
Miguel Ângelo Marques de Matos

Network-Aware Epidemic Broadcast

Tese de Mestrado
Mestrado em Engenharia Informática
Trabalho efectuado sob a orientação do
Professor Doutor Rui Carlos Oliveira

Maio 2009

2

Acknowledgements

To my advisor Prof. Rui Oliveira for his unwavering support since
I joined the distributed systems laboratory and for the enlightened
guidance. To Prof. António Sousa for our weekly meetings on the
context of the DC2MS project whose insights proved so fruitful. To
Prof. José Pereira for all the insightful brainstorms we had that
provided invaluable research directions in all the moments. Without
the kind support of the three this dissertation will be impossible.

To my colleagues and friends at the laboratory, Nuno Carvalho and
Ricardo Vilaça, for their support, critics and ultimately for the af-
fable working environment.

To Ana, for everything only we know.

To my parents and nephew, for allowing me to stand in the shoulders
of giants.

And �nally to the Great Unknown for providing so many mysteries
to keep us thinking.

ii

Resumo

Os protocolos de disseminação �ável baseados na abordagem epidémica
têm ganho popularidade nos últimos anos dada a sua escalabilidade e
resiliência na entrega de mensagens em sistemas distribuídos de larga
escala. Contudo, esta resiliência e escalabilidade são obtidas através
de elevados níveis de redundância na propagação das mensagens que
conduzem inevitavelmente ao consumo substancial de recursos nos
nodos e respectivos canais de comunicação. Em cenários que apre-
sentam canais com recursos restritos, como o modelo emergente da
Computação em Nuvem em que vários data centers estão interliga-
dos numa federação global, esta característica impede a utilização
efectiva desta classe de protocolos.

O objectivo desta tese é, portanto, aumentar a aplicabilidade dos
protocolos de disseminação epidémicos, através da redução da carga
imposta nos canais com recursos restritos. Isto é alcançado con-
struindo uma rede sobreposta que tem em conta as características
individuais dos canais de comunicação, e através de um protocolo
de disseminação que considera a localidade dos nodos aquando da
propagação das mensagens. Através de experimentação exaustiva,
observa-se que os protocolos propostos reduzem a carga imposta nos
canais de comunicação com recursos restritos, sem contudo afectar a
escalabilidade e resiliência que tornam os protocolos de disseminação
epidémica tão atractivos.

iv

Abstract

Epidemic multicast is an emerging resilient and scalable approach to
the reliable dissemination of application data in the context of very
large scale distributed systems. Unfortunately, the resilience and
scalability come at the cost of considerable redundancy which led
to high resource consumption on both links and nodes. In environ-
ments with resource constrained links, such as in Cloud Computing
infrastructure composed by data centers organized in a federation
around the globe, the high resource consumption precludes the use
of this class of protocols. The goal of this dissertation is therefore to
cope with the constraints of these scenarios, by reducing the network
load imposed on the constrained long distance links. This is achieved
by constructing an overlay that re�ects the characteristics of the
links, and by using a dissemination protocol that takes into account
locality when transmitting the message payloads. We conducted
an extensive experimental evaluation that presents an improvement
over an order of magnitude in the number of messages that traverse
the costlier links, without endangering the resilience and scalability
properties that make epidemic based protocols so attractive.

vi

Contents

Contents . viii

List of Figures . ix

List of Tables . xi

Listings . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Brief Problem Presentation 4

1.3 Dissertation Outline 6

2 Related Work 7

2.1 Background . 7

2.1.1 Structured Overlay Networks 8

2.1.2 Unstructured Overlay Networks 10

2.2 State of the Art of Unstructured Networks 17

2.2.1 Flat Protocols 17

2.2.2 Hierarchical/Locality-aware Protocols 21

2.2.3 Dissemination Protocols 26

3 Problem Statement 29

4 Network-Aware Epidemic Broadcast 33

4.1 Approach . 33

4.2 Peer Sampling Service 35

4.2.1 Network-awareness 36

4.2.2 Degree Balancing 38

4.2.3 Bootstrapping mechanism 41

vii

viii CONTENTS

4.3 Dissemination Protocol 46

4.3.1 Locality awareness on the selection of peers . 47

4.3.2 Lazy push optimization 49

5 Experimental Evaluation 53

5.1 Experimental Scenario Description 54

5.2 Peer Sampling Service Evaluation 54

5.2.1 Overlay properties 56

5.2.2 Degree balancing mechanism 59

5.2.3 Bootstrapping mechanism 63

5.3 Dissemination Protocol Evaluation 66

5.3.1 Flooding dissemination protocol 67

5.3.2 Improved Emergent Dissemination Protocol . 68

6 Conclusion 73

6.1 Conclusions . 73

6.2 Summary of Contributions 75

6.3 Future Work . 75

References 77

List of Figures

5.1 Network topology. 55

5.2 Overlay Connectivity. 57

5.3 Overlay Clustering. 59

5.4 Overlay Average Path Length. 60

5.5 Clon Initial Overlay Degree Distribution 61

5.6 Clon Degree Distribution After 100 Runs of the Bal-
ancing Algorithm . 62

5.7 Overlay Connectivity After Degree Balancing. 63

5.8 Overlay Clustering After Degree Balancing. 64

5.9 Overlay Average Path Length After Degree Balancing. 65

5.10 Messages received by each node using a �ooding dis-
semination protocol. 68

5.11 Messages/Advertisements Received using the improved
Emergent dissemination protocol. 70

5.12 Bandwidth/Latency trade o� of the di�erent strate-
gies using the improved Emergent dissemination pro-
tocol. 71

ix

x LIST OF FIGURES

List of Tables

5.1 Di�erent bootstrapping con�gurations. 66

xi

xii LIST OF TABLES

Listings

2.1 Send primitive . 16

2.2 Scamp protocol . 18

2.3 HyParView Protocol 21

2.4 Basic Gossip Protocol: Peer Selection 27

2.5 Point-to-Point Communication 28

4.1 Clon protocol . 37

4.2 A possible localityOracle 37

4.3 Clon normalization algorithm 40

4.4 Clon contact discovery protocol 43

4.5 Dissemination Protocol: Peer Selection 49

4.6 Dissemination Protocol:P2P Communication 51

4.7 A possible isCloser Oracle 51

5.1 isEager oracle with a TTL con�guration 72

xiii

xiv LISTINGS

Chapter 1

Introduction

Begin - to begin is half the work, let

half still remain; again begin this, and

thou wilt have �nished.

Decimus Magnus Ausonius

This introductory chapter presents the motivation that led to this
dissertation, its relevance to the problems faced in the actual IT
scenario, the main results obtained and an outline of the chapters of
the dissertation.

1.1 Motivation

With the popularization of the modern desktop computer, and its
ever growing processing and storage capabilities, we have been as-
sisting through the last two decades to a massive decentralization of
computing power. The common user can now do most of its every-
day tasks from spreadsheets to text processing with the computer
in its desk, without needing to login in the old mainframe. On the
other hand, the advent of the World Wide Web and its exponen-
tial growth in the end of the last century led to the publication of
content and services through well known providers that rely on the
client-server paradigm. The services and contents are hosted in the
provider central servers and the client accesses them by means of its
Internet connection.

The standardization and commoditization of hardware enabled the
construction and assembly of infrastructures composed by thousands
to hundreds individual computers that when internetworked form a

1

2 CHAPTER 1. INTRODUCTION

platform more powerful than the simple sum of all parts, the well-
known data centers. Todays data centers e�ectively support our
Information Society ranging from government agencies that manage
citizen information to private companies that provide a wide variety
of services.

The necessity, and possibility, of building those large infrastructures
incited practitioners to develop mechanisms that e�ectively harness
the power they provide leading to the grid computing initiative. The
rationale behind those grid infrastructures is to use a divide and con-
quer strategy in order to parallelize applications. With the massive
parallelization, is then possible to solve technical or scienti�c prob-
lems that would otherwise not be computable in acceptable time
frames. The nodes composing the grid act in a concerted manner
by splitting the task in several segments and working over each one
of them individually. The typical usage of the grid includes the
processing of long running batch tasks controlled by one entity, by
dedicating parts of the grid infrastructure to that particular compu-
tation. Examples of such applications include statistical analysis and
inference over large amounts of data or processing intensive tasks,
such as weather forecasting or protein folding. The individual nodes
in the grid are loosely coupled entities.

In the grid, the characteristics of the jobs requires the pre-allocation
of considerable parts of the infrastructure, which inhibits the use
of completely automated resource allocation, such as that done in
a single computer, and prevents tasks from di�erent entities to run
concurrently on the nodes of the infrastructure. In the latter 90's
we assisted to the evolution of this concept with the introduction of
Utility Computing. In Utility Computing the focus is on the business
model that by means of metering and billing allows customers to
access the computational resources of the provider. The term utility
comes from the idea that computational resources should be o�ered
as a public service, like electricity, and therefore billed according
to consumption. This business model allows customers to access
vast quantities of resources for the amount of time desired, without
having to setup up a complex IT infrastructure with the implicit
cost it carries and bene�ts the providers as it allows them to rent
the excess capacity of their infrastructure, which is frequently over
provisioned in order to meet peak demands.

In parallel to this business model, we have been assisting to the
emergence of the Software as a Service paradigm. In this business
model, applications are delivered through the Internet as a service to
its customers. The administrative burden of managing the low level

1.1. MOTIVATION 3

infrastructure, deploying and updating the system's hardware and
software is o�oaded to the service provider, allowing the customers
to focus on the details of their particular businesses. Recently this
Software as a Service model has been expanded to o�er program-
ming platforms and low level IT infrastructures within the same
business model in what is now known under the Cloud Computing
moniker. While at �rst sight it may look similar to Utility Comput-
ing, there are some key di�erences that justify a new designation.
The �rst and perhaps more important di�erentiator is the concept
of elasticity. Elasticity allows the automatic up- and down-scaling
of allocated resources in a transparent way, and guarantees that fail-
ures are concealed from the customer by quickly replacing the failed
node with a spare replica, a property known as self-healing. Whereas
in Utility Computing the customer rents a 'grid' for its own use and
discards it when the work is done, Cloud Computing has a broader
scope. The goal is to completely o�oad the infrastructure of a given
customer to the cloud provider, leveraging on its expertise in man-
aging those large infrastructures and relying on well de�ned Service
Level Agreements that guarantee the reliability of the service and
data con�dentiality. The services provided by a cloud environment
could range from the low level infrastructure where the customer only
'sees' bare-metal machines, to the o�ering of a programming plat-
form where the customer is able to deploy its application in the cloud
and do not worry about the low level management details, up to the
already known software as a service model. Examples of providers
o�ering solutions at those di�erent levels include, respectively, Ama-
zon EC2 [4], Google App Engine [18], and Salesforce [39].

The availability of these platforms is inducing a shift from the com-
pletely decentralized philosophy of nowadays to a centralization of
computational capabilities by a couple of service providers. History
repeats itself and it seems that the pendulum is swinging back to
the centralization of application platforms, [13].

To enable the worldwide delivery of those services over the network
and guarantee that they can still be provided despite natural dis-
asters such as earthquakes, �oods and civil turmoils, and because
of problems of scale itself, the current infrastructure consists of ge-
ographically dispersed data centers aggregated by means of feder-
ation. To this end the di�erent data centers are connected among
them by means of expensive, possibly inter-continental and hopefully
redundant links in order to mitigate the problems pointed above.
Furthermore the intra-data centers links are expected to be more re-
liable than the inter-data center ones, with high bandwidth and low

4 CHAPTER 1. INTRODUCTION

latency, and be pervasively deployed in the data center infrastruc-
ture, in order to support the communication needs of the hundreds
to thousand individual nodes that power the data center.

Despite the di�erent o�erings and the inner details that power each
one of them, those cloud platforms are distributed systems which
happen to be composed of hundreds to thousands of nodes. This un-
derlying infrastructure could be seen from the customer point of view
as a nearly in�nite pool of computing resources available on demand.
On the other hand, from the service provider's point of view, it is of
paramount importance to e�ectively manage those nodes in order to
enable e�cient resource usage, provide accounting mechanisms that
can be used to bill the customer and increase the reliability of the
system as a whole in order to meet stringent Service Level Agree-
ments. As in any distributed system, there are two fundamental
building blocks that leverage the reliability and proper coordination
of the system and enable its proper management: reliable multicast
and distributed agreement. Reliable multicast provides trustworthy
communication primitives to the system, guarantying that messages
reach their intended recipients. Distributed agreement o�ers an ab-
straction to the voting problem, ensuring that all correct processes
(eventually) decide the same value upon a set of valid proposals.
With these strong primitives it is possible to build a reliable man-
agement framework to properly administer the infrastructure. For
instance, the administrator could provide data aggregation services
to account for the global state of the system, and deploy the billing
mechanisms on top of it. The problems raised by the management
of such very large scale infrastructures and the need to provide re-
liable mechanisms in order to do so are the core of an undergoing
project at our lab, Dependable Cloud Computing Management Ser-
vices [2]. This thesis pretends to give a satisfactory answer to one
of those problems: reliable multicast in the context of the very large
distributed systems that power todays' cloud infrastructures.

1.2 Brief Problem Presentation

As outlined in the previous Section, todays' cloud infrastructures
consist of geographical dispersed data centers, organized in a fed-
erated fashion and connected by long distance expensive links. In
order to provide a reliable management service that spawns this fed-
erated organization, a scalable and reliable communication service
is fundamental. Unfortunately, the communication demands intra-

1.2. BRIEF PROBLEM PRESENTATION 5

data center and inter-data center are very di�erent, both in terms of
latency and bandwidth required to provide a reliable service, and in
the need of timeliness of information available across the federated
infrastructure. In a smaller scope, this can be also observed in the
architecture of a single data center, as collections of nodes are also
grouped in a federated manner that re�ects the networking technol-
ogy available today. This is evident in the individual clusters that
compose the data center and are deployed in a hierarchical fashion,
inter-connected by more expensive network devices as we move up
in the networking tree that composes the data center. This problem
is alleviated, but not solved, by using a fat tree network layout [3],
where leaf nodes are grouped in a way to mitigate the load imposed
on the individual network devices such as routers and switches that
interconnect them, while at the same time providing transparent
load balancing and failover among those devices. Further details of
the fat tree network deployment model in a data center can be found
in [3].

