used in other works [19, 22, 23] with 200�� roundtrip
time (RTT) and 25��/� bandwidth. The two other scenarios model reported industry use cases [15] in more
limited geographical deployments such as local supply-chain management. The regional deployment captures a
deployment in a large country or unions of countries, such as the US or the EU, with 100�� RTT and 100��/�

bandwidth. The national deployment models a setting where nodes are closer to each other with 10�� RTT and
1000��/� bandwidth. Finally, we also consider a heterogeneous deployment with a mix of diferent bandwidth and
RTT characteristics, as used in other recent works [31]. We model the network characteristics of each scenario
using NetEm [33] and Kollaps [21].
We compare Kauri with HotStuf-bls and HotStuf-secp the two HotStuf variants discussed in §7. The idea

behind using HotStuf-bls is to highlight that using a more advanced encryption scheme is not suicient to
ensure good performance as performance is limited by the star topology. Conversely, we also executed a subset
of the experiments with Kauri without pipelining to assess the performance of just using trees and the bls

encryption scheme. This coniguration approximates the design of Motor [23] and henceforth we refer to it at
Motor*. In fact, Motor uses a tree of depth two without pipelining and the bls encryption scheme as in Kauri. In
the absence of failures, Kauri without pipelining performs very similar to Motor. We used this, as to the best
of our knowledge the original prototype of Motor is not publicly available. Furthermore, while Motor only has
2 phases of consensus, our implementation of Motor uses the HotStuf pipelining to compensate for the extra
phases.

2Available at https://github.com/Raycoms/Kauri-Public

ACM Trans. Comput. Syst.

https://github.com/Raycoms/Kauri-Public

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 21

N 100 200 300 400 500 600 700 800

m 10 14 17 20 22 24 26 28

�� 17 34 50 68 83 99 116 134

Table 4. Root fanout� used for the diferent system sizes � .

For most experiments, we use system sizes with � = 100, 200, ..., 800 processes. As expected in most realistic
deployments, these values of � do not yield perfect�-ary trees. Therefore, we simply assign processes to tree
nodes such that it approximates a balanced tree. Unless otherwise stated, this results in the root fanout� for
given system sizes � as outlined in Table 4. In addition to the fanout�, we also display the number of failures ��
under which Kauri is guaranteed to ind a robust tree for the given conigurations in our experiments.

8.2 Configuring Kauri

We now describe the values used to conigure Kauri. Table 5 shows the values of the diferent parameters
required to compute the Kauri pipelining stretch, following the rationale introduced in §5.3. We consider diferent
bandwidth/RTT scenarios and blocks of 250�� (plus signatures). For each coniguration we present the processing
time, which we have measured experimentally, the sending time, and the remaining time. These values are used to
compute both the target pipelining stretch and the expected maximum speedup for each coniguration. Note
that, Table 5 does not include the parameter values conigurations we evaluate in the following sections. For
instance, we have also experimented with block sizes diferent than 250��. The purpose of the table is not to be
exhaustive but to ofer a conceptual framework that makes it easier to reason about the experimental results
presented in the next sections.

8.3 Aggregate & Verify

We start by evaluating the impact and cost of the aggregate-then-verify and verify-then-aggregate strategies, as
discussed in §7. To this end, we executed an experiment with 100 processes in the global, regional, and national
scenarios.

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

Global Regional National

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

verify-then-aggregate aggregate-then-verify

Fig. 7. Throughput for the signature verification and aggregation strategies in a system with � = 100.

ACM Trans. Comput. Syst.

22 • R. Neiheiser et al.

Sc
en
ar
io

N D
ep
th
�

R
o
o
t’
s
fa
n
o
u
t
�

P
ro
ce
ss
in
g
ti
m
e

Se
n
d
in
g
ti
m
e

R
em

ai
n
in
g
ti
m
e

B
as
e
p
ip
el
in
in
g

P
ip
el
in
in
g
st
re
tc
h

P
ip
el
in
in
g
to
ta
l
d
ep
th

E
x
p
ec
te
d
sp
ee
d
u
p

HotStuf-secp

National 100 1 99 4 29 14 4 1 4 -
National 200 1 199 7 65 17 4 1 4 -
National 400 1 399 15 156 25 4 1 4 -

Regional 100 1 99 4 288 104 4 1 4 -
Regional 200 1 199 7 648 107 4 1 4 -
Regional 400 1 399 15 1569 115 4 1 4 -

Global 100 1 99 4 1153 204 4 1 4 -
Global 200 1 199 7 2591 207 4 1 4 -
Global 400 1 399 15 6277 215 4 1 4 -

Kauri

National 100 2 10 3.6 2.5 24 4 8 32 ≈ 8x
National 200 2 14 5.3 3.6 25 4 6 24 ≈ 12x
National 400 2 20 6.9 5.1 27 4 5 20 ≈ 22x

Regional 100 2 10 3.6 25.7 203 4 9 36 ≈ 11x
Regional 200 2 20 5.3 36.1 205 4 7 28 ≈ 18x
Regional 400 2 14 6.9 51.6 206 4 5 20 ≈ 30x

Global 100 2 10 3.6 103.0 403 4 5 20 ≈ 11x
Global 200 2 14 5.3 144.3 405 4 4 16 ≈ 18x
Global 400 2 20 6.9 206.3 406 4 3 12 ≈ 30x

Table 5. Pipelining stretch and estimated speedup vs HotStuf-secp for a block size of 250�� and diferent � .

The observed throughput considered scenarios is shown in Figure 7. The throughput between each strategy in
the global scenario is very similar, but as we move to the regional and national scenario the advantages of the
aggregate-then-verify become clear. In fact, in the national scenario the aggregate-then-verify strategy achieves
≈ 35% higher throughput than the verify-then-aggregate. This is because the bottleneck in the global scenario is
the available bandwidth and hence the use of a less eicient signature aggregation strategy has less impact on
the overall performance. However, in the regional and national scenarios the bottleneck shifts from the available
bandwidth to the CPU and hence the efects of the more eicient aggregate-then-verify strategy become more
noticeable. Considering these results, we use the aggregate-then-verify in the rest of the experiments. We will
study in more detail the performance characteristics, and bottlenecks, of Kauri and the other systems in the
following sections.