The objective of this thesis is therefore to provide a reliable commu-
nication service that improves the matching between the amount of
tra�c handled by each component on the infrastructure and the run-
ning application semantics and needs. However, this is not straight-
forward in a very large environment composed of thousands to hun-
dreds of thousands of nodes, each one with a more or less unpre-
dictable life cycle. The life cycle of each node is very important in a
infrastructure of such scale, as nodes may arbitrarily join and leave
the network, either due to failures of both links and nodes or due to
business needs related, for example, to maintenance and updates of
the individual components. As such, the proposed communication
service provides reliable dissemination mechanisms, to all nodes in
the infrastructure while at the same time seamlessly coping with the
inherent churn rates, the rate at which nodes leave and enter the
system.

This is achieved by leveraging on the resilience of unstructured net-
work overlays, more details will follow in the subsequent chapters,
and carefully biasing the overlay links in order to take into account
the underlying network topology.

With this approach, we are able to reduce the load imposed on the
long distance links, for instance those connecting geographically dis-
persed data centers, by an order of magnitude while at the same time
tolerating considerable failures of the whole infrastructure. Further-
more, our reliable multicast service constantly adapts to changes on
the infrastructure that happen, for instance, when a considerable

6 CHAPTER 1. INTRODUCTION

amount of nodes join or leave the system.

1.3 Dissertation Outline

The rest of this dissertation is organized as follow: Chapter 2 pro-
vides background information in order to familiarize the reader with
the key concepts of reliable dissemination in very large scale dis-
tributed systems, and o�er a state of the art review of the current
approaches to address this problem; Chapter 3 presents the problem
we are addressing, its worthiness and why the current approaches
do not provide satisfactory answers; Chapter 4 presents the ratio-
nal behind the developed protocol, carefully describing it and why
it addresses the problem presented in Chapter 3; Chapter 5 assesses
the quality of the proposed service by means of extensive simulations
and the discussion of the obtained results; and �nally Chapter 6 con-
cludes the dissertation, presenting the main insights obtained during
its elaboration, how successfully it achieves the proposed objectives
and presenting directions for future research on the subject of reli-
able dissemination services on very large scale distributed systems.

Chapter 2

Related Work

Great work is done by people who are

not afraid to be great.

Fernando Flores

This chapter is divided in two main sections: Section 2.1 introduces
the two main approaches to address the problem of building the sup-
porting infrastructure to reliable multicast, and Section 2.2 presents
the state of the art in unstructured network protocols.

2.1 Background

This section, introduces the background concepts necessary to fa-
miliarize the reader with the technical details present in the rest of
the dissertation. A brief review of the core concepts of structured
overlay networks is presented in Subsection 2.1.1, and a thoughtfully
analysis of unstructured overlay networks principles is presented in
Subsection 2.1.2, as the latter will be the approach taken in this
thesis.

Before dwelling in the details of each approach, it is important to
grasp a pervasive concept used by both proposals: the overlay. The
overlay is a virtual computer network built atop another network, for
instance a physical one. The overlay could be visualised as a graph,
where nodes, or peers, are connected by a virtual or logical links
in order to form a path. Each node communicates with the others
using those links, which are mapped to the underlying network as
appropriate.

7

8 CHAPTER 2. RELATED WORK

2.1.1 Structured Overlay Networks

The term structured overlay network comes directly from the fact
that in this class of protocols the overlay is judiciously controlled,
and information is placed on speci�c peers according to the rules de-
�ned in the particular algorithm used. Due to this very fact, struc-
tured overlay networks are extremely e�cient in routing requests to
the appropriate node, as the location of those nodes could be calcu-
lated in a deterministic fashion. Therefore, this class of protocols is
extremely popular to store and retrieve arbitrary data and build dis-
tributed hash tables (DHT). The DHT algorithms de�ne a topology
by assigning identi�ers to each node, and a function that determines
the distance, in number of hops, between any two identi�ers in the
space. Nonetheless, the inherent overlay structure can also be used
to provide reliable multicast primitives to applications [8,19,35,44].

The mechanisms to construct the structured overlay networks are
roughly divided in two main classes [9]: hypercube algorithms and
Cartesian hyperspaces.

In the hypercube mechanism, the space of identi�ers, the keys, is
populated by peers in a circular fashion, in a ring-like formation.
Each peer is assigned a unique identi�er, the nodeId, chosen at ran-
dom. The nodeId is used to assign the node to a deterministic po-
sition on the ring, by means of a uniform hashing function. There-
fore, nodes are distributed nearly evenly on the ring, thus achieving
uniform data partitioning among the nodes in the overlay. With
this structure established, each peer maintains a routing table to
its neighbours in the key space, and is responsible for maintaining
part of the key space between it and its predecessor and successor,
the node(s) immediately before and after it in the ring, respectively.
Upon a request, the peer either responds to the client, if it is the
manager of that key, or forwards the request to a neighbour that is
numerically closer in the key space to the requested key, by consult-
ing its routing table. The number of hops that a request must take
in the ring before being successfully answered depends, therefore, on
the number of entries in the routing table. With bigger routing ta-
bles, the request could be answered in less hops but, larger tables are
costlier to maintain as the state of more peers needs to be taken into
account. Upon failure of a node in the ring, its closest neighbours
perform some calculations, dependent on the particular algorithm
used, and the peer numerically close to the failed one takes over its
key space. Examples of such protocols include [38,41,43].

On the other hand, in Cartesian hyperspace routing mechanism,

2.1. BACKGROUND 9

nodes are organized in a d-dimensional cube. Each node in the
system is assigned to a hyper-space region, and is responsible for
managing the keys in that region. When a request from a client is
received, the node responds to the client if it is responsible for the
region of the request's key, or forwards the request in a greedy fash-
ion to a neighbour whose region is closer to the request's key. As
there are multiple paths between any two points in the space, the
algorithm is capable of routing around failed regions in a straight-
forward fashion. Upon join, the new peer contacts a random node
in the hyperspace, the key space is split in two halves, one of those
parts is assigned to the new peer and the appropriate routing in-
formation is updated. The joining process could be optimized by
splitting the key space in a more pondered manner, such as forward-
ing the joining node to a region whose key space is larger than the
one initially chosen. Upon detection of a neighbour failure, nodes
initiate a takeover procedure, to ensure that one of the neighbours
becomes responsible for the region of the failed peer. After that,
the neighbours send soft updates among them in order to update
the respective routing tables, and ensure that the failed node is cor-
rectly pruned from the tables. The state necessary to maintain the
routing information to the neighbours is of the 2d order, where d is
the number of dimensions. The [34] structured overlay protocol is
an example of Cartesian hyperspace routing.

A reliable multicast service could be deployed on those overlays by
following two di�erent approaches: �ooding and tree-based dissem-
ination.

As the name implies, in �ooding [35] the application level messages
received are relayed to all neighbours in the Cartesian hyperspace
or in the hypercube. The �ooding protocol leverages on the routing
information already maintained by the overlay, and creates separate
multicast groups on top of it, according to the interest of the peers.
As expected, �ooding is very demanding in bandwidth and as such,
several optimizations to this naive strategy exist that take advantage
of the location of nodes in the space in order to reduce the number of
duplicates received by each node. In one of those strategies �ooding
is only done in the same 'direction' as the received message, as nodes
on the opposite direction are already expected to have received the
message [35].

In the tree-based approach [8], the dissemination of application
level messages uses a reverse-forwarding mechanism to construct and
maintain the multicast group that encompasses all the nodes inter-
ested in the dissemination process. For each multicast group, the

10 CHAPTER 2. RELATED WORK

dissemination protocol creates a multicast tree with a unique iden-
ti�er, and uses it to relay messages to the relevant peers. To join
the group, a peer uses the underlying overlay to send a message to
the multicast group. As the joining request traverses the underlying
overlay, each node checks whether it is already part of the desired
multicast group, and if it is, it stops forwarding the message and adds
the joining node as a child in the tree, if not the request is forwarded
to the parent until it is adopted by a node or it reaches the root of
the tree. In the latter case, the root will adopt the joining node as
a direct children. The protocol carefully balances the dissemination
tree in order to ensure an evenly load distribution among the par-
ticipating nodes. To further prevent bottlenecks in certain nodes of
the tree, the protocol provides mechanisms to demote a node's child
to a grandchild, thus transferring some of the dissemination e�ort
to its children.

Further details of the deployment of these protocols on top of the
structured overlay construction mechanisms available, and a thought-
ful comparison of the trade-o�s between each one can be found in [9].

2.1.2 Unstructured Overlay Networks

A completely di�erent approach from the one presented previously
relies on the mathematical foundations of epidemic disease spread-
ing [5]. Due to this, this class of algorithms is also known as
epidemic-based reliable multicast and even gossip-based due to the
similarities to rumor spreading. The underlying principle is aston-
ishingly simple: if each member of the population infects a minimum
number of neighbours drawn randomly across the universe, then the
entire population will be infected after a known period of time, or
rounds. The probability that the whole population becomes infected,
or atomic infection, is therefore a�ected by two model parameters:
the number of neighbours that each infected node tries to contami-
nate in each round, also known as the fanout, and the duration of the
infection spreading, or number of rounds, modeled as discrete steps.
Furthermore, two opposite infectious behaviours could be consid-
ered: infect and die, where an infected node contaminates a fanout
number of neighbours and stops permanently, and the infect forever
alternative, where an infected node will always try to infect fanout
neighbours during the entire time span of the epidemic.

For a given population, the model parameters can be adjusted to
ensure that all members are infected with high probability. In fact,
slightly below those values the infection will reach almost none of

2.1. BACKGROUND 11

the population, and above them the infection will reach almost all
members, a property known as bimodal dissemination guarantee that
has been studied in [6]. Due to the probabilistic guarantee that
is possible to o�er, this protocols are also known as probabilistic
dissemination protocols.

Applying these principles to the dissemination of information in a
computer network is however not trivial, and raises several interest-
ing challenges. An essential requirement for epidemic based algo-
rithms to work is the knowledge of the whole population because
the targets selected for infection are expected to be drawn randomly
across the entire population. Furthermore, in [12] the authors have
identi�ed key challenges when deploying those algorithms: member-
ship, network awareness, bu�er management and message �ltering.
The membership is related to the necessity of knowing the whole
population, as explained previously, how nodes get to know each
other, and how many of them they need to know to achieve suc-
cessful dissemination. The second challenge, network awareness is
concerned with the problem of re�ecting the network topology in
the connections established between nodes. These two challenges
will be the core of this dissertation and will be addressed with fur-
ther detail in the next sections. The bu�er management problem
is concerned with the handling of multiple messages by the same
process simultaneously. When dissemination of di�erent messages
occurs concurrently, processes may have to temporally store mes-
sages in order to do adequate processing and, possibly, forward it
to other nodes for a given number of rounds, which implies that
processes may have to hold messages for considerable amounts of
time. Furthermore, processes need to known the history of messages
in order to avoid delivering duplicates to the application. As mem-
ory is not an in�nite resource, these requirements and constraints
demand that bu�er management protocols ensure the timely prun-
ing of spurious messages, without dropping unwanted ones, which
could impact reliability [21]. Several solutions exist for this prob-
lem, such as dropping messages according to age [11], de�ning an
obsolescence relation between messages [31] or calculating the over-
all average bu�er capacity in a distributed fashion [37]. In reliable
dissemination, the goal is to deliver every message injected into the
system to every participant. Message �ltering pushes this forward
and attempts to reduce the number of uninteresting messages that a
given process receives, by using the concept of interest groups, and
ensuring the reliable dissemination only among the members of each
group [10].

12 CHAPTER 2. RELATED WORK

After the overview of the epidemic foundations presented above, we
will now focus on the problems that arise from the construction and
maintenance of the membership, and the properties that a protocol
must abide by, to ensure reliable dissemination of information. As
stated previously, for the epidemic model to work properly, the po-
tential targets for infection should be chosen randomly across the
universe of nodes. To be able to randomly choose across all the
nodes, any given node must have, therefore, global knowledge. In
fact, initial protocols such as [6], clearly rely on having global knowl-
edge of the membership at each node to successfully guarantee the
bimodal dissemination property. While this global knowledge could
be attained for small to medium sized clusters with a relatively sta-
ble membership, it is not suitable, or even feasible, for large scale
systems composed of hundreds to thousands of nodes. This comes
directly from scale itself, as the knowledge necessary to maintain at
each node requires vast amounts of memory [11] and from a natural
phenomenon in distributed systems, churn. Churn is closely related
to the dynamics of the environment, and measures the rate at which
nodes enter and leave the system. If the churn rate is considerable,
the cost of updating the global membership knowledge of all nodes
in a large scale system, becomes unbearable or even unattainable.

To overcome this problem that e�ectively limits the applicability
and scale of epidemic based solutions, researchers have developed
several protocols that rely on epidemic mechanisms to build and
maintain the membership information [11, 15, 16, 24�27, 42]. The
rationale behind these algorithms relies on each process knowing
only a small number of other processes, the view, instead of the
global knowledge required before. The resulting 'who knows who'
relationship could be modeled as a graph where the edges are the
nodes, and the vertices represent the 'knows' relation, which can be
symmetric in case of undirected graphs or asymmetric, if the graph
is directed. In this representation the view corresponds then, to the
set of graph neighbours of a given node. It has been proved [11] that
constructing the right 'who knows whom' relationship with partial
views of the system is a reliable approach to the construction of
unstructured overlay networks without requiring global knowledge
at each node.

When switching from global to partial knowledge, the uniformity of
the random sampling process that chooses potential infection targets
is a�ected, as nodes cannot select targets randomly across the uni-
verse but only in the restricted set of its neighbours [12]. The prob-
lem of choosing a random peer from the universe when global knowl-

2.1. BACKGROUND 13

edge is not available or attainable, could be addressed by means of
random walks [17]. A random walk is a procedure that consists
of successively taking random paths while traversing a graph, for
a given number of times. This has been deeply studied in [17], in
the context of information searching and overlay construction mech-
anisms, and one of the important outcomes is that a random walk
on a graph with 'enough' length is equivalent to choosing a node
randomly across the universe of nodes, which e�ectively solves the
problem of the random selections pointed previously.

Furthermore, as the systems evolves, namely with respect to its size,
it is necessary to tune the dissemination parameters, the fanout and
number of rounds, as well as the view size, a property which is known
as adaptability. If a given protocol fails to constantly adapt to chang-
ing systems sizes the reliability and/or performance of the protocol
will be seriously compromised. If the system size grows considerably,
the failure to adapt the protocol parameters will inevitably lead to
the loss of the reliability guarantees, as the overlay will partition
and/or messages may not reach all the nodes.