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 23

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Pipelining Stretch

50Kb
100Kb
200Kb
250Kb
500Kb

Fig. 8. Efect of pipelining stretch on Kauri’s throughput for � = 100 and diferent block sizes.

8.4 Efect of Pipelining Stretch on Throughput

In the next set of experiments we analyze the efects of the pipelining stretch on Kauri’s throughput. Figure 8
depicts the throughput achieved when using Kauri in a setting with � = 100 in the global scenario (200�� RTT
and 25��/� bandwidth) for diferent block sizes and increasing pipelining stretch values.
For a blocksize of 250��, the experimental numbers are close to the numbers predicted by our model and

presented in Table 5 (3rd line for Kauri), i.e. the best results are achieved with a pipelining stretch close to 5. This
shows that our performance model, albeit simple, can ofer a good estimate of the performance of the real system.
The igure also shows that, with smaller block sizes, higher pipelining stretch values are needed to make full use
of the resources. This is also expected given our model: with smaller block sizes the sending time is smaller and
the idle portion of the remaining time is much larger. The ratio between these two values is also larger, thus
allowing Kauri to start more instances while it waits for the responses from a previous instance. Naturally, it is
more eicient to run fewer instances with more transactions each than many instances with a small number of
transactions. For the rest of the evaluation, we use a blocksize of 250�� for Kauri. For HotStuf, we empirically
observed that a blocksize of 250�� also yielded the best results across the diferent experiments.

8.5 Throughput Across Diferent Scenarios

We now compare the throughput of Kauri and competing systems in the national, regional and global scenarios.
The results are depicted in Figure 9.

The irst observation is that, as expected, HotStuf is extremely sensitive to the available bandwidth and to the
total number of nodes in the system. The larger the number of nodes, the longer it takes for the leader to inish a
given round. Also, for a ixed value of � , the sending time increases sharply as the network bandwidth decreases.
As a result, the performance of HotStuf is highly penalized in systems with large numbers of participants and
limited bandwidth. In addition to that, since the use of bls signatures reduces bandwidth usage, HotStuf-bls
performs better than HotStuf-secp in most scenarios.
A second observation is that without our pipelining techniques the performance of tree-based algorithms is

mainly limited by the RTT. This is illustrated by Motor* where the throughput drops signiicantly when the
RTT increases but only drops slightly with the number of processes. It is also interesting to observe that, as

ACM Trans. Comput. Syst.

24 • R. Neiheiser et al.

 1

 2

 4

 8

 16

 32

 64

 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(K

 t
x
/s

)

Processes

Kauri Motor* HotStuff-bls HotStuff-secp

(a) national (10�� RTT - 1��/� links)

 0.125
 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(K

 t
x
/s

)

Processes

Kauri Motor* HotStuff-bls HotStuff-secp

(b) regional (100�� RTT - 100��/� links)

 0.03125
 0.0625
 0.125
 0.25

 0.5
 1
 2
 4
 8

 16

 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
(K

 t
x
/s

)

Processes

Kauri Motor* HotStuff-bls HotStuff-secp

(c) global (200�� RTT - 25��/� links)

Fig. 9. Throughput for diferent scenarios with a varying number of processes.

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 25

 2

 4

 8

 16

 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Processes

Kauri-2 Kauri-3

Fig. 10. Kauri throughput with increasing system sizes for diferent tree depths.

the network bandwidth decreases, even without our pipelining, the use of a tree already pays of. In fact, in the
regional scenario, Motor* ofers better throughput than both variants of HotStuf for a system with 200 or more
processes.

Kauri, by leveraging the full capacity of the system via our pipelining mechanism, outperforms both HotStuf
variants and Motor* in all scenarios. Interestingly, despite the simpliications adopted in our model (which, for
instance, considers that computation and dissemination do not interfere with each other) the predicted speedup
over HotStuf-secp is very close to the observed value. For instance, from Table 5 we expected a speedup over
HotStuf-secp of approximately ≈ 30� for a system of 400 nodes in the global scenario and the value obtained
experimentally is 28.2� . This diference is quite reasonable given the number of simpliications adopted in the
model. Overall, while the use of trees (Motor*) results in better performance than stars in certain scenarios, only
the combination of trees and pipelining permits to achieve a substantial performance increase. As a matter of
fact, in a system with 800 processes, Kauri outperforms HotStuf by up to 58� .

Finally, note that due to the use of a tree with a ixed depth of � = 2, Kauri’s throughput drops with the number
of processes. In the next experiment, we show how Kauri can maintain high throughput independently of the
number of processes by maintaining a constant fanout� = 10 and adjusting the tree depth accordingly. The
results of these experiments are shown in Figure 10 for the global scenario and, similarly to before, from 100 up
to 800 processes. In this experiment, the tree with � = 100 processes has a depth � = 2 and the trees with 200 to
800 processes have a depth of � = 3 (note that with a fanout� = 10, a tree of depth � = 2 can have at most 111
processes, while a tree of depth � = 3 can have up to 1110 processes).

As expected, Kauri’s throughput with a tree of depth � = 2 (Kauri-2 in the igure) decreases for larger system
sizes (as we need to increase the fanout to accommodate more nodes, and hence the load on the internal nodes),
but by increasing the tree depth to � = 3 (Kauri-3), the throughput remains stable as the system size increases. In
general, for a ixed fanout� and tree depth � we expect Kauri’s throughput to remain stable as we increase the
number of processes up to the maximum number of processes supported by that fanout and depth coniguration.
In the following sections, we evaluate the efects of diferent tree fanouts and depths on latency.