On the other hand, if the system size shrinks below the pre-de�ned
protocol parameters there will be an unnecessary waste of resources
on nodes and links, as the protocol is con�gured to infect more nodes
than the existing ones. The relationship of those parameters with
reliability and the impact they have on each other has been studied
in [6,23]. An important result of the previous works shows that for a
given system size N , bimodal dissemination guarantees are obtained
if each node infects around log(N)+ c nodes, where N is the system
size and c a protocol parameter related to the desired reliability in the
presence of faults. The �nal requirement to build a fully distributed
membership service, is the bootstrapping itself, which consists on
the initial steps that a process must e�ectuate in order to discover
at least a node belonging to the overlay and establish a connection to
it, a process that is known as joining. To the best of our knowledge,
there are currently no solutions to address this problem in a fully
decentralized fashion, as nodes joining the overlay are expected to
know, a priori, a subset of 'well-known nodes' to which they can
connect to.

The other fundamental aspect of building a fully scalable member-
ship service is related to network awareness, or locality. In fact,
if an epidemic protocol that does not take into account locality is
deployed on a network where the cost of links may vary greatly,
for instance a Wide Area Network, its reliability and usefulness is
limited [12]. This comes directly from the fact that links are estab-

14 CHAPTER 2. RELATED WORK

lished with equal probability despite their cost, and therefore close
neighbours may only be able to communicate among them by means
of costlier, long distance links, for instance two nodes in the same
LAN may not know each other and be able to communicate only
by means of a common neighbour on the WAN. If the amount of
messages exchanged between them is considerable, then the costlier
links could easily become a bottleneck, for instance in terms of band-
width or latency, precluding a reliable and scalable dissemination.
It is important to note that the 'cost' function is abstracted out of
the model and should only indicate an abstract distance between
two nodes and/or the preference that should be given to a link over
another. The traditional solution to the network awareness problem
relies on hierarchical organizations: special processes establish links
according to the cost function leading to an hierarchical or tree-like
organization that re�ects the network topology. Several well-known
protocols, [10,25] use this principle to o�er dissemination guarantees
while mimicking the organization imposed by the cost function.

Despite the inherent details of each protocol the overlay a pervasive
concept across all of them that abstracts the links established be-
tween any given pair of nodes. As the overlay could be seen as
a graph, it is therefore of the utmost importance to understand
the graph properties that are important to obtain a quality overlay
upon which message dissemination could take place. Those proper-
ties have been identi�ed in [20] and are the following: connectivity,
average path length, degree distribution and clustering coe�cient.
Connectivity indicates whether there is at least one path from each
node to every other node. Failure to maintain connectivity will re-
sult in partitions and therefore failure to infect all nodes. The av-
erage path length measures the number of hops that separate any
two nodes in the graph, and is closely related to the overlay diam-
eter. Low average path lengths are desirable as they represent a
lower bound on the latency necessary to disseminate a given mes-
sage, and thus tighten the vulnerability window to node and network
faults. Degree distribution represents the probabilistic distribution
of the neighbours of each node, its degree, and is related to node
reachability and its proneness to disconnection from the rest of the
overlay. Nodes with low degrees are prone to become disconnected
in the presence of failures, whereas high degrees degrade the quality
of the overlay as the dissemination e�ort becomes too dependent of
those nodes. Therefore, a normal distribution with low deviation is
essential to ensure a high quality overlay, and consequently, an e�ec-
tive and reliable dissemination. Clustering coe�cient measures the

2.1. BACKGROUND 15

closeness of neighbour relations, it is the ratio between the number
of links established among the neighbours of a given node by the to-
tal of possible links among those neighbours. The numeric value of
this property should be as small as possible because high clustering
coe�cients lead to an increased redundancy in message transmis-
sion, and the consequent waste of resources, and it also increases
the probability of partitions as neighbour nodes tend to be highly
connected around the cluster and poorly connected to the rest of the
overlay.

So far we have analysed the requirements and theoretical properties
necessary to obtain a fully decentralized and reliable membership
service, known in the literature as the Peer Sampling Service [20].
This service o�ers abstract primitives to obtain a certain number
of potential gossip targets. Although that service and the actual
dissemination protocols are usually used together to provide a de-
centralized reliable multicast abstraction, we clearly separate them
in this dissertation, as di�erent requirements and assumptions are
made on each one of them and, therefore, di�erent improvements
could be done on each one. We will now address the di�erent dis-
semination strategies available, and the trade-o�s o�ered by each
one of them [22].

Gossiping strategies follow two major approaches: pushing and pulling.
In a push strategy, each peer forwards a message as soon as received
to its neighbours for a given number of rounds. If the payload is
transmitted instantly them we are in the presence of the eager vari-
ant. If the payload is omitted and only an advertisement of the
message is sent, then we are on the lazy variant. In the latter,
a node that received the advertisement of a known message could
then ask the source for the payload and lazily push the payload.
Assuming that the message payload tends to be much larger than
an advertisement with the message identi�er, the lazy variant allows
for a drastic reduction on bandwidth consumption at the cost of in-
creased latency as three communication steps are needed to obtain
the actual message content. In fact, if a pure lazy push strategy is
used, it is possible to achieve exactly once payload delivery for every
destination, at the cost of a considerable penalty in latency. Fur-
thermore, the impact on reliability must also be taken into account,
as the additional round trips widen the time window to network and
node faults. Oppositely, in the eager variant the latency is minimal,
but comes at the cost of higher bandwidth consumption, as nodes
tend to receive multiple copies of the same message through di�erent
paths. The eager push strategy is the most common dissemination

16 CHAPTER 2. RELATED WORK

1 proc send(destination,message)

Listing 2.1: Send primitive

strategy in nowadays protocols, such as [11,21,32], to cite a few.

In the pulling strategy nodes periodically ask neighbours for new
messages. When a node receives a request for new messages, it will
send all new known messages to the requester, if acting on the eager
variant. Oppositely, in the lazy approach, also known as two-phase
pull, the receiver of the request will send only a digest of the new
known messages, allowing the requester to selectively pull the desired
messages. As in the push approach, the lazy variant imposes less
constraints on the bandwidth, while the eager variant decreases the
latency necessary to disseminate the updates. However, as in pull
gossiping updates are only asked periodically, the impact on latency
of the lazy variant may be negligible if that period is considerable
greater than three times the average network latency.

While the choice between an eager versus a lazy variant is clearly
a trade-o� between bandwidth and latency, the di�erence between
a push versus a pull scheme is more subtle. In pull, nodes proac-
tively ask for new messages where in push nodes behave in a reactive
fashion to message exchanges. Therefore, in an environment where
messages are sparingly injected into the system, a push strategy has
no communication overhead, while the pull approach presents a con-
stant noise due to the periodically check for new messages.

Before dwelling into the details of each protocol we will de�ne the
semantics used in the pseudo-code listings, which we will use for the
rest of the document. The send primitive, depicted in Listing 2.1 is
a low level operating system primitive that abstracts the transmis-
sion of a message on the underlying network. The �rst parameter,
destination, identi�es the receiver of the message, and the second
the actual message to be sent.

The message is then handled on the receiver side by de�ning a pro-
cedure handleMessageName, where MessageName is the message
initially sent.

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS17

2.2 State of the Art of Unstructured Net-

works

This section carefully presents a review of the state of the art of mem-
bership management and dissemination protocols. The membership
management protocols are divide according to their awareness, or
not, to locality. The dissemination protocols subsection only de-
scribes one protocol. While several other well known protocols [6,11]
may have been included they focus on aspects that are not central to
this dissertation, such as bu�er management and message �ltering,
and their underlying principles are based on the di�erent dissemina-
tion strategies already presented in previously and as such they will
not be covered. The described dissemination protocol uses di�erent
strategies to obtain a wide-range of latency versus bandwidth trade-
o�s. The reason to include just this dissemination protocol, comes
from the fact that it will be latter improved in this dissertation in
order to accomplish our goals.

2.2.1 Flat Protocols

This Subsection covers the state of the art in membership construc-
tion protocols that do not take into account locality, and therefore
result in �at overlays.

Scamp

Scamp [15] is a peer-to-peer decentralized membership protocol with
the interesting property that the average degree distribution con-
verges automatically to the desirable value of log(N) + c, where N
is the number of peers in the system, and c is a protocol parameter
related to the amount of faults that can be reliably tolerated. The
protocol is presented in pseudo-code in Listing 2.2.

Upon boot, lines 2 to 5, a node obtains a contact node by an external
mechanism, adds it to its view and sends it a subscription request,
enabling nodes to know about the joining node. Upon reception
of a subscription request, the receiver forwards the request to all
its neighbours and create additional c copies that will be sent to
randomly chosen nodes in its view, as can be seen in lines 7 to 13.

The protocol foundation relies on a probabilistic function that in-
tegrates joining nodes into the view with a given probability that
is inversely proportional to the view size. In short, the smaller the

18 CHAPTER 2. RELATED WORK

1

2 upon init
3 contact = getContactNode()
4 view.Add(contact)
5 send(contact,Subscription(myId))
6

7 proc handleSubscription(nodeId)
8 for n ∈ view
9 send(n,Join(nodeId))

10

11 for i=0; i < c; i++
12 n = randomNode(view)
13 send(n,Join(nodeId))
14

15 proc handleJoin(nodeId)
16 keep = randomFloat(0,1)
17 keep = Math.Floor((viewSize + 1 ∗ keep)
18

19 if (keep == 0) and nodeId /∈ view
20 view.Add(nodeId)
21 else
22 n = randomNode(view)
23 send(n,Join(nodeId))

Listing 2.2: Scamp protocol

view size the greater the likelihood of a successful integration and
vice-versa, as can be observed on lines 16 and 17. If the subscription
is not accepted at a given node, then it is forwarded continuously to
one of that node's neighbours, until it becomes eventually accepted,
as is possible to observe in lines 19 and 20. This is important as it
preserves the amount of subscriptions on the system and therefore
ensures that a subscribing node is known by a minimum amount of
nodes. It is also important to note that the views are asymmetric,
which means that a node who knows another does not necessarily
means that the latter knows the former. In a graph, this could be
modeled as directed edges, whose origin is the node that knows the
other and the end on the latter. By always forwarding subscrip-
tions until they are accepted and emitting, on average, viewSize+ c
subscriptions for each joining node, combined with the probabilistic
integration function, Scamp ensures that the overlay average degree
converges to the right value, providing adaptability to changing sys-
tem sizes in a completely distributed fashion and without requiring
global knowledge.

Scamp is a reactive protocol in the sense that it does not try to
make further optimizations to the underlying overlay. In fact, in a
stable environment the protocol does not induce any overhead on
the network, as no messages need to be exchanged to preserve the
overlay.

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS19

Cyclon

Cyclon [42] is a membership management protocols that uses a com-
pletely di�erent approach from that found in Scamp. It relies on
a shu�ing mechanism where links are changed among the peers,
to continuously improve the overlay and quickly detect and remove
links pointing to nodes that leaved the overlay, either due to failures
or to the normal life cycle. The shu�ing operations is performed
periodically by each node on the system and consists of several steps
which we will describe below.

Each node periodically chooses a set of its neighbours of size c, which
is the minimum of the known number of neighbours and C, a protocol
parameter that speci�es the maximum size of the shu�e set. From
this set, a node X is randomly chosen to initiate a shu�e operation.
The initiator sends the shu�e set to X, adding its own identi�er
to the set and removing X from it. Upon reception, X chooses a
random set of its known neighbours with the same size of the received
set and sends it to the initiator. After, both nodes integrate the
nodes in the received set into its own view according to the following
rules:

• Already known neighbours are discarded from the received set;

• If the integration of the received nodes into the view exceeds
a given threshold, then already known nodes are discarded
accordingly to the following rules:

� Entries sent to the other node are discarded �rst;

� If this is not enough the remaining neighbours are ran-
domly discarded, until there is enough room to accom-
modate the received entries.

Cyclon improves over the original shu�ing mechanism proposed
in [40], by attributing an age notion to each link, and exchanging
and discarding links accordingly to that metric from the oldest to
the newer ones. With this improvement over the classical shu�ing
mechanism, Cyclon is able to quickly detect and remove links point-
ing to nodes that have leaved the system, promoting the healthy
renewal of links according to its age.

HyParView

HyParView [24] also relies on a shu�ing mechanism to manage the
overlay. Its distinguishable characteristic is the maintenance of two

20 CHAPTER 2. RELATED WORK

di�erent views with di�erent goals and requirements: a larger passive
view and a smaller active view. The active view is of size fanout+1
and is used to disseminate application level messages, by �ooding
the graph de�ned by the relationships of that view and is main-
tained using a reactive strategy. When a node detects that a peer in
its active view has left the overlay, due to a failure or a disconnect
operation, it randomly chooses a peer in its passive view and adds it
to the active view, therefore enabling a quick healing of the dissem-
ination graph in presence of high rates of failures. The passive view
is much larger than the active one and is used to �nd valid targets
to heal the active view, as explained previously. The passive view is
maintained by a shu�ing mechanism similar to that of Cyclon, but
instead of exchanging peers directly with its neighbours, the shu�e
request is propagated through the overlay by means of a random
walk, parametrized with a given time-to-live, a protocol parameter.
By promoting shu�e exchanges with distant neighbours (according
to the overlay neighbourhood relations and not necessarily related
to any other distance metric, such as network distance), the quality
of the overlay is further improved as it becomes more resilient to
partitioning. This resilience comes directly from the maintenance
of a large passive view and from the random walk that avoids the
passive view to cluster among a set of neighbours.

The join mechanism assumes the existence of a well-known contact
node and is depicted on Listing 2.3. The joining node sends a Join
request to that contact node, lines 1 and 2, and it will be integrated
into that node's active view as can be seen in lines 4 to 9, even
if an existing node in the active view must be dropped. Addition-
ally, the contact node will send a ForwardJoin request to all the
nodes in its active view, in order to ensure that the joining node
is known by enough nodes in the overlay. The ForwardJoin pro-
cedure is a random walk across the overlay parametrized by the
ActiveRandomWalkLenght(ARWL), a protocol parameter, and is
depicted in lines 11 through 18. There is another protocol param-
eter PassiveRandomWalkLenght(PRWL) that indicates at which
point in the random walk the joining node should be integrated into
the passive view. Upon expiration of the random walk, lines 12 and
13, the node is integrated into the active view, even if an existing
nodes has to be dropped, which happens if the active view is full.
The same applies to the integration on the passive view. When a
node is removed from another node active's view, lines 6 and 29, the
formed is informed via a Disconnect message, removes the sender
from its active view and integrates it on the passive view, as it is

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS21

1 upon init do
2 send(contact,Join(myself))
3

4 proc handleJoin(newNode)
5 if isFull(activeView)
6 dropRandomElementFromActiveView()
7 activeView ← activeView ∪ newNode
8 foreach n ∈ activeView and n 6= newNode
9 send(n,ForwardJoin(newNode,ARWL,myself))

10

11 proc handleForwardJoin(newNode,timeToLive,sender)
12 if timeToLive == 0 ‖ #activeView == 0
13 addNodeActiveVew(newNode)
14 else
15 if timeToLive == PRWL
16 addNodePassiveView(newNode)
17 n ← n ∈ activeView and n 6= sender
18 send(n,ForwardJoin(newNode, timeToLive−1, myself))
19

20 proc dropRandomElementFromActiveView()
21 n ← n ∈ activeView
22 send(n, Disconnect(myself))
23 activeView ← activeView \ n
24 passiveView ← passiveView ∪ n
25

26 proc addNodeActiveVew()
27 if node 6= myself and node ∈ activeView
28 if isFull(activeView)
29 dropRandomElementFromActiveView()
30 activeView ← activeView ∪ node
31

32 proc addNodePassiveView(node)
33 if node 6= myself and node /∈ activeView and node /∈ passiveView
34 if isFull(passiveView)
35 n ← n ∈ passiveView
36 passiveView ← passiveView \ node
37

38 proc handleDisconnect(peer)
39 if peer ∈ passiveView
40 activeView ← activeView \ peer
41 addNodePassiveView(peer)

Listing 2.3: HyParView Protocol

possible to observe in lines 38 to 41.

2.2.2 Hierarchical/Locality-aware Protocols

This subsection covers the state of the art in membership construc-
tion protocols that take into account locality, and therefore result in
overlays that mimic the underlying network topology according to
a cost function. This function is abstracted out of the models and
should provide information to the protocol about the willingness to
establish remote links.

22 CHAPTER 2. RELATED WORK

Directional Gossip

Directional Gossip [25] aims at providing a gossip-based reliable
multicast service in a Wide Area Network (WAN) scenario. This
is achieved by using two di�erent gossip levels: one that runs on the
Local Area Networks (LAN), and the other that is deployed in the
WAN, and encompasses the composing LANs. At the LAN level, a
standard gossip mechanism is used to disseminate application level
messages within that LAN. For each LAN, one or more nodes are
elected as gossip servers and serve as the gateway for the inter-LAN
communication. Upon reception of a new message from its LAN,
the gossip server disseminates that message to the other LANs via
the WAN links. On reception of a message from a remote location,
the gossip server is responsible to disseminate that message within
its LAN, using the standard gossip protocol deployed there. By
using the notion of gossip servers to handle the tra�c that crosses
the WAN links, the authors are able to e�ectively reduce the load
imposed on those constrained, long-distance links.

Gossip servers get to know each other by means of an external mech-
anism provided by the administrator. As the state maintained by
each gossip server is probably small, it consists of the information
about the other gossip servers, the authors suggest the possibility of
using replication to handle the failures of the gossip servers.

Localizer

The Localizer [27] protocol de�nes a mechanism to re�ne overlays
built by Scamp, based on a cost function. With this re�nement,
it is possible to de�ne an adequate cost function, in order to bias
the overlay to the desired network topology, mitigating the network
mismatch problem. Additionally, the re�nement improves the degree
balancing of the original protocol to achieve better quality overlays.
The protocol periodically proceeds to links exchanges in order to
bias the overlay, in a series of steps described below:

• Each node chooses two random nodes from its neighbourhood,
calculates the link cost to each one, according to the de�ned
cost function and sends those values to both;

• The receivers reply with their respective degrees and addition-
ally, one of them sends to the initiator the cost of establishing
a link with the other node;

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS23

• The initiator evaluates locally the gain of exchanging one of
its links to the other nodes with a link between them, taking
into account the calculation done in the previous step;

• If the gain is desirable, the initiator instructs the other nodes,
with a given probability, to establish a link between them. The
probability of the transition speci�es a trade-o� between the
speed of convergence and the closeness to a optimal con�gura-
tion;

• If the transition is successful, then the initiator drops one of
its links, behaving in a self-sacri�cing manner.

Additionally, to promote the healthy renewal of links, each nodes has
a lease time. Upon expiration of the lease, the nodes connected by it
simply drop the link. Nodes who get disconnected by this procedure
rejoin the overlay.

With this procedure, Localizer is able to e�ectively bias the over-
lay accordingly to the cost function, thus mimicking the network
topology while at the same time improving the resilience to faults.

Low Link Costs and Short Paths Overlay Networks

In [26], the authors build on top of the Localizer protocol that ap-
proximates the overlay to the network topology, and attempt to ob-
tain an overlay with low link costs and short paths. According to
the authors, in this protocol, a link exchange only requires two par-
ticipating nodes, while on Localizer it requires three. Furthermore,
the initiator does not loose one of its links which eliminates the self-
sacri�cing behaviour of Localizer.

To achieve this, a node is selected with a given probability as a
special node. If selected as a special, a node randomly picks one of
its links and manages it as a special link.

After this initial step that determinates whose links are to be con-
sidered special, each non-special nodes periodically performs the fol-
lowing actions:

• The node selects one of its links that is not a special link man-
aged by other nodes, and sends a message to the node con-
nected to that link;

• The receiver sends to the initiator the set of all its neighbours;

24 CHAPTER 2. RELATED WORK

• The initiator removes all its neighbours and itself from the
received set. If the resulting set is empty the procedure ends
here, otherwise it continues;

• The initiator communicates with all nodes in the resulting set,
in order to calculate the cost of each link;

• After, the initiator chooses the link that provides the greatest
gain, if any, and establishes a connection to that link, removing
the one pointing to the selected target.

Special nodes execute the same procedure, with the exception that
a link is replaced by a long distance link only if the chosen link is
the special link managed by that node, as chosen initially.

As pointed by its authors, this protocol has not been evaluated in
the presence of node leaves, either due to failures or disconnection.

HiScamp

HiScamp [16] is a hierarchical overlay construction and management
protocol that leverages on the previous work done in Scamp. It uses
a distance function to cluster close nodes, therefore de�ning a hi-
erarchy of clusters that could span multiple levels. Each level runs
an instance of Scamp in order to provide the reliable dissemination
service. Each cluster is seen at the next level as a single abstract
entity, represented by one or more nodes. With this hierarchy it is
possible to reduce the load imposed on costlier links, as messages are
targeted almost within each cluster. The protocol uses two views:
an inV iew to handle subscriptions, and a hV iew used in the dis-
semination of application level messages. The hV iew has as many
levels as the hierarchy, where the lowest level contains gossip targets
in the same cluster, and the other levels contain targets on the same
hierarchy level. The inV iew has one lesser level than the hierarchy
that is common to all nodes in the same level, and contains all nodes
belonging to that level.

The joining process involves several steps, and works as follow:

• A joining node sends a subscription request to a pre-determined
well-known close node, where this closeness is given by the cost
function;

• If the distance of the joining node is below a preset value, the
node is included into the cluster as follow:

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS25

� As in Scamp, the contact node creates several copies of
the subscription and forwards it to its neighbours in the
level one hV iew;

� The forwarded requests are handled just as in Scamp, and
eventually integrated into the receivers level one hV iew;

� Finally, the views of the joining node are initialized as
follow: the level one hV iew contains just the initially
chosen contact node, and the other levels of hV iew are
empty, and the iV iew becomes the same as the contact
node, by having it send a message with this information.

• If the distance exceeds the preset value, the joining node cre-
ates a new cluster and its subscription is thus handled at the
second level of the hV iew as follow:

� The contact node uses its iV iew that contains the identi-
�ers of the other clusters to forward several copies of the
joining request;

� The subscription is handled as in a normal Scamp in-
stance, and eventually integrated in the iV iew and level
two hV iew of the receiver;

� The nodes who integrate the subscription gossip the addi-
tion of the joining node to their iV iew, in order to update
the iV iew of the nodes in its cluster;

� Finally, the level one hV iew of the joining node is set to
empty and its level two hV iew and inV iew are initialized
to contain only the contact node.

To overcome the single point of failure that comes from the inter-
cluster links only connecting the nodes which created each one of
the clusters, HiScamp periodically runs a routine to balance the
hV iew levels higher than one and therefore, ensure that inter-cluster
messages are handled by more than one node.

As inter-cluster messages are only handled by few nodes, HiScamp
e�ectively reduces the stress imposed on long distance links, but
at the cost of decrease reliability. For instance, as pointed by the
authors, with more than 20% node failures the number of reachable
nodes drops below 90%.

26 CHAPTER 2. RELATED WORK

2.2.3 Dissemination Protocols

Emergent Structure in Unstructured Epidemic Multicast

The Emergent [7] dissemination protocol foundation stems from the
observation that by combining the eager and lazy push strategies
it is possible to obtain a wide range of latency versus bandwidth
trade-o�s. The challenge therefore is to do so without impairing the
reliability guarantees that characterize gossip-based dissemination
protocols.

This is achieved by delegating the choice of the particular strategy
to use to an oracle. The oracle is abstracted out of the model used to
prove correctness and instructs the protocol about the dissemination
strategy to use for a given node. The authors are then able to
prove the protocol's correctness and liveliness despite the strategy
chosen by any particular node. In fact, di�erent nodes could choose
di�erent dissemination strategies, i.e. eager or lazy push, based on
local knowledge only, to provide several trade-o�s suited to a wide
range of scenarios.

By con�guring oracles out of model used to prove correctness, re-
lying only on local knowledge, and allowing di�erent nodes to used
di�erent, independent strategies, the protocol is able to adapt pro-
gressively and with low latency to di�erent scenarios, which are es-
sential properties to build con�dent and self tunning protocols, as
been argued in [28].

The Emergent protocol is divided in two distinct layers, a basic gos-
sip protocol depicted in Listing 2.4 and the actual point-to-point
communication, shown in Listing 2.5

The layer presented in Listing 2.4 is the one o�ered to the application
via its Multicast primitive and the Deliver upcall. Upon injection
of a new message on the system by the application, by invoking
the Multicast primitive, the protocol creates a unique identi�er,
the message round is initiated to zero and the message payload is
forwarded, as can be seen on lines 4 and 5. In Forward the message
is delivered to the application (line 8), its identi�er is added to the set
of known messages to avoid the delivery of duplicates (line 9) and, if
the current round number is inferior to the maximum round number
t, a protocol parameter, the peer sampling service is consulted to
obtain fanout communication targets, another protocol parameter
(lines 11 and 12). After obtaining the peer identi�ers, the L−Send
primitive of the point-to-point communication layer is invoked for
each one of them (lines 13 and 14). Upon reception of a message, its

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS27

1 initially
2 K = ∅ /∗known messages∗/
3

4 proc Multicast(d)
5 Forward(mkdId(),d,0)
6

7 proc Forward(i,d,r)
8 Deliver(d)
9 K = K ∪ {i}

10 P = ∅
11 if r < t
12 P = PeerSample(fanout)
13 for each p ∈ P
14 L−Send(i,d,r+1,p)
15

16 proc L−Receive(i,d,r,s)
17 if i /∈ K
18 Forward(i,d,r)

Listing 2.4: Basic Gossip Protocol: Peer Selection

identi�er is checked against the known identi�ers and, if the message
is new, it is forwarded, as depicted in lines 16 to 18.

We will now analyse the point-to-point communication protocol, de-
picted in Listing 2.5. In this layer two sets are maintained, one that
holds the message payloads, used when nodes lazily request the pay-
load, and other which holds the identi�ers of known messages. Upon
call of the L− Send primitive by the previous layer, the oracle, ab-
stracted by the isEager primitive, is consulted to infer whether the
message payload shall be sent eagerly or lazily (line 6). In the latter
case the message payload is stored to allow for a future retrieval by
lazy pushing nodes. Additionally, the protocol sends an advertise-
ment message to the target, the IHAV E message on lines 9 and 10
and the message identi�er is added to the set of known messages.

Upon the reception of a message payload, on line 17, the identi�er
is checked against the known set of messages. If the message is not
known by the protocol, its identi�er is added to the set of known mes-
sages (line 19) and any pending request on the payload are cleared
(line 20). Nonetheless, and at �rst sight counter-intuitive, the pay-
load is delivered to the higher level via the L−Receive upcall, even
if it has already been delivered. The reception of a IHAV E message
on line 13 indicates that the sender has a copy of the message pay-
load. If the message is not known, its payload is queued for retrieval
in a point in the future. The details of the scheduling policy are ab-
stracted in the protocol by means of the ScheduleNext primitive on
lines 27 to 29. This procedure runs continuously and is responsible
to lazily push advertised message payloads.

28 CHAPTER 2. RELATED WORK

1 initially
2 ∀i: C[i] = ⊥ /∗cached data∗/
3 R = ∅ /∗ known messages∗/
4

5 proc L−Send(i,d,r,p)
6 if isEager(i,d,r,p)
7 send(p,MSG(i,d,r,myself))
8 else
9 C[i] = (d,r)

10 send(p,IHAVE(i,myself))
11 R = R ∪ {i}
12

13 proc handleIHAVE(i,s)
14 if i /∈ R
15 QueueMsg(i,s)
16

17 proc handleMSG(i,d,r,s)
18 if i /∈ R
19 R = R ∪ {i}
20 Clear(i)
21 L−Receive(i,d,r,s)
22

23 proc handleIWANT(i,s)
24 (d,r) = C[i]
25 send(s,MSG(i,d,r,myself))
26

27 forever
28 (i,s) = ScheduleNext()
29 send(s,IWANT(i,myself))

Listing 2.5: Point-to-Point Communication

The design decision to deliver a message to the peer selection layer
even if the message is already known (lines 17 to 21) stems from the
well-known best practice 'premature optimization is the root of all
evil'. In fact, by choosing not to deliver the payload to the upper
level the applicability of the protocol to new unpredicted scenarios
will be restricted. For instance, the basic gossip protocol layer could
be replaced by a version where receiving duplicate payloads is impor-
tant and as such not be feasible if the point-to-point communication
layer does not provide this. In [30] the authors reason about the
impact of premature simplifying assumptions with di�erent studies
and argue that simpli�cations may reduce the applicability scenario
of several well-known protocols. Nonetheless, in this setting, dupli-
cates are �ltered in the peer selection layer, as can be observed in
lines 16 to 18 of Listing 2.4.