ACM Trans. Comput. Syst.

26 • R. Neiheiser et al.

 1

 2

 4

 8

 16

 32

 64

 0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Roundtrip time (ms)

Kauri HotStuff-secp HotStuff-secp

Fig. 11. Impact of RTT in system throughput. (N=100 with 100��/� bandwidth)

In most of the remaining experiments we consider practical system sizes of 100 processes to simplify the
deployment and experiment times. Note that this favors HotStuf as the star topology sufers strongly in scenarios
with large numbers of processes due to the bandwidth and computing bottleneck.

8.6 Efect of the RTT in Throughput

Pipelining not only allows Kauri to better exploit the available computing and network resources, but also
contributes to mitigating the negative efects of additional RTT inherent in tree-based approaches. To further
assess this, we conducted an experiment where we observe the throughput evolution as the RTT increases.

Figure 11 shows the results for N=100 in the regional scenario (100��/� bandwidth) but where we varied the
RTT from 50�� to 400�� . As it can be observed, while the throughput of HotStuf-secp decreases as the RTT
increases, the throughput of Kauri can be kept almost constant by increasing the pipelining stretch to avoid the
leader from being idle while waiting for the replies. Following our model, the pipelining stretch varied from 7,
for an RTT of 50�� , to 33 for an RTT of 400�� . Results for the other scenarios follow a similar trend.

8.7 Latency

The previous experiments showed that Kauri, despite using longer rounds, can achieve better throughput than
HotStuf due to the use of the pipelining stretch. We now conduct a similar study on latency.
Given that the use of a tree increases the latency required to exchange messages among the leader and the

remaining processes, one would expect that Kauri would exhibit higher system latency than HotStuf. In fact,
in a system with unlimited bandwidth and processing power, the latency of consensus is bound by the RTT.
However, in realistic settings, bandwidth is not ininite and, in practice, the system latency is limited by the
sending time. The dissemination/aggregation parallelism enabled by a tree substantially reduces the sending time.
This is particularly important in bandwidth constrained scenarios where the sending time has a much larger
impact on latency than the additional number of communication hops required by a tree.
To conirm this we set up a scenario with a ixed RTT of 100�� and vary the bandwidth from 25��/� to

1000��/� . Figure 12 shows the results for � = 100. As expected, the available bandwidth has a much larger
impact on both variants of HotStuf than in Kauri. In fact, for bandwidths smaller than 100��/� Kauri ofers

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 27

 0

 200

 400

 600

 800

 1000

 1200

 1400

25 50 100 1000 ∞

L
a

te
n

c
y
 (

m
s
)

Bandwidth (Mb/s)

Kauri
HotStuff-secp

HotStuff-bls

Fig. 12. Impact of bandwidth on latency (N=100, RTT=100��).

 0.5

 1

 2

 4

 8

 16

 32

 64

 0 200 400 600 800 1000 1200 1400

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Latency (ms)

Kauri

1Gb

100Mb

50Mb

25Mb

HotStuff-bls

1Gb

100Mb

50Mb

25Mb

HotStuff-secp

1Gb

100Mb

50Mb

25Mb

Fig. 13. Throughput/Latency tradeofs with varying network bandwidth

better latency than HotStuf, and only at high bandwidths HotStuf starts to have substantially better latency.
The igure also shows analytical values for an idealized scenario of ininite (∞) bandwidth, where HotStuf’s
latency would be at best half of Kauri’s (as we use a tree of depth � = 2). As in §8.6, results for the other system
sizes follow a similar trend.

Figure 13 presents the results for the same experiment in a latency-throughput representation. As hinted from
the previous experiments, the latency of HotStuf-secp and HotStuf-bls varies substantially with the available
bandwidth whereas Kauri’s are much less afected. In the scenarios where the latency of Hotstuf variants is
better than Kauri’s, the tradeof is clear: for a modest latency penalty (e.g.: x2 for the 1000Mb/s scenario), we

ACM Trans. Comput. Syst.

28 • R. Neiheiser et al.

 128
 256
 512

 1024
 2048
 4096
 8192

 100 1000 10000

L
a

te
n

c
y
 (

m
s
)

Throughput (tx/s)

Kauri
HotStuff-secp

HotStuff-bls

Fig. 14. Througput-Latency for varying block sizes (N=100, RTT=100�� , block size from 32�� to 1��).

can achieve a substantial throughput gain (e.g.: x5 for the 1000Mb/s scenario). Interestingly, in scenarios where
bandwidth is limited, Kauri is able to achieve not only better throughput but also better latency.

We can also see that HotStuf-bls can outperform HotStuf-secp in certain scenarios but only for a small margin
as both systems share the same sending time characteristics. To achieve a substantial improvement one needs to
drastically reduce the sending time through the use of trees, and maximize resource usage through the use of
pipelining.

The experiments of the previous sections have shown that the sending time is a key factor for both throughput
and latency. By reducing the sending time, Kauri provides better throughput in all considered scenarios and better
latency in bandwidth constrained scenarios.

8.8 Throughput vs Latency

We now study the impact of load in the performance of the system. To this end we ix the system size, network
bandwidth and latency, and vary the load in the system by manipulating the block size, i.e. the number of
transactions ofered by the client. We use the global scenario with � = 100 and the following block sizes: 32��,
64��, 125��, 250��, 500��, and 1��. For Kauri we adjust the pipelining stretch for each scenario following our
performance model.
The results are depicted in Figure 14. Similarly to the previous experiments, the throughput of Kauri is

substantially higher than that of either variant of HotStuf in all scenarios. As expected, as the block size increases,
the latency of all systems increases due to an increase in the sending time. This increase is however much faster
in both variants of HotStuf, and for block sizes larger than 125��, HotStuf’s latency surpasses that of Kauri.
This highlights the importance of using a tree to spread the load and hence avoid a bottleneck at the leader
process. HotStuf-bls outperforms HotStuf-secp in both latency and throughput scenarios, which also conirms
the previous experiments when varying the available bandwidth (Figure 12). Finally, the decrease in latency
in Kauri when going from a block sizes of 32Kb to 64Kb (the two irst data points in the Kauri line) is due to
pipelining efects on CPU usage. Blocks of 32Kb allows for a higher level of pipelining, which saturates the CPU.
As the block size increases, the pipeline decreases, following our performance model (hence, gradually shifting
the bottleneck from the CPU to the network).