Chapter 3

Problem Statement

Fixed formation is bad. Study this

well.

Miyamoto Musashi

This Chapter presents the problem addressed in this dissertation,
discuss its worthiness in todays IT world, and argues why the pro-
posals reviewed in the State of the Art in Section 2.2 do not satis-
factorily solve the presented problem.

As outlined in Chapter 1, the current trend in the IT ecosystem is
to move again to centralized platforms that o�er a given service to
its customers by means of multi tenancy mechanisms.

To support the global and reliable delivery of those services in a
worldwide, previously unseen, very large scale, service providers have
to solve a variety of challenging issues in order to fully realize the
Cloud Computing model. These challenges range from the low level
infrastructure management to the higher level billing mechanisms,
passing by proper isolation among customers in order to support
multi tenancy and adequate delivery of services. The supporting
infrastructure for all the stack of services is based around the com-
putational power present in the worldwide deployed data centers of
the service providers. Those data centers are composed of thou-
sands to hundreds of thousands of individual nodes organized in a
tree-like fashion. This organization comes directly from the actual
networking technology that aggregates nodes in the order of several
dozens around multiplexer network devices, such as switches and
routers. Those devices are then aggregated behind other higher ca-
pacity, and more expensive devices in a hierarchical fashion, forming
a tree-like structure containing several branches and roots to cope

29

30 CHAPTER 3. PROBLEM STATEMENT

with scalability demands and fault tolerance. This organization is
also extrapolated to inter-data centers connections linked together
by expensive high-bandwidth links. Whereas communication among
nodes connected to a single network device is relatively cheap, both
in terms of bandwidth available and latency due to several optimiza-
tions that could be done in the networking stack, as we move up in
the networking tree, the communication cost increases progressively
with respect to latency and bandwidth, and ultimately in the �nan-
cial burden too as internetworking devices on the top of the tree
are more expensive. This is because networking devices close to the
top of the tree have to handle all the tra�c among the di�erent
branches and thus the aggregate bandwidth requirements become
quite high [3]. As such, these scenarios are composed by a wide
range of links and networking devices with di�erent capabilities and
characteristics that need to be considered when deploying a global
communication service.

The reliability of such service is paramount to the global manage-
ment of the infrastructure, as nodes unreachable by the communi-
cation service can be considered non existing nodes, as there is no
mechanism to manage parts of the system which are not accessible.
Administrators could then leverage on a reliable communication ser-
vice in order to deploy on the infrastructure the essential building
blocks for a proper management framework, such as data aggregation
and distributed agreement. Distributed agreement [29] is related to
the necessity of making decisions in a distributed system, such as on
which node to place a given customer, or decide about the outcome
of a distributed transaction. Aggregation is a powerful tool to infras-
tructure management, as it provides mechanisms to query, combine,
data mine and present the information made available by individual
nodes in a scalable fashion [36]. Both building blocks have clear
advantages on relying on a reliable communication service, focusing
instead on the concrete problems they are aimed at solving.

From the points stressed above, it is now clear that a reliable com-
munication service is key to enable the reliable construction and
provisioning of very large scale service platforms. However, those
emerging platforms have particular needs and semantic requirements
due to the inherent organization of its underlying infrastructure. In
fact, the hierarchic organization is not neglectful to an equal han-
dling of the network links because, as pointed above, they present
di�erent characteristics and typical loads and therefore the reliable
communication service must take this individual characteristics into
account.

31

Additionally, on systems of this very large scale, the dynamics should
not be left out o� the equation, or the reliability of the communica-
tion service will become severely endangered. This comes from the
fact that change is a natural part of those systems, due to the large
scale itself, as nodes will constantly join and leave the system due to
failures or periodic maintenance operations. The larger the system,
the greater the impact of this dynamics as it is highly likely that at
any given time some nodes, somewhere, will be joining or leaving the
system due to an arbitrary, maybe unknown reason. Furthermore,
these unpredictable dynamics may lead to the physical disconnection
of parts of the infrastructure, for instance due to the failure of an
intercontinental link connecting two separate data centers. As such,
the reliable multicast service must be robust enough to tolerate con-
siderable amounts of failures, and resilient to the churn phenomena,
ensuring that it will continue to function as expected in such harsh
conditions.

With the constraints and requirements presented above, we intend
to build a multicast service that:

1. Reliably delivers the application messages to the correct par-
ticipants;

2. Di�erentiates links according to their characteristics;

3. Adapts to ever changing system sizes;

4. Tolerates considerable amounts of failures of both nodes and
links;

5. Mitigates the churn e�ects.

The �rst requirement is the most important in a reliable communi-
cation service, as non-delivered messages could compromise the se-
mantics and correctness of the application. Although a wide range of
applications could tolerate message omissions, our service is aimed at
applications with more stringent requirements and as such it should
deliver all messages to all correct participants. The second require-
ment is related to network awareness and is essential in the con-
text of a cloud scenario. Failure to take into account the network
topology will seriously compromise the performance and reliability
of the service as the links inter-connecting the branches close to the
top of the tree will easily become a bottleneck. With those links
overloaded the performance degrades, as both the e�ective band-
width available decreases and the latency of message transmission

32 CHAPTER 3. PROBLEM STATEMENT

increases, up to a point where the reliability of the network could
become compromised, as there is too much load imposed on it. The
third requirement is important to the long term reliability and per-
formance of the communication service. Despite adding or removing
some nodes on systems of this scale may be negligible, in the long run
the system must cope with the addition or removal of considerable
amounts of nodes, such as when adding or removing a data center
to the federation, due to administrative or business reasons and pro-
longed failures that may physical disconnect substantial parts of the
system. The fourth and �fth requirements are also a consequence of
the targeted very large scale scenario. In it, faults are a natural part
of the system, and consequently churn, and therefore the developed
reliable multicast service must be resilient and well performing in
the presence of this phenomena.

To summarize, we intend to design a very large scale communica-
tion service that focus on two of the problems identi�ed in [12]:
network awareness and adaptability while o�ering strong reliability
guarantees and ideally performing well.

Chapter 4

Network-Aware Epidemic

Broadcast

Management of many is the same as

management of few. It is a matter of

organization.

Sun Tzu

This Chapter carefully describes the developed protocols and present
the intuition and justi�cation of the design choices taken. The �rst
Section justi�es the approach taken, weighting the advantages and
disadvantages of each proposal available. The structure of the re-
maining chapter re�ects the clear di�erentiation made between the
two di�erent but related problems that arise when building a reliable
dissemination protocol on top of an unstructured overlay network.
The �rst problem deals with the construction and maintenance of the
overlay, taking into account all the requirements outlined in Chap-
ter 3, and is presented in Section 4.2. Section 4.3 describes the design
decisions made to build a reliable dissemination protocol on top of
the previously presented overlay.

4.1 Approach

This preliminary Section provides the rationale for the research di-
rection taken to address the requirements presented in the previous
Chapter, by recurring to the concepts and state of the art review
presented in Chapter 2.

As the reader may remember, there are two main approaches when

33

34CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

building the supporting infrastructure upon which a reliable multi-
cast service can be deployed: structured and unstructured overlay
networks. Thus, this is the natural �rst choice to make when design-
ing such service. Structured overlay networks are very e�ective in
resource usage of both links and nodes due to the explicit knowledge
they impose on the construction of the supporting overlay. The dis-
semination tree is pre-built taking into account this structure, and
application level messages are relayed on top of it. Furthermore the
dissemination tree could be optimized to a given performance crite-
ria, such as bandwidth or latency, and take advantage of links and
nodes with higher capacity by placing them closer to the root of the
tree. Thus, structured overlay networks are an attractive approach
to handle links and nodes with di�erent characteristics. Unfortu-
nately, upon failures and network recon�gurations, the dissemination
tree needs to be rebuilt, which makes this class of protocols consider-
ably sensitive to churn. On the other hand, on unstructured overlay
network protocols, the dissemination e�ort is evenly spread among
all the nodes in the overlay, which enables their natural scalability
and resilience. As such, we have the e�cient structured approach
versus the resilient unstructured one. Due to the very large scale and
churn of the scenarios our communication service is aimed at, we will
rely on the resilience of the unstructured approach and improve it
to approximate the desirable performance metrics.

With this preliminary decision set, we still have to decide which one
of the two unstructured overlay construction approaches, �at or hi-
erarchical, is best suited to ful�l our goals. In the �at approach,
nodes and links are treated equally, and as such are not suited to
handle our requirement of taking into account the link character-
istics when building the overlay. On the other hand, hierarchical
approaches clearly di�erentiate desirable and undesirable links en-
abling the construction of a network aware overlay. Unfortunately,
the proposals presented in the state of the art review, rest on post
optimizations to the overlay, such as [26,27], on a selection of special
nodes to handle the tra�c that traverses costlier links, such as [25],
or in having nodes behave in a self-sacri�cing manner by loosing one
of their links [27] in order to approximate the overlay to the desired
network topology. Those proposals have serious drawbacks, as it
is not clear how and when to choose those special nodes, or when
to apply the biasing to the overlay. Furthermore, having nodes with
special roles further inhibit the reliability of the overlay, as questions
such as how to select those nodes in a distributed and automated
fashion, how to handle their failures and how to make them known

4.2. PEER SAMPLING SERVICE 35

to each other must be answered in order to provide a truly resilient
solution. Moreover, having nodes drop links to bias the overlay to a
given criteria may impair its reliability as nodes that already have
few links become prone to disconnection.

In our approach, we completely part away from these brittle design
decisions, by refusing to rely on nodes with special roles, and focus
on the locality awareness of the overlay at construction time, as lo-
cality is a natural characteristic of the systems where our proposal
is intended to be deployed. The guiding principle is that if all the
nodes could contribute to some extent to the locality awareness, as
they contribute to the dissemination e�ort, a globally network aware
overlay shall emerge naturally without compromising scalability, re-
silience and reliability. With this principle, we are able to reduce the
load imposed on the undesirable links by an order of magnitude in
a natural manner, while leveraging on the scalability and resilience
to churn and faults of unstructured overlay networks. As such, we
designed a novel hybrid proposal, where all nodes are treated equally
as in the �at approach, but the establishment of links among them
takes into account locality, as in the hierarchical approach. Further-
more, our proposal naturally adapts to changing system sizes, by
transparently tunning the number of links that each node maintains
with its neighbours.

Looking at the proposals available to address reliable multicast in
very large scale systems in a top down manner, we successively dis-
carded the proposals with the best performance to give preference
to the reliable ones, as reliability is the most important metric in a
reliable dissemination service. Then, we build up our mechanisms
on the most reliable proposals available, �at unstructured overlay
networks and improve their performance to achieve the remaining
goals.

4.2 Peer Sampling Service

This Section carefully describes the Peer Sampling Service devel-
oped, starting up from a �at unstructured network protocols, as
previously justi�ed.

With the decision of addressing the reliable multicast problem with
�at unstructured network protocols, the next natural step is to look
at the available solutions and infer whether there is some previous
work on which we could leverage some of our requirements. Looking
at the proposals reviewed in 2.2.1 there is one requirement, adapt-

36CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

ability, that is clearly addressed by one of the protocols, Scamp [15].
The requirement of adapting to ever changing system sizes in order
to transparently scale without user intervention is addressed by the
Scamp protocol, which is able to adjust the view size to the correct
value. Nonetheless, Scamp is completely oblivious to locality and
its hierarchical derivatives rely on specialized nodes, although cho-
sen randomly, to address the network mismatch problem, which is
con�icting with our previous decision of not relying on any kind of
special nodes with particular roles.

This preliminary thoughts shown that no protocol available neither
their approaches, is capable of addressing all the requirements we
imposed. As such we depart way with the proposals done before by
taking a novel approach that e�ectively address all the requirements
presented in the previous chapter.

Due to its interesting convergence to the right node degree with
respect to system size, our starting point will be the Scamp protocol.
However, instead of building hierarchical strategies on top of it as
done previously, we continue with a �at approach where all nodes
are treated equally with respect to the roles they exhibit in the
overlay, therefore not colliding with the 'no reliance on special nodes'
assertion. Furthermore, the adjustment to the network topology is
done at construction time instead of post-optimizations to the links
established among the nodes. With the initial research path set, and
the reasons that lead to it explained, the rest of this Section focus on
the description of the developed protocol and the intuition behind
it.

4.2.1 Network-awareness

If we focus on the Scamp protocol, we will observe that joining nodes
are integrated into the view of a node with a given probability that is
function of the actual view size of that node. By making the prob-
ability of integration inversely proportional to the view size, and
always forwarding the subscription to other nodes if the integration
is not successful, the nodes converge naturally, and in a completely
decentralized fashion, to the adequate view size, on average. The
full understanding of this behaviour is fundamental to the modi�ca-
tions we do in the original protocol, in order to make it cope with
our locality awareness goals. By modifying the integration proba-
bility of joining nodes in order to take into account the locality, we
are able to bias the overlay to mimic the network topology without
endangering the properties of the original protocol. This is done

4.2. PEER SAMPLING SERVICE 37

1 upon init
2 contact = getContactNode()
3 view.Add(contact)
4 send(contact,Subscription(myId))
5

6 proc handleSubscription(nodeId)
7 for n ∈ view
8 send(n,Join(nodeId))
9

10 for i=0; i < c; i++
11 n = randomNode(view)
12 send(n,Join(nodeId))
13

14 proc handleJoin(nodeId)
15 keep = randomFloat(0,1)
16 keep = Math.Floor(localityOracle(viewSize,nodeId) ∗ keep)
17

18 if (keep == 0) and nodeId /∈ view
19 view.Add(nodeId)
20 else
21 n = randomNode(view)
22 send(n,Join(nodeId))

Listing 4.1: Clon protocol

1 proc localityOracle(viewSize,nodeId)
2 if isLocal(nodeId)
3 return viewSize ∗ 0.7
4 else
5 return viewSize + viewSize ∗ 0.3

Listing 4.2: A possible localityOracle

indirectly, by manipulating the view size of the node receiving the
subscription. In detail, if the joining node is considered local, with
respect to an abstracted metric, the view size of the node is virtually
decreased, which e�ectively augments the probability of integration
of the joining node in the local area it belongs to. On the other hand,
if the joining node is considered remote, the view size is virtually in-
creased, reducing the probability of integration in foreign areas. This
modi�cation promotes the establishment of links among local nodes
in detriment of remote ones, which adjusts the resulting overlay to
the underlying network topology. The resulting protocol has been
named Clon , which stands for Overlay Networks for Cloud Envi-
ronments, as federated clouds are a common scenario where several
highly intra-connected data centers are spread around the world and
connected by costlier inter-continental links as pointed in the intro-
ductory chapter. The pseudo-code for the protocol is presented in
Listing 4.1, and we will carefully describe it next.

The initial bootstrapping and joining mechanism remains the same
of the original protocol. After the choice of the initial contact node,

38CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

the joining node sends it a subscription request on lines 2 to 5.
Then in lines 7 to 13, the receiver forwards the subscription to all
its neighbours, creates c additional copies and forwards it to random
neighbours in its view. c has the same impact as in the original
protocol, and is related to the amount of faults tolerated.

Upon reception of a join request, line 15, the keep variable is initi-
ated with a random value, and then the probability of integration
is calculated taking into account the locality of the joining node.
The adjustment of the view that takes into account locality is dele-
gated to the localityOracle. This oracle is therefore responsible to
access whether the node is local or not, and manipulate the view
size according to that.

As an example we give a possible localityOracle on Listing 4.2. This
oracle reduces the view size by 30% if the node is considered local,
or increases it by 30% if the node is remote, e�ectively manipulat-
ing the probability of integration of remote and local nodes. The
particular details of how to detect the locality of the node are ab-
stracted out of the model by the isLocal primitive, and could be
calculated by several mechanisms, such as observing and comparing
the IP addresses of the joining and receiving nodes, and determine
whether or not they are on the same local area network. If the node
is considered local, the oracle should virtually decrease the view size
in order to increase the probability of integration, or proceed other-
wise if the node is remote. It is important to note that the oracle
only returns the perceived view size, and should not manipulate the
view, for instance by dropping nodes, or in any other way.

The impact of changing the probability of integration according to
the localization of the joining node, e�ectively biases the overlay
to the underlying network topology, without major impacts on the
reliability of the protocol in face of failures. A detailed experimental
assessment of the properties of the overlay obtained can be found in
Section 5.2. Furthermore the experimental analysis of the impact of
this alterations on the load imposed on the long distance links can
be found in Section 5.3.

4.2.2 Degree Balancing

So far, we have focused on how to properly bias the overlay in order
to mimic the underlying network organization. However, if we focus
on the obtained protocol, we will observe that it still has some im-
portant limitations, as the original Scamp protocol: the distribution

4.2. PEER SAMPLING SERVICE 39

of the nodes' degree, and the bootstrapping process, which requires
a set of well-known nodes to initiate the subscription.

The �rst problem, the distribution of the nodes' degrees, comes di-
rectly from Scamp being a reactive protocol, i.e. it only modi�es the
overlay in the presence of leaves or joins, and is further aggravated
by the bootstrap mechanism. A node wishing to join the overlay
must contact a well-known node, establish a link with it, and send
the subscription request. As such, for a given period of time, or
forever, if the membership remains stable, the last nodes to join
the overlay only have one outgoing link, i.e. they only known one
neighbour, which is the initial contact node. This clearly impact the
reliability of the proposal, as this nodes are prone to disconnection
because the inherent link redundancy of gossip based protocols is not
present. On the other hand, older nodes tend to have much more
neighbours than newer ones, particular the contact nodes and its
closest neighbours. This happens because even though the probabil-
ity of integration is probabilistic and based on the view size, those
nodes received high amounts of subscriptions, almost from all the
nodes in the overlay, and as such some of them will be eventually
integrated, despite the low probability. As such, the convergence
to the average degree that Scamp o�ers, is misleading, as certain
groups of nodes tend to be much below or above the ideal degree
and therefore impair the quality of the obtained overlay.

To overcome this de�ciency in the protocol, we devised a degree
balancing mechanism that normalizes the distribution of the nodes'
degree in a distributed fashion. The basic idea behind the mechanism
is to drop excessive links from nodes with high degrees and integrate
them in the nodes with lower degrees. However, we intend to do so
in a decentralized fashion, without direct node interaction and any
kind of agreement, based only on local decisions, and without having
nodes assume special roles in order to proceed with the link exchange.
Furthermore, this exchange also needs to take into account locality,
or the work developed to bias the overlay to the network topology
will be lost after several runs of the degree balancing mechanism.

Based on those principles, we developed the mechanism depicted in
Listing 4.3 and will discuss it next.

Periodically, a node initiates a random walk by choosing a random
neighbour from its view, and sends it a request with the following in-
formation: a given TTL which will specify the length of the random
walk, and the number of remote and local neighbours it knows, as
can be observed in lines 1 to 3. The random walk then traverses the

40CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

1 every ∆T
2 target = getRandomNode(view)
3 send(target,NODEINFO(TTL,localNeighboursSize(),remoteNeighboursSize()))
4

5 proc handleNODEINFO(TTL,localNS,remoteNS):
6 if −−TTL > 0
7 target = getRandomNode(view)
8 send(target,NODEINFO(source,TTL,localNS,remoteNS))
9 else

10 myLocalNS = localNeighboursSize()
11 myRemoteNS = remoteNeighboursSize()
12 if localNodeDi�erence(myLocalNS,localNS)
13 droppedNode = dropLocalNode()
14 n = randomNode()
15 send(n,Join(droppedNode))
16 if remoteNodeDi�erence(myRemoteNS,remoteNS)
17 droppedNode = dropRemoteNode()
18 n = randomNode(view)
19 send(n,Join(droppedNode))
20

21 #sample
22 proc localNodeDi�erence(myDegree,receivedDegree)
23 return (myDegree − receivedDegree) / 2 > receivedDegree
24

25 #sample
26 proc remoteNodeDi�erence(myDegree,receivedDegree)
27 return (myDegree − receivedDegree) / 2 > receivedDegree

Listing 4.3: Clon normalization algorithm

overlay by the number of hops speci�ed by the TTL (lines 6 to 8)
until it eventually expires. Upon termination, the receiving node cal-
culates its number of local and remote neighbours and weights those
values against the local and remote number of neighbours received
via the random walk. If the di�erence between the receiving node's
degree and the one obtained through the random walk is substan-
tial, then the receiver drops one of its links (lines 14 and 18) as this
hints that it has more links than the average and as such is reducing
the quality of the overlay. The particular calculation to determine
whether or not the di�erence between the degrees is relevant (lines
21 and 24), could be obtained in many di�erent ways in an applica-
tion dependent fashion. In our Listing we give an example of such
calculation, by considering that the degrees di�er too much if half
of the di�erence between them is higher than the subtrahend, but
more stringent or relaxed calculations could be taken in face of the
scenario requirements. By adjusting the period T of this procedure
and/or the oracles that determine the di�erence between the degrees
the programmer could adjust the speed of convergence to the ideal
node degree distribution, considering the application demands. Fi-
nally, the dropped link, if any, is forwarded as a join request, as if
the node pointed by the link has just joined the overlay (lines 15 and

4.2. PEER SAMPLING SERVICE 41

19). This allows us to take advantage of the integration mechanism
already deployed and, therefore to continue to improve the overlay
with respect to the network topology. This balancing procedure does
not require direct intervention between the intervening nodes (the
node who drops the link and the node whose link has been dropped)
and as such is completely decentralized. It is important to note that
the only decision nodes could take is to drop links. They are for-
bidden to ask for links as this will imply some coordination among
them. Therefore, the nodes with lower degrees will improve their de-
gree indirectly, by integrating the links dropped by the nodes with
higher degrees, as the integration is likely to succeed due to the low
degrees of those nodes. Furthermore, nodes only require local knowl-
edge to decide whether or not to drop links and the re-integration of
the dropped links is done recurring to the normal protocol integra-
tion mechanism, avoiding the use of special nodes to integrate those
links or decide whether or not they should be dropped.

4.2.3 Bootstrapping mechanism

The last problem we partially address, is the bootstrapping mecha-
nism that allows joining nodes to discover one or more peers already
in the overlay. To the best of our knowledge, existing protocols
solve this by assuming there is an external entity that provide the
node identi�er(s), in order to allow the joining node to contact peers
already on the overlay. This is, in general, not satisfactory as it
puts out of the model an important aspect of the overlay building
protocol, and tends to be addressed by relying on static centralized
solutions such as having one or more servers to provide the set of
initial identi�ers. With node churn this set is hard to maintain up to
date and provides a brittle solution, even if we made the unrealistic
assumption that those servers do not fail. In our proposal we address
this problem by fully decentralizing this initial discovery mechanism
making every node in the overlay a potential server in the true peer
to peer spirit. The only requirement we impose is the availability
of a broadcast primitive on the local area where the new node is
physically connected. This requirement is virtually guaranteed to
be satis�ed in modern network architectures, due to the pervasive-
ness of the TCP/IP communication protocol. However, if there are
no nodes in the local are, for instance this mechanism is unable to
obtain contact nodes but we will elaborate on this issue latter.

In the following we explain the rationale behind the developed boot-
strapping mechanism which is depicted in Listing 4.4

42CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

Recalling the integration mechanism by which joining nodes get
added to the views of other nodes, it is possible to observe that
the view size converges, on average, to the ideal value of log(N)+ c,
whereN is the system size and c a protocol parameter related to fault
tolerance [23]. However, in Scamp and in the previously presented
version of Clon a node joining the overlay only establishes one link
with the contact node it receives from the external mechanism, which
e�ectively impairs the connectivity of the joiner. Notwithstanding,
if instead of obtaining just one contact node, the joiner obtained
some contacts, its connectivity will be improved from the beginning.
Ideally, this value should be near the average node degree, because
in this way the new node will be indistinguishable of nodes that
have been on the overlay for more time. Next we will explain the
operation of the protocol and then how the ideal results could be
achieved.

Upon boot, the node uses the available broadcast primitive to re-
quest contacts from all the nodes in its local area, as can be seen on
lines 3 and 4. If upon reception of the request all nodes replied to
the originator, this could lead to problems, in a phenomena known
as acknowledgement bomb. This phenomena stems from the fact
that if every node in a large scale system replies to the originator
of a broadcast, the network will become suddenly overloaded, and
the requester may be overrun by the amount of replies and crash.
To overcome this problem, we rely on an oracle that should instruct
whether the node should reply to the request or not, with a given
probability. Although the oracle may be con�gured in a naive man-
ner, lets say reply only with a probability of 10%, the amount of
replies generated will be e�ectively reduced, alleviating the prob-
lems of the acknowledgement bomb phenomena.

If the oracle instructs the node to reply, i.e. if it returns true (line 7),
there is another decision that needs to be made: whether to provide
a local or remote node as a contact. If this is not taken into account,
and joining nodes are always provided with local contacts only, the
reliability of the overlay will be compromised. This is because if
joining nodes only get to known local nodes, over time the number
or remote known nodes will decrease considerably and the overlay
will partition around the local areas, which we certainly want to
avoid. In Listing 4.4, we show a simplistic oracle in lines 42 to 44
which instructs the protocol to reply half the times with a remote
nodes and half of the times with a local one, but naturally this could
be con�gured to the application requirements. After this initial steps
where the oracles decide about replying and the kind of node chosen,

4.2. PEER SAMPLING SERVICE 43

1 myC = c
2

3 upon init()
4 BCAST(CONTACT, myself)
5

6 proc CONTACT(nodeId)
7 if (sendOracle())
8 if(externalContactOracle(nodeId))
9 contact = randomExternalNode(view)

10 else
11 contact = myself
12 #or
13 # node = randomLocalNode(view)
14 send(nodeId,CONTACTREPLY(contact))
15

16 proc handleCONTACTREPLY(contact)
17 keep = random()
18 keep = Math.Floor((viewSize + 1 ∗ keep)
19

20 if (keep == 0)
21 if view.size() > 0)
22 schedullecCheck()
23 view.Add(contact)
24 send(contact,Join(myId))
25 if (myC > 0)
26 send(contact,Join(myId))
27 myC = myC − 1
28

29 #possible send oracle
30 proc sendOracle()
31 totalNodesEstimate = 10(viewSize−c)

32 localNodesEstimate = totalNodesEstimate / NUMBER_OF_LOCAL_AREAS
33

34 if localNodesEstimate < 1
35 localNodesEstimate = 10viewSize

36

37 reply = viewSize / localNodesEstimate
38 seed = randomFloat(0,1)
39 return seed < reply
40

41 #possible external oracle
42 proc externalContactOracle(nodeId)
43 rand = randomFloat(0,1)
44 return rand < 0.5
45

46 proc cCheck()
47 while(myC != 0)
48 contact = randomNode(view)
49 send(contact,Join(myId))
50 myC = myC −1

Listing 4.4: Clon contact discovery protocol

44CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

the contact is sent to the requester, as can be seen in line 14.

Upon reception of a reply, on line 16, the joining node should decide
whether or not to integrate the contact in its view, based on the same
procedure of the original Scamp protocol, where the probability of
integration is inversely proportional to the size of the view. As the
node is bootstrapping this may seem counterintuitive but the moti-
vation behind this conditional integration is to ensure that even if
the oracle of the repliers is not well con�gured, the view size will still
be within the normal bounds of the system. Without this restriction
the view size of the joining nodes could integrate too much nodes
which will therefore impact the quality of the obtained overlay. If
the contact node is to be integrated by the joining node, the latter
adds it to its view, i.e. establishes a link with it, and sends it a Join.
With these changes the join mechanism is e�ectively decentralized
and inverted. Instead of being the contact node to send the subscrip-
tion requests as in the original protocol, it is now the responsibility
of the joining node to send them. This change has an immediate
impact on the protocol as the c additional join requests sent ran-
domly must still be transmitted. As such the joining node becomes
the responsible for sending those additional requests. However, in-
stead of sending those additional join request to just one contact,
lets say the �rst received, we decide to distribute them among the
several contacts obtained. To this end, the joining node now has
an additional variable myC which is initially set to the c protocol
parameter, as seen in line 1. Then, for each received contact, the
joining node sends the normal Join request plus one additional copy
until c copies are sent, lines 25 to 27. To prevent the case where
less than c contacts are received, and therefore not enough addi-
tional copies could be sent, upon the reception of the �rst contact
the protocol schedules the execution of the cCheck procedure on a
point in the future. This scheduling may be only approximate and
should start when it is expected that all the contact replies have
been received, which on a local area shall be pretty close to the �rst
one. This procedure only checks if enough copies have been sent,
and if not they are sent to randomly chosen nodes, as in the original
protocol.