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 29

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Kauri Motor* HotStuff−secp HotStuff−bls

 0

 100

 200

 300

 400

 500

 600

 700

L
a

te
n

c
y
 (

m
s
)

Fig. 15. Throughput in the heterogeneous scenario ([31]) with � = 60.

8.9 Heterogeneous Networks

Up to this point, we have studied the behavior of Kauri and the other systems in a homogeneous network where
the latency and bandwidth between any two given processes are exactly the same. Next, we evaluate how these
systems behave in an heterogeneous setup. As we lack the resources to execute the experiment in an actual
globally distributed network, we have used the real-world scenario that was measured experimentally and used
in the evaluation of ResilientDB [31].

Standard Distribution: In detail, the authors measured the latency and bandwidth between a set of Google data
centers in diferent geographic locations, namely Oregon, Iowa, Montreal, Belgium, Taiwan, and Sydney. The
latency within a datacenter is roughly 0.25ms, and the latency between datacenters ranges between 38ms (Iowa
to Oregon) and 270ms (Belgium to Sydney). Similarly, the bandwidth within a datacenter is roughly 10Gb/s
and varies from 66Mb/s (Belgium to Sydney) to 670Mb/s (Iowa to Oregon). We deployed 10 processes in each
datacenter, resulting in a total of 60 processes hence matching one of the deployment scenarios in the ResilientDB
paper [31].

As ResilientDB is deployed statically (i.e., most of the communication happens within a datacenter), we have
attempted to optimize the deployment of HotStuf and Kauri accordingly. As such, the leader (root) process is
always located in Oregon (best bandwidth and latency to the remaining datacenters), and we have distributed
processes so that they are approximately close to their parent.
The results of this experiment are depicted in Figure 15. Similar to previous experiments, Kauri outperforms

any other system in terms of throughput and, also analogous to the other deployments, this primarily stems from
the use of pipelining, which allows Kauri to compensate the large round trip latencies. However, as expected,
Kauri is penalized in terms of latency, as HotStuf’s throughput is impaired mainly on high latency scenarios, it
neither bottlenecks on bandwidth nor on the processing load. Nonetheless, Kauri displays an almost ten times
higher throughput compared to only twice the latency cost.
The most interesting takeaway is that Motor* (i.e., Kauri without pipelining) exhibits the worst throughput

of all approaches. This not only shows the strong negative impact that geographic distribution has on existing
tree-based approaches but also highlights the importance of pipelining in order to achieve high throughput.

ACM Trans. Comput. Syst.

30 • R. Neiheiser et al.

 0

 10

 20

 30

 40

 50

 60

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Kauri Motor* HotStuff−secp HotStuff−bls

 0

 100

 200

 300

 400

 500

 600

 700

L
a

te
n

c
y
 (

m
s
)

Fig. 16. Throughput in the heterogeneous scenario ([31]) with � = 43 and optimal node placement.

We also want to note that the values obtained for the HotStuf variants difer substantially from those reported
in ResilientDB. This stems from the fact that in the evaluation in ResilientDB [31] � parallel instances of HotStuf
were run, and the reported throughput is a sum of all the � parallel instances. In constrast to this, we opted to
consider the best possible throughput of a single instance in our deployment. Nonetheless, the throughput we
have obtained for Kauri is very similar to the throughput obtained by ResilientDB, without requiring to sacriice
the resilience of the system as ResilientDB tolerates at most � ≤

⌊

�−1
3

⌋

failures, where� is the size of the smallest

cluster (§1), while Kauri tolerates � ≤
⌊

�−1
3

⌋

faults as classical BFT algorithms.
While we manually assigned the leader to the Oregon datacenter and distributed the remaining internal nodes

equally over the other data centers, this is still far from an optimal distribution as the internal nodes still always
had to collect a rather large fraction of signatures from children located in remote datacenters. We address this in
the next experiment.

Optimal Distribution: In order to achieve an optimal distribution (i.e. tominimize cross-datacenter communication),
we either have to use an irregular tree or adjust the number of processes in each data center. We opted for the
second option. In this experiment instead of statically assigning 10 processes to each datacenter, the Oregon
datacenter (Oregon) has 8 processes (1 root node, 1 internal node, 6 leaf nodes) and the remaining datacenters
have 7 processes (1 internal node, 6 leaf nodes) where each internal node is solely connected to leaf nodes within
its own datacenter. This resulted in a total of 43 processes.
The result of this experiment are shown in Figure 16. We observe a slight increase in Kauri’s throughput

(primarily due to the reduced fanout) and a substantial reduction in latency which becomes very similar to both
variants of HotStuf and Motor*. This shows that by considering the heterogeneous characteristics of the network
when deploying Kauri, it is possible to achieve latency similar to HotStuf even on scenarios where the bandwidth
and processing resources are not saturated.

8.10 Reconfiguration

Next, we evaluate how Kauri behaves in the presence of faults in four diferent scenarios: 1 faulty process, 3 faulty
processes, 10 faulty processes, and � faulty processes. We have executed this experiment in the regional scenario

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 31

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Time (s)

HotStuff-bls HotStuff-secp Kauri

Fig. 17. Reconfiguration with one faulty leader.

(100ms RTT latency and 100Mb/s bandwidth) with 100 processes. As such, there are � = 33 faulty processes in
the fourth scenario.

With the exception of the last scenario, we always fail consecutive leaders which forces a reconiguration and
corresponds to the worst case scenario for a given number of failures. In the irst two scenarios with 1 and 3
faulty processes Kauri can recover in optimal steps. In the third scenario, we exercise the �-Bounded �-Robust
Conformity given that we have a fanout of� = 10 and 10 faulty processes. Due to the �-Robust conformity, we
are still able to recover in optimal steps in this scenario.

For the fourth scenario, we consider two variants. In the irst, which we call Kauri-leaders, we fail � consecutive
leaders leading Kauri to degenerate to a star. In the second variant, which we call Kauri-internal+leaders, we
consecutively fail 19 internal nodes (following Theorem 4) such that a quorum is not achievable and hence
forcing the degeneration to a star, and then we fail 33 consecutive leaders. Note that in this worst case scenario,
some faulty nodes trigger reconiguration twice: once as an internal node in the tree and once as a leader in the
star topology. This happens because, in general, it is impossible to identify the internal node(s) responsible for
triggering the reconiguration and hence some of those nodes could be selected as leaders in the future.

As in HotStuf, reconiguration is triggered with a timeout. We consider an initially step timeout of 1� (� = 0.25�)
after which a process assumes the topology to be non-robust and triggers a reconiguration. With subsequent
failures this value doubles until reaching or exceeding 10� (Δ = 2.5�) at which it is capped. In each experiment,
we irst have a warm-up period of 30� (omitted from the plots), after which we start the experiment. Following
that, we inject the failure after another 30� (hence 60� after the start of the experiment) and measure the impact
on the system throughput.

Results for a single and three consecutive leader failures are depicted in Figure 17 and Figure 18, respectively.
As expected, both Kauri and both variants of HotSuf recover very quickly to the throughput levels before the
failure. Kauri takes slightly more time than HotStuf to reach the pre-failure levels as it needs to build up the full
pipeline. Nonetheless, we can see that the time this takes is independent of the number of failures. The experiment
with 10 consecutive leader failures, depicted in Figure 19, follows the same trends, due to our �-Bounded �-Robust
reconiguration algorithm.

ACM Trans. Comput. Syst.

32 • R. Neiheiser et al.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Time (s)

HotStuff-bls HotStuff-secp Kauri

Fig. 18. Reconfiguration with three consecutive faulty leaders.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Time (s)

HotStuff-bls HotStuff-secp Kauri

Fig. 19. Reconfiguration with ten consecutive faulty leaders.

Finally, Figure 20 illustrates the worst-case reconiguration scenario for Kauri in the presence of � =
�−1
3

faulty nodes. Although Kauri may also reach a robust tree topology in this adverse scenario (as depicted in
Figure 6), in the worst case the system must revert to a star topology. In that case, the fallback takes �� additional
reconiguration steps, introducing a latency overhead. In this experiment, while HotStuf completes recovery at
the 330-second mark, Kauri requires an additional 200 seconds to inalize its reconiguration process under these
conditions.

Finally, the results for Kauri-leaders and Kauri-internal+leaders are depicted in Figure 20. In the case of Kauri-
leaders, both Kauri and the HotStuf variants behave similarly and show similar recovery time. However, due to

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 33

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Time (s)

Kauri (leaders)
Kauri (internal+leaders)

HotStuff-secp
HotStuff-bls

 0
 1
 2
 3
 4
 5

 500 550

Fig. 20. Reconfiguration with � =
�−1
3

= 33 faulty processes.

 0.25

 1

 4

 16

 64

 256

 0.25 1 4 16 64 256

Kauri (h=2)

100
200300

Narwhal

100

200

300

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Latency (s)

Fig. 21. Comparison between Kauri and Narwhal in the national scenario.

the many consecutive failures, Kauri has to fall back to a star topology and hence it shows performance similar
to HotStuf after recovering. In the worst case of Kauri-internal+leaders, Kauri needs an an extra reconiguration
time of �� rounds but as expected, after recovery it achieves the same performance as both variants of HotStuf.

ACM Trans. Comput. Syst.

34 • R. Neiheiser et al.

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64 128 256

Kauri (h=2)

100

200

300

Kauri (h=3)

100
200
300

Narwhal

100
200

300

T
h

ro
u

g
h

p
u

t
(K

 t
x
/s

)

Latency (s)

Fig. 22. Comparison between Kauri and Narwhal in the global scenario.

8.11 Comparison with DAG based Consensus

Lastly, we evaluated how Kauri compares to DAG-based approaches in terms of throughput and latency. For this
evaluation, we have used the oicial Narwhal implementation3.

We started by deploying both systems in the national scenarios, the results are presented in Figure 21. Narwhal
initially achieves a signiicant throughput advantage, sustaining almost 5× the throughput of Kauri. However,
this comes at a large latency penalty (approximately 90×). Moreover, as the number of nodes increases, Narwhal’s
throughput gains diminish, and Kauri surpasses Narwhal in throughput when the system size is larger than 300

processes. At the same time, the latency gap between the two systems also grows substantially.
To better understand the tradeofs ofered by each system, we conducted an additional experiment in the global

scenario which is more constrained by bandwidth than computational resources. More speciically, we deployed
Narwhal and two variants of Kauri- the coniguration used in the previous experiment with a tree of depth 2
(Kauri-2) and another with a deeper tree and smaller fanout (Kauri-3). The results are depicted in Figure 22. While
Narwhal initially maintains a similar throughput advantage over both Kauri conigurations (with a 14× higher
latency), this advantage erodes as the number of nodes increases. Eventually, Kauri with a tree height of three
surpasses Narwhal’s throughput at 300 nodes.
This behavior is not surprising, given that Narwhal’s design uniformly distributes bandwidth load across all

nodes. While this approach mitigates bandwidth bottlenecks, it incurs signiicant latency overhead and does not
alleviate the computational load on each node.