After describing the protocol it is now time to clarify how we could
exploit the local knowledge available, in order to obtain optimal
results in the bootstrapping mechanism. Optimal in this context
means that the joining node establishes as much contacts as the av-
erage view size, therefore becoming indistinguishable from the nodes
already on the overlay. To achieve this exact behaviour, we will need

4.2. PEER SAMPLING SERVICE 45

global knowledge in order to calculate the ideal node degree and re-
ply exactly with that amount of contacts to the joiner. Of course
this solution is not acceptable, as it would impair all the work done
previously on decentralizing the entire protocol. Nonetheless, if we
rely only on local knowledge it is still possible to approximate this
behaviour, in a probabilistic fashion. In fact, all nodes have a pow-
erful estimation tool of the total amount of nodes, the size of their
view. In fact the view size converges to log(N)+ c where as N is the
number of nodes in the system, therefore it is straightforward to esti-
mate locally the total number of nodes. If we also known the number
of local areas available, which probably is fairly well-known (for ex-
ample the number of data centers of a cloud provider), it is possible
to estimate the number of potential repliers to the contact request,
i.e. the number of nodes in the local area, and thus reply with the
adequate probability. An example of an oracle con�gured in this way
is shown in lines 29 to 39. The oracle estimates the total number
of nodes (line 31), calculates the number of local nodes based on
this estimation (line 32) and replies with a probability based on this
calculations (lines 37 to 39). Although the con�guration presented
should be well suited to a wide range of scenarios, we still abstract it
with an oracle in order to not impair the applicability of the mech-
anism in other, at this time unpredicted, scenarios. It is important
to notice that if the estimation of local nodes is inaccurate, which
happens when the view size is inferior to c the probability of replying
adequately will be compromised. This comes from the fact that if the
totalNodesEstimate becomes smaller than 1, in the case c is greater
than the viewSize then the calculation on line 37 will yield a value
greater than 1 and therefore the node will always reply to the contact
request. This is easy to observe as viewSize/localNodesEstimate
always yields a value greater than 1, when the localNodesEstimate
is strictly smaller than 1, which will impair the optimal behaviour
we intend to achieve. Thus, this abnormality is corrected by ignor-
ing the wrong local nodes estimation and making it simply 10viewSize

(lines 34 and 35).

The advantages of this new bootstrapping mechanism are many fold.
First, we eliminate the need to maintain a list of well-known nodes
somewhere out of the model, as contact nodes are drawn from all the
local nodes on the overlay. As such this also has an impact on the
quality of the overlay as contact nodes are chosen more uniformly
and therefore the problem of the well-known nodes and its direct
neighbours having high degrees is alleviated. Furthermore, a joining
node now knowns several initial contact points instead of just one,

46CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

which e�ectively improves its connectivity. Finally, the subscriptions
along with the c additional copies are sent to di�erent parts of the
overlay instead of only the neighbours of the contact node, as in the
original protocol, which e�ectively counters the clustering around
those nodes.

Despite this advantages the proposed mechanism still has one im-
portant drawback, which is why we initially said that the problem
is solved only partially. Although this mechanism works well when
the local areas are established and there are known remote nodes,
the initial bootstrap of a whole local area could not be addressed
with this mechanism. This is due to the fact that initially no re-
mote nodes are known on the starting local area and as such we
still require a set of well-known remote nodes to bootstrap a whole
local area, provided by the administrator. To solve this problem it
is possible to rely on the traditional approach of a set of well-known
servers when starting a new local area to provide contact nodes, and
then switch to our proposal. As initially there are few nodes in the
starting local area, the problems with the set of external servers are
minimized, as the size of identi�ers they need to maintain is still
small. Nonetheless, after this initial step the external mechanism
could be discarded and as such our proposal may be used for the
rest of the life-cycle of the application.

To conclude, the Peer Sampling Service proposed exposes two
primitives, PeerSampleLocal and PeerSampleRemote, which pro-
vide a set of local and remote peers respectively. These primitives
will then be used by the dissemination protocol described on the
next section.

4.3 Dissemination Protocol

This Section describes the dissemination protocol developed, which
leverages on the previous work done in the Emergent protocol [7].
For details about Emergent please refer to the background Sec-
tion 2.1.2 and 2.2.3.

The Emergent protocol o�ers to the programmer two di�erent dis-
semination strategies: eager and lazy push. In eager push the latency
to infect all the nodes is minimal, as every node eagerly transmits
the message payload upon reception to its neighbours. With the
lazy strategy, the payload transmission is delayed to a latter phase,
and therefore the bandwidth requirements of this strategy are much

4.3. DISSEMINATION PROTOCOL 47

lighter than in the eager approach, at the cost of increased latency
in the dissemination process.

As one of the main goals of this thesis is to reduce the load imposed
on the costlier long-distance links, it is possible to take advantage of
the di�erent dissemination strategies o�ered by the Emergent proto-
col in order to further reduce the number of message payloads that
traverse those costlier links.

The rationale behind this is to lazily send messages to the remote
nodes, in order to reduce the load imposed on the long distance
links, while attaining a desirable latency trade-o�. If we use an ea-
ger strategy while disseminating in local areas and a lazy strategy
when disseminating to remote ones this is achieved in a seamless way,
without compromising the reliability of the dissemination. Further-
more, if we tune the protocol parameters to send the messages in a
eager fashion to the remote nodes and then, after a small number
of rounds fall back to a lazy approach, we could further reduce the
overall latency of the dissemination process. The intuition behind
this is that that as soon as some nodes in a given local area have
the payload of a given message, they could use a eager strategy to
quickly disseminate the message in their local area, as bandwidth
constraints are more relaxed on local areas than in the links that
interconnect them.

The notion of local areas interconnected by expensive links is a per-
vasive concept across all the developed work, however it is unfortu-
nately absent in the original protocol. As such, this section deals
with the deployment of this concept in the dissemination protocol,
in order to further reduce the load imposed on the costlier links that
connect the di�erent local areas.

The rest of this section describes the changes necessary to enable a
locality aware dissemination protocol, which are the following:

• Introduction of two round types to re�ect locality;

• Reorganization of the queue of pending message payload re-
quests, to give precedence to local nodes.

4.3.1 Locality awareness on the selection of peers

The introduction of two round types is fundamental to enable the
locality awareness of the dissemination protocol. This comes from
the fact that if the protocol used only a single round type to dissemi-
nate messages, local and remote nodes could not be distinguished on

48CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

the peer selection part of the protocol, which is shown in Listing 4.5.
For instance, it would be impossible to build a dissemination strategy
that disseminates only to local or remote nodes, precluding the ef-
fective use of the network awareness that the Peer Sampling Service
o�ers by means of its PeerSampleLocal and PeerSampleRemote
primitives. Apart from seriously reducing the protocol performance
trade-o�s achievable, the dissemination protocol would not take ad-
vantage of the network knowledge present on the overlay carefully
built on the previous section. Thus, two distinct and independent
rounds types are used, one to the intra-local area dissemination and
other to the inter-local area dissemination. The independence of the
rounds is due to the way each one is increased, the local round count
is only increased when messages traverse local area links, whereas the
remote round count is only increased when messages traverse inter-
local area links. Furthermore, when a message is received through
a remote area, its local area round count must be reset, because
it is meaningless to the current area where the message is being
disseminated. Failure to do so will seriously impact the reliability
of the protocol, as the message will not be relayed enough times
in the given local area, therefore failing to infect all the members
of such area. For instance, suppose that the protocol is con�gured
with a given maximum local area round count of maxRLocal. As
the message is disseminated in the originating local area the local
round count naturally increases. Eventually, the message payload
will be received by another local area with a local round count of,
say maxRLocal − 2. If the receiving local area does not reset this
counter, the message will only be disseminated for two more rounds
(as maxRLocal − 2 + 2 < maxRLocal yields false, see line 14 of
Listing 4.5), compromising the reliability guarantees we seek.

With the necessity of two round types, one for local dissemination,
and other for remote dissemination of application level messages ex-
plained, we will now describe the impact of such changes in the
protocol pseudo-code, in Listing 4.5, focusing only on the changes
necessary to the original protocol. The introduction of two round
types, naturally implies the addition of new parameters to the pro-
tocol. These are maxRLocal and maxRRemote which specify the
maximum number of rounds a message is to be relayed locally and
remotely, respectively, and remoteFanout and localFanout, which
indicate the number of gossip targets that must be drawn from each
set of neighbours. These two last parameters could be expressed in
a single fanout parameter and use some sort of weighting to choose
between remote and local neighbours, similar to what is done in the

4.3. DISSEMINATION PROTOCOL 49

1

2 initially
3 K = ∅ /∗known messages∗/
4

5 proc Multicast(d)
6 Forward(mkdId(),d,0,0)
7

8 proc Forward(i,d,rl,rr)
9 Deliver(d)

10 K = K ∪ {i}
11 P = ∅
12 if rr < maxRRemote
13 P = P ∪ PeerSampleRemote(remoteFanout)
14 for each p ∈ P
15 L−Send(i,d,rl,rr+1,p)
16 if rl < maxRLocal
17 P = P ∪ PeerSampleLocal(localFanout)
18 for each p ∈ P
19 L−Send(i,d,rl+1,rr,p)
20

21 upon L−Receive(i,d,rl,rr,s)
22 if i /∈ K
23 if not isLocal(s)
24 rl = 0
25 Forward(i,d,rl,rr)

Listing 4.5: Dissemination Protocol: Peer Selection

peer sampling service, but for the sake of clarity and simplicity we
decided to clearly separate them. As such, in the Forward proce-
dure, each round count is compared to their respective maximums
(lines 12 and 16), and if the maximums have not been reached, the
given number of peers is drawn from the respective set (lines 13 and
17), if available. Then the L−Send procedure of the next layer is in-
voked for each one of the chosen peers. To �nalize, in the L−Receive
procedure the local round count is reset if the message comes from
an remote node (lines 23 and 24). The isLocal oracle abstracts the
problem of identifying the origin, in terms of locality, of a node and
can be built as pointed in the previous section.

4.3.2 Lazy push optimization

While the introduction of two distinct round types is crucial in the
dissemination protocol in order to make it locality-aware, the next
contribution is a improvement that stems naturally from the ob-
servation of the protocol's behaviour when dealing with lazily sent
messages. The pseudo-code is presented in Listing 4.6. When the
isEager oracle that controls the strategy to use when relaying a
message to a given node decides to sent a message lazily, two things
happen (lines 9 and 10): the message payload is stored in a tempo-

50CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

rary bu�er in order to answer future requests, and an advertisement
of the message is sent to the target. When a node receives the adver-
tisement of a message (lines 13 to 15), if the message is not known it
is queued for retrieval in a point in the future. The actual scheduling
policy is abstracted by the ScheduleNext procedure, which is appli-
cation dependent. Nonetheless, if we observe the pattern of message
advertisements/payloads transmitted, it is possible to further reduce
the number of message payloads that traverse the costlier links by
rescheduling the requests to give precedence to local nodes. In this
way, the payloads are lazily pushed over the local area links whenever
possible, instead of the long-distance links that connect the di�erent
local areas. In fact, if the dissemination strategy is chosen carefully,
for instance acting in a pure eager fashion in local areas and also
eagerly to remote areas for a small number or rounds and then fall
back to a lazy approach, few transmissions are actually made lazily
over the long distance links. This is because the initial payloads sent
eagerly to remote areas, and gossiped eagerly within that areas, will
quickly overrun the necessity to ask for the payload transmission
over the long distance links. Nonetheless, this measure is important
as a way to reduce the payload transmissions over those undesirable
links, whenever such strategy is not feasible or applicable.

To implement this, we modi�ed the original protocol in the follow-
ing way. When an advertisement of a message is received (line 13),
instead of promptly scheduling the request as in the original pro-
tocol, the request queue is rearranged (lines 31 to 38) in order to
give precedence to request on the local area. If the newly received
advertisement source isCloser than the already scheduled request,
their order is swapped. The isCloser relation is abstracted by means
of the isCloser oracle, which calculates an application level distance
between the available message payload sources, and can be built over
the isLocal oracles de�ned above.

For the sake of completeness an example of such oracle is given in
Listing 4.7. As it is possible to observe, the oracle returns false if and
only if the new source for the message is from a remote node and the
already known source is from a local node. This oracle con�guration
has an interesting side e�ect, if both nodes are at the same distance,
i.e. either both are local or remote, the oracle returns true, which
e�ectively swaps the older entry with the new one. As fresh entries
are given precedence in the queue, this tightens the time window to
node faults, as nodes tend to fail as times passes, therefore improving
the con�dence that the node who has the required message payload
is still alive.

4.3. DISSEMINATION PROTOCOL 51

1 initially
2 ∀i: C[i] = ⊥
3 R = ∅
4

5 proc L−Send(i,d,rl,rr,p)
6 if isEager(i,d,rl,rr,p)
7 send(p,MSG(i,d,rl,rr))
8 else
9 C[i] = (d,rl,rr)

10 send(p,IHAVE(i,myself))
11 R = R ∪ {i}
12

13 proc handleIHAVE(i,s)
14 if i /∈ R
15 QueueMsg(i,s)
16

17 proc handleMSG(i,d,rl,rr,s)
18 if i /∈ R
19 R = R ∪ {i}
20 Clear(i)
21 L−Receive(i,d,rl,rr,s)
22

23 proc handleIWANT(i,s)
24 (d,rl,rr) = C[i]
25 send(s,MSG(i,d,rl,rr))
26

27 forever
28 (i,s) = ScheduleNext()
29 send(s,IWANT(i,myself))
30

31 proc QueueMsg(i,newSource)
32 if i /∈ Queue
33 Queue.add(i,newSource)
34 else
35 (i,oldSource) = Queue.get(i)
36 Queue.add(i,newSource)
37 if isCloser(newSource,oldSource)
38 Queue.swap(newSource,oldSource)

Listing 4.6: Dissemination Protocol:P2P Communication

1

2 proc isCloser(newSource,oldSource)
3 if isExternal(newSource) and (not isExternal(OldSource))
4 return False
5 else
6 return True

Listing 4.7: A possible isCloser Oracle

52CHAPTER 4. NETWORK-AWARE EPIDEMIC BROADCAST

Chapter 5

Experimental Evaluation

It doesn't matter how beautiful your

theory is, it doesn't matter how smart

you are. If it doesn't agree with

experiment, it's wrong.