8.12 Evaluation Summary

Our evaluation demonstrates that Kauri, by leveraging a tree structure, efectively balances the bandwidth load
from block propagation and the computational load from signature veriication. This enables Kauri to scale
seamlessly to up to 800 nodes in our experiments, achieving a throughput advantage of up to 58× compared
to the best-performing HotStuf variant. While tree structures inherently introduce additional network hops,

3https://github.com/facebookresearch/narwhal

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 35

resulting in a moderate latency tradeof, we show that optimal node placement can signiicantly mitigate this
overhead. We leave the design of such an optimization mechanism to future work.

The primary tradeof of Kauri lies in its worst-case behavior: in the presence of a large number of failures, the
system may require additional reconiguration steps and, in extreme cases, fall back to a star topology. However,
in real-world production systems like Cosmos and Ethereum, participation rates are typically very high since
nodes have an incentive to participate in the system and follow the protocol [5]. As a result, we expect Kauri to
operate predominantly in its eicient tree structure, with fallbacks to a star topology being exceedingly rare.
Finally, when compared to modern systems like Narwhal, Kauri does not distribute bandwidth as evenly

as Narwhal which achieves near-uniform bandwidth distribution across all participating nodes at the cost of
signiicantly higher latency. However, systems like Narwhal still face a computational bottleneck, where every
node must verify all signatures, severely limiting their scalability. In contrast, Kauri ofers superior throughput and
lower latency at larger system scales, making it a compelling choice for high-performance high-scale deployments.
In the presence of failures, Narwhal-HotStuf would perform similarly to HotStuf, requiring the same number of
reconiguration steps. In contrast, Narwhal-Tusk, which leverages a leaderless asynchronous consensus protocol
and only guarantees probabilistic safety would experience a performance degradation proportional to the failure
rate, but does not require reconigurations, as demonstrated in the Narwhal paper.

9 Discussion and Limitations

In this section, we discuss some possible extensions to Kauri that, while orthogonal to the contributions of this
work, could broaden the deployment opportunities of Kauri.

9.1 Dynamic Pipelining

Throughout the evaluation, we assumed static network conditions. However, in practice, latency, bandwidth, and
processing time of each block may change over time. Therefore, it may be useful to augment Kauri such that it
can dynamically adjust the pipelining depth based on network and workload conditions.

We experimentally observed that over-pipelining increases the round-trip latency observed at the leader without
afecting the overall system throughput. Based on this observation, a possible simple strategy to dynamically
adapt the pipelining depth could be as follows: Periodically, the leader increases the pipelining depth and observes
the resulting round-trip latency. If the latency remains unafected, the leader adopts the new depth, otherwise, it
reverts to the previous coniguration. Similarly, if the leader observes an increase in latency, it can reduce the
pipelining depth and assess whether this adaption was able to reduce the latency without degrading throughput.

9.2 Heterogeneous Network

Second, as discussed in the evaluation, our tree construction algorithm does not take heterogeneous network
conditions into account. While, as we have shown, this does not afect the throughput of the system, in many
deployments the resulting tree might exhibit a higher latency than possible due to a suboptimal deployment.
However, building a robust tree whose internal nodes are no longer picked at random, requires careful considera-
tion not only in terms of performance but also to mitigate the potential negative impact of Byzantine nodes that
might attempt to force some conigurations in favor of others.

9.3 Random Tree Construction

In Kauri, similar to HotStuf, the sequence of reconigurations is deterministic. This allows a powerful adversary
to make sure that the system always takes the worst case number of reconiguration steps to reconigure. As
such, an interesting extension could introduce some randomness in the tree construction, for example, with the
help of veriiable random functions as in [26].

ACM Trans. Comput. Syst.

36 • R. Neiheiser et al.

9.4 2-Phase HotStuf

HotStuf-2 [28] improves upon HotStuf by reducing consensus latency from three phases to two phases. The
optimization leans on the observation that a leader can propose a new block as soon as it receives a double
quorum certiicate for the preceding block. Kauri uses a stable leader approach and, therefore, can also beneit
from this optimization in steady state. HotStuf-2 also introduces a protocol change where processes send the
votes to the next leader to ensure that this condition is always met after GST, even when there is one or more
view-changes, as long as the (new) leader is correct. In Kauri it is harder to ensure that this condition is met
during a view-change because collecting a quorum certiicate after GST is not enough to have a correct leader;
the aggregation tree needs also to be q−������ . Therefore, we leave incorporating this optimization in Kauri as
future work.

9.5 Narwhal-Kauri Hybrid

As shown in the evaluation, when signature veriication becomes the bottleneck (i.e., when consensus is CPU-
bound), Kauri can outperform Narwhal in terms of throughput. However, the Narwhal dissemination mechanism
does a better job in distributing the communication load when propagating the block payload (in Kauri, leaf nodes
do not contribute to message dissemination). To get the best out of both worlds, we envision a Narwhal-Kauri
hybrid that combines DAG-based consensus for block dissemination with Kauri for signature aggregation. Similar
to the deployment of Narwhal-HotStuf, we expect such a design to further increase the throughput of Kauri, at
the cost of higher latency. We leave the development and evaluation of this variant for future work.

10 Conclusions

State-of-the-art permissioned blockchains sufer from important limitations: bottlenecks resulting from work con-
centration on the leader, throughput decrease when implementing load distribution, or degraded resilience. Kauri
overcomes these limitations by introducing a novel pipelining scheme that makes full use of the parallelization
opportunities provided by dissemination/aggregation trees. Furthermore, Kauri uses a reconiguration strategy
that preserves the tree when the number of faults is moderate, while still ensuring that a robust coniguration
is found in a linear number of steps for any number of faults � ≤ �−1

3
. In contrast to solutions based on com-

mittees, Kauri does not compromise the resilience or the inality of consensus. Kauri’s throughput substantially
outperforms HotStuf’s in all considered scenarios, reaching up to 58x with only a modest increase in latency. In
bandwidth-constrained scenarios Kauri outperforms HotStuf in both throughput and latency. Finally, Kauri can
also outperform modern DAG-based systems such as Narwhal [14] for a larger number of participants.

Acknowledgements: We thank the ACM TOCS Editors and the revieers for their help in improving the manuscript. This

work was partially supported by CAPES - Brazil (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and by

Fundação para a Ciência e Tecnologia (FCT) under project UIDB/50021/2020 and grant 2020.05270.BD, and via project COSMOS

(via the OE with ref. PTDC/EEI-COM/29271/2017, via the łPrograma Operacional Regional de Lisboa na sua componente

FEDER” with ref. Lisboa-01-0145-FEDER-029271) and project Angainor with reference LISBOA-01-0145-FEDER-031456, grant

agreement number 952226, and project GLOG, with reference LISBOA2030-FEDER-00771200, and project BIG (Enhancing the

research and innovation potential of Tecnico through blockchain technologies and design Innovation for social Good), and

project ScalableCosmosConsensus, and the Austrian Science Fund (FWF) SFB project SpyCoDe F8502 and the Vienna Science

and Technology Fund (WWTF) project SCALE2 CT22-045.

References

[1] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen, and David Zage. 2010. Steward:

Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks. IEEE Transactions on Dependable and Secure Computing 7, 1 (2010),

80ś93.

ACM Trans. Comput. Syst.

Kauri: BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation • 37

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher

Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith

Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger

fabric: a distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal)

(EuroSys ’18). Association for Computing Machinery, New York, NY, USA, Article 30, 15 pages. doi:10.1145/3190508.3190538

[3] B Artur, Yu M Ermol’ev, and Yu M Kaniovskii. 1983. A Generalized Urn Problem and its Applications. Cybernetics 19, 1 (1983), 61ś71.

[4] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2015. The Next 700 BFT Protocols. ACM

Trans. Comput. Syst. 32, 4, Article 12 (Jan. 2015), 45 pages. doi:10.1145/2658994

[5] Zeta Avarikioti, Eleftherios Kokoris Kogias, Ray Neiheiser, and Christos Stefo. 2025. CoBRA: A Universal Strategyproof Conirmation

Protocol for Quorum-based Proof-of-Stake Blockchains. arXiv:2503.16783 [cs.CR] https://arxiv.org/abs/2503.16783

[6] Kushal Babel, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris Kokoris-Kogias, Arun Koshy, Alberto Sonnino, and Mingwei

Tian. 2024. Mysticeti: Reaching the Limits of Latency with Uncertiied DAGs. arXiv:2310.14821 [cs.DC] https://arxiv.org/abs/2310.14821

[7] D. Balouek, A. Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C.

Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec. 2013. Adding Virtualization Capabilities to the Grid’5000 Testbed. In Cloud Computing and

Services Science, I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan (Eds.). Communications in Computer and Information Science,

Vol. 367. Springer, Berlin, Heidelberg, 3ś20.

[8] J. Bernstein, T. Lange, et al. 2013. SafeCurves: Choosing Safe Curves for Elliptic-Curve Cryptography. http://safecurves.cr.yp.to. Accessed

on 18.04.2022.

[9] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. 2014. State Machine Replication for the Masses with BFT-SMART. In 2014 44th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, Atlanta, GA, USA, 355ś362.

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the Weil pairing. Journal of cryptology 17, 4 (2004), 297ś319.

[11] C. Cachin, R. Guerraoui, and L. Rodrigues. 2011. Introduction to Reliable and Secure Distributed Programming (2nd ed.). Springer, Berlin,

Heidelberg.

[12] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In Proceedings of the Third Symposium on Operating

Systems Design and Implementation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, USA, 173ś186.

[13] Bram Cohen and Krzysztof Pietrzak. 2020. The chia network blockchain. https://www.chia.net/assets/ChiaGreenPaper.pdf Accessed on

18.04.2022.

[14] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool

and eicient BFT consensus. In Proceedings of the Seventeenth European Conference on Computer Systems (Rennes, France) (EuroSys ’22).

Association for Computing Machinery, New York, NY, USA, 34ś50. doi:10.1145/3492321.3519594

[15] M. del Castillo. 2020. Forbes Blockchain 50. https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/?sh=

77ed26207553 Accessed on 18.04.2022.

[16] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the Presence of Partial Synchrony. J. ACM 35, 2 (4 1988),

288ś323.

[17] Michael Eischer and Tobias Distler. 2018. Latency-Aware Leader Selection for Geo-Replicated Byzantine Fault-Tolerant Systems. In

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, Luxembourg,

Luxembourg, 140ś145.

[18] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of Distributed Consensus with One Faulty Process.

Journal ACM 32, 2 (4 1985), 374ś382.

[19] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for

Cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17). ACM, New York,

NY, USA, 51ś68.

[20] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir,

and Alin Tomescu. 2019. SBFT: A Scalable and Decentralized Trust Infrastructure. In 2019 49th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN). IEEE, Portland, OR, USA, 568ś580.

[21] Paulo Gouveia, João Neves, Carlos Segarra, Luca Liechti, Shady Issa, Valerio Schiavoni, and Miguel Matos. 2020. Kollaps: Decentralized

and Dynamic Topology Emulation. In Proceedings of the Fifteenth European Conference on Computer Systems (Heraklion, Greece) (EuroSys

’20). ACM, New York, NY, USA, Article 23, 16 pages.

[22] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoi, Linus Gasser, and Bryan Ford. 2016. Enhancing Bitcoin

Security and Performance with Strong Consistency via Collective Signing. In 25th USENIX Security Symposium (USENIX Security 16).