Richard Feynman

This chapter has three main sections. The �rst describes the ex-
perimental environment set up to analyse the impact of the protocol
developed with respect to the goals outlined in Chapter 3. Section 5.2
presents the set of experiments conducted in order to assess the qual-
ity of the Peer Sampling Service with respect to several graph met-
rics, analyse the impact of the degree balancing mechanism and the
bootstrapping algorithm. Finally, Section 5.3 compares the e�ective-
ness of the Peer Sampling Service in the transmission of messages
through long distance links. To this end, we use �rst a pure ea-
ger �ooding gossip protocol, and then the improved version of the
Emergent protocol in order to attest the improvements brought by a
more carefully designed dissemination protocol. For each one of the
experiments we present a explanation of the results obtained and
discuss the rationale behind them.

As the Peer Sampling Protocol we designed is completely �at, i.e.
it does not possess hierarchical characteristics, such as special nodes
to handle locality, our proposal is compared against the Scamp pro-
tocol. To this end we implemented Scamp, Clon and the improved
version of Emergent on the simulator.

53

54 CHAPTER 5. EXPERIMENTAL EVALUATION

5.1 Experimental Scenario Description

The experimental test bed consists of a custom made simulator writ-
ten in the Python programming language [33]. Python was chosen
over other languages due to our �uency with it, and due to its rapid
prototyping capabilities, which enable the quick setup and modi�ca-
tion of the experimental scenario, to �t the experimentation needs.
The simulation is done in discrete time steps, and messages are han-
dled by a global message queue that delivers them to their intended
recipients in a First In First Out fashion. The overlay construction
and management protocols have been implemented over graphs, by
means of the NetworkX graph library. NetworkX is a python package
for the creation, manipulation, and study of the structure, dynam-
ics, and functions of complex networks, modeled as graphs. De-
pending on the particular experiment, several data is gathered and
logged, such as the total, local and remote number of messages re-
ceived by each node. Due to the large amount of data generated,
which amounts to over 60 gigabytes in some experiments, the data
is logged to disk for latter post-processing. The processing is done
by Python scripts using the R Programming Language [14] to ex-
tract the statistical properties from the logged data. R is further
used to generated some of the presented graphics, along with gnu-
plot [1]. R is a programming language for statistical analysis that
provides powerful mechanisms to infer the statistical properties of
sets of data. The experiments have been run on a 8 core Intel Xeon
CPU with 8 gigabytes of Ram and a 500 gigabytes hard drive run-
ning the GNU/Linux Ubuntu 8.10 operating system.

The experimental scenario, depicted in Figure 5.1, used in all the
experiments consists of 1000 nodes divided in 5 local areas with 200
nodes. Furthermore, we assume that all the local ares are connected
to each other by long distance links, in order to provide a federation-
like scenario. With this particular setup we always ensure that the
number of remote nodes is four times superior to the number of local
ones, which is relevant to attest the biasing of the overlay to local
nodes.

5.2 Peer Sampling Service Evaluation

In this Section we analyse the quality of the overlay built by our Peer
Sampling Service and compare it to an implementation of the Scamp
protocol in several relevant graph metrics such as connectivity, clus-

5.2. PEER SAMPLING SERVICE EVALUATION 55

Figure 5.1: Network topology.

tering coe�cient and average path length. To access the behaviour
of both protocols in the presence of failures we devised three di�erent
strategies that randomly remove nodes from the generated overlays.
Each strategy randomly drops nodes from the speci�ed universe from
0 to 100% at increasing steps of 10%. The di�erent strategies are:
UniformDrops, which removes nodes from the overlay in a uniform
fashion, considering all the existing nodes; OneAreaDrops, which
drops nodes uniformly from a given local area; and TwoAreaDrops,
which disconnects nodes uniformly from two pre-selected local areas.
To apply each one of the strategies and their increasing drop rates
we proceeded, for both protocols, as follows: �rst we generated the
overlay using the particular protocol and keep a copy of it; after,
we apply the given drop strategy for each drop rate and store the
intermediate overlays, ensuring that each drop rate is applied to the
initial overlay instead of the intermediate overlay generated just be-
fore it. For example, a given strategy with a drop rate of 20% is
applied to the initial overlay instead of the overlay obtained by the
dropping of 10% of the nodes. Furthermore, we do not allow the
overlays to heal that is all nodes are removed at the same instant,
at the beginning of each experiment. By not allowing the overlays

56 CHAPTER 5. EXPERIMENTAL EVALUATION

to heal we precisely measure a lower bound on the resilience to mas-
sive failures, i.e. the results can be improved by means of healing,
but not worsened (if we assume a random distribution of failures).
For each one of the obtained overlays we then extract the properties
to study which are: connectivity, clustering coe�cient and average
path length.

In the following experiments both protocols are parametrized with
c = 6, which indicates the resilient to failures, as explained in [23].
Due to the value of the c parameter and the number of total nodes,
the view size of each node converges, on average, to 9 which comes
from log(1000) + c = log(1000) + 6 = 9. Nodes are created sequen-
tially in the overlay and the contact is chosen randomly across the
existing nodes. Furthermore, the locality oracle in Clon is con�g-
ured in order to obtain, on average, 2 remote and 7 local nodes on
the view of each node.

5.2.1 Overlay properties

When building an overlay that should encompass all the nodes in
the system, the most important measure is the connectivity of the
overlay. If connectivity is not guaranteed in the presence of high
churn rates and/or massive failures, the overlay network will parti-
tion, isolating one or more parts of the overlay from the rest. Fig-
ure 5.2 depicts the results obtained when applying the di�erent node
dropping strategies presented above, at increasing rates, without ap-
plying the degree balancing mechanism. In the Y axis it is possible
to read the amount of alive nodes globally reachable, and in the X
axis the amount of dropped nodes for each strategy.

If we analyse the connectivity in the presence of faults in a global set-
ting, by applying the UniformDrops strategy, it is possible to observe
that the connectivity of Clon, green line, closely matches that of
Scamp, red line, up to 60% global nodes dropped, only breaking up
at above 70%. Nonetheless, the results of Scamp from those values
up also drop well behind the desired connectivity ratio, thus making
the results uninteresting. In fact, for up to 50% failures and without
any type of healing, the connectivity is not perceivably a�ected for
both protocols which attest their resilience. For drop rates up to
60%, which means 3 local areas out of 5, the connectivity stays in
reasonable values above 90% which means that despite the massive
failures, on average each node loses slightly more than half of its
links, almost all nodes are still reachable.

5.2. PEER SAMPLING SERVICE EVALUATION 57

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 A

liv
e

N
od

es
 R

ea
ch

ab
le

% Nodes Dropped

Scamp UniformDrops
CLON UniformDrops

Scamp OneAreaDrops
CLON OneAreaDrops

Scamp TwoAreaDrops
CLON TwoAreaDrops

Figure 5.2: Overlay Connectivity.

If we now observe the results for localized drops on one local area, by
applying the OneAreaDrops strategy, we observe that the connec-
tivity is not a�ected for either Clon, pink line, or Scamp, blue line.
This means that the complete failure of a whole local area does not
a�ect the inter-connectivity among the others. In a real world sce-
nario a complete failure of a whole data center/local area, could be
externally perceived if, for instance, the links that connect it to the
exterior go down, e�ectively precluding the physical network access
to such data center. It is important to note that as the X axis is the
percentage of nodes dropped globally, the values for this strategy end
up at 20%, which corresponds to the complete removal of one local
area out of the �ve we have in this scenario. For the same reason, the
measurements in the TwoAreaDrops strategy end up at 40%, which
corresponds to the complete removal of two local areas, as expected
in this strategy. Finally, the light blue and yellow line correspond to
Scamp and Clon respectively, in a TwoAreaDrops strategy. As it is
possible to observe, the impact on connectivity of this localized drop
strategy continues to not endanger the connectivity of the overlay.

For the two remaining graphics that depict the other graph prop-
erties we intend to analyse, we only plot the results obtained from
the UniformDrops strategy in order to not clutter them up. Fur-
thermore, the impact of the other strategies is not as relevant to the

58 CHAPTER 5. EXPERIMENTAL EVALUATION

other metrics as it is for connectivity.

In Figure 5.3, we plotted the evolution of the clustering coe�cient in
face of the increasing global drop rates for both Clon, green line,
and Scamp, red line. It is possible to observe an almost constant
value that separates the higher clustering coe�cient of Clon from
the lower values of Scamp. This di�erence is easily explained by
the goal of Clon itself, which gives preference to local nodes over
remote ones and thus, the overlay tends to naturally cluster in order
to re�ect the clustered topology of the underlying network.

As the reader may remember from the background Section 2.1.2,
overlays with high clustering coe�cients tend to partition as the co-
e�cient measures the closeness of neighbour relations and high val-
ues indicate that the neighbours are highly connected among them,
but poorly connected to the exterior. As Clon tends to bias the
overlay to a naturally clustered network, it is normal to observe an
increase in the clustering coe�cient. However, if we observe again
Figure 5.2, it is possible to see that the connectivity is almost iden-
tical to that of Scamp, which allow us to conclude that the increase
in the clustering coe�cient is despicable with respect to the impact
on connectivity. The other e�ect of higher clustering coe�cients,
is the increased redundancy of messages transmitted among neigh-
bours, however to analyze the impact of this, we have to wait for
Section 5.3.

The next metric related to the graph properties we analyse is the
average path length, which is depicted in Figure 5.4. As it is possible
to observe, the average path length increases steadily in both pro-
tocols until the 60%-70% rupture point where the overlay becomes
disconnected. The discrepancy between Clon and Scamp is again
related to the way links are established in the protocols. While in
Scamp the probability of having a far away neighbour is the same
as having a close one, in Clon it is much probable to have local
neighbours and few remote neighbours. If a given node and its im-
mediate neighbours do not have a link to all the other local areas,
which is likely, then the average path length increases naturally as
not all the local areas are reachable directly for any given node. As
we intend to reduce the load imposed on the long-distance links, we
will inevitably fall on the latency-bandwidth conundrum, which is
re�ected by the increase of the average path length and thus latency.

5.2. PEER SAMPLING SERVICE EVALUATION 59

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 10 20 30 40 50 60 70 80 90

 C
lu

st
er

in
g

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.3: Overlay Clustering.

5.2.2 Degree balancing mechanism

In this Subsection we analyse the e�ectiveness of the degree balanc-
ing mechanism by observing its impact on the degree distribution
and also on the graph metrics presented in the previous Subsection.

As stated in the protocol description Section 4.2, our proposal in-
troduces a fully decentralized mechanism to balance the degree of
the nodes in the overlay, in order to achieve a uniform overlay dis-
tribution and produce better quality overlays. We will now assess
the quality of the degree balancing algorithm by showing an overlay
before the algorithm is run, in Figure 5.5, and the same overlay after
a hundred runs of the algorithm, in Figure 5.6.

Although the original Scamp algorithm guarantees that the average
degree distribution will tend to the right value, the degree distribu-
tion in Figure 5.5 shows that the distribution is far from optimal.
Considering that the ideal degree in this scenario is 9, it is possible
to see that only slightly more than 15% of nodes have that degree,
and around 45% of nodes are on the ideal degree value with a de-
viation of ±1. Furthermore, a considerable amount of nodes has
either very low or very high degrees, for instance some nodes have
degrees above 25 which clearly inhibits the reliability and quality of
the overlay. This is explained by the age of nodes. As nodes stay in

60 CHAPTER 5. EXPERIMENTAL EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

 P
at

h
Le

ng
th

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.4: Overlay Average Path Length.

the overlay for more and more time, they will receive more and more
subscription requests. Despite the probability of a request being in-
tegrated decreases with the increase of the node degree (or view size),
some subscriptions will eventually get accepted, as the integration
function has a probabilistic base, and thus those nodes will tend to
have very large degrees. On the other hand, when the membership
remains stable, i.e. no joins or leaves, the last nodes that joined the
overlay will not receive new subscriptions and therefore their degrees
will remain low.

With the degree balancing mechanism we proposed, the overlay ef-
fectively evolves by swapping links from nodes whose degrees are
high to those whose degrees are low, therefore promoting an even
degree distribution. If we observe Figure 5.6 which depicts the same
overlay as above it is possible to see that degrees are more even dis-
tributed. For instance, more 50% nodes now are on the ideal degree
distribution with a ±1 deviation. Furthermore, the very high degree
nodes have been eliminated, although some still have high degrees,
and the same applies to the lower degree nodes. By running this
optimization for the whole time of the dissemination process we will
eventually obtain a narrow degree distribution around the ideal de-
gree and thus contribute to better quality and more reliable overlays,
as all nodes will tend to have similar degrees, and therefore the same

5.2. PEER SAMPLING SERVICE EVALUATION 61

Figure 5.5: Clon Initial Overlay Degree Distribution

contribution to connectivity and to the message dissemination e�ort.
This could be observed in the following experiments, where all the
metrics presented tend to improve after the execution of the degree
balancing mechanism.

To assess the impact of the degree balancing mechanism with respect
to the previous analysed graph metrics, we plot them again after
running the degree balancing procedure.

Figure 5.7 depicts the connectivity of the overlay after applying the
degree balancing procedure. As it is possible to observe, the proce-
dure e�ectively improves the connectivity of the overlay, by moving
the links in the high degree nodes to the low degree ones. In fact,
with this optimization Clon becomes more resilient than Scamp
up to 60% and 70% drop rates, reaching nearly 100% of the alive
nodes up to 60% global failures. As the impact of the optimization
with respect to the connectivity for the other two drop strategies is
negligible we do not plot them.

In Figure 5.8 it is possible to observe the impact of the degree bal-
ancing mechanism in the clustering of the overlay. The clustering
of the underlying graph drop from the previous 0.28 of Figure 5.8 to

62 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.6: Clon Degree Distribution After 100 Runs of the Bal-
ancing