USENIX Association, Austin, TX, 279ś296.

[23] Eleftherios Kokoris-Kogias. 2019. Robust and Scalable Consensus for Sharded Distributed Ledgers. IACR Cryptology ePrint Archive 2019

(2019), 676.

[24] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure,

Scale-Out, Decentralized Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA,

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/2658994
https://arxiv.org/abs/2503.16783
https://arxiv.org/abs/2503.16783
https://arxiv.org/abs/2310.14821
https://arxiv.org/abs/2310.14821
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://doi.org/10.1145/3492321.3519594
https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/?sh=77ed26207553
https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/?sh=77ed26207553

38 • R. Neiheiser et al.

583ś598.

[25] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals Problem. ACM Transactions on Programming

Languages and Systems 4, 3 (1982), 382ś401.

[26] Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu. 2020. Gosig: A Scalable and High-Performance Byzantine Consensus for

Consortium Blockchains. In Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20). ACM, New

York, NY, USA, 223ś237.

[27] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. Imran. 2021. A Scalable Multi-Layer PBFT Consensus for Blockchain. IEEE Transactions

on Parallel and Distributed Systems 32, 5 (2021), 1146ś1160.

[28] Dahlia Malkhi and Kartik Nayak. 2023. Extended Abstract: HotStuf-2: Optimal Two-Phase Responsive BFT. Cryptology ePrint Archive,

Paper 2023/397. https://eprint.iacr.org/2023/397

[29] Ray Neiheiser, Daniel Presser, Luciana Rech, Manuel Bravo, Luís Rodrigues, and Miguel Correia. 2018. Fireplug: Flexible and robust

N-version geo-replication of graph databases. In 2018 International Conference on Information Networking (ICOIN). IEEE, Chiang Mai,

Thailand, 110ś115.

[30] W. L. Nicholson. 1956. On the Normal Approximation to the Hypergeometric Distribution. The Annals of Mathematical Statistics 27, 2

(1956), 471ś483. http://www.jstor.org/stable/2237005

[31] Sajjad Rahnama, Suyash Gupta, Thamir M. Qadah, Jelle Hellings, and Mohammad Sadoghi. 2020. Scalable, resilient, and conigurable

permissioned blockchain fabric. Proc. VLDB Endow. 13, 12 (Aug. 2020), 2893ś2896. doi:10.14778/3415478.3415502

[32] Thomas Ristenpart and Scott Yilek. 2007. The Power of Proofs-of-Possession: Securing Multiparty Signatures against Rogue-Key Attacks.

In Advances in Cryptology - EUROCRYPT 2007, Moni Naor (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 228ś245.

[33] HEMMINGER S. 2005. Network Emulation with NetEm. https://cir.nii.ac.jp/crid/1572543024894323456. Accessed on 18.04.2022.

[34] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić. 2022. Mir-bft: Scalable and robust BFT for decentralized

networks. Journal of Systems Research 2, 1 (2022).

[35] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State machine replication scalability made simple. In Proceedings

of the Seventeenth European Conference on Computer Systems (Rennes, France) (EuroSys ’22). Association for Computing Machinery, New

York, NY, USA, 17ś33. doi:10.1145/3492321.3519579

[36] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. 2009. Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning Primary.

In 2009 28th IEEE International Symposium on Reliable Distributed Systems. IEEE, Niagara Falls, NY, USA, 135ś144.

[37] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. 2010. EBAWA: Eicient Byzantine Agreement

for Wide-Area Networks. In 2010 IEEE 12th International Symposium on High Assurance Systems Engineering. IEEE, San Jose, CA, USA,

10ś19.

[38] Marko Vukolić. 2016. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. In Open Problems in Network Security,

Jan Camenisch and Doğan Kesdoğan (Eds.). Springer, Cham, 112ś125.

[39] P. Wuille. 2018. libsecp256k1. https://github. com/bitcoin/secp256k1. Accessed on 18.04.2022.

[40] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. 2019. HotStuf: BFT Consensus with Linearity and

Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (Toronto ON, Canada) (PODC ’19).

Association for Computing Machinery, New York, NY, USA, 347ś356. doi:10.1145/3293611.3331591

Received 16 May 2022; revised 18 April 2025; accepted 5 September 2025

ACM Trans. Comput. Syst.

https://eprint.iacr.org/2023/397
http://www.jstor.org/stable/2237005
https://doi.org/10.14778/3415478.3415502
https://doi.org/10.1145/3492321.3519579
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Design of Dissemination/Aggregation Trees
	4.1 HotStuff Communication Pattern
	4.2 Using Trees to Implement HotStuff
	4.3 Dissemination and Aggregation

	5 Mitigating Tree Latency
	5.1 Pipelining in HotStuff
	5.2 Pipelining in Kauri
	5.3 Pipelining Stretch and Expected Speedup

	6 Reconfiguration
	6.1 Modeling Reconfiguration as an Evolving Graph
	6.2 Reconfiguring for t-Bounded Conformity
	6.3 Reconfiguring for t-Bounded q-Robust Conformity
	6.4 Reconfiguration in Practice
	6.5 Conservative Reconfiguration and Graceful Degradation

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Configuring Kauri
	8.3 Aggregate & Verify
	8.4 Effect of Pipelining Stretch on Throughput
	8.5 Throughput Across Different Scenarios
	8.6 Effect of the RTT in Throughput
	8.7 Latency
	8.8 Throughput vs Latency
	8.9 Heterogeneous Networks
	8.10 Reconfiguration
	8.11 Comparison with DAG based Consensus
	8.12 Evaluation Summary

	9 Discussion and Limitations
	9.1 Dynamic Pipelining
	9.2 Heterogeneous Network
	9.3 Random Tree Construction
	9.4 2-Phase HotStuff
	9.5 Narwhal-Kauri Hybrid

	10 Conclusions
	References

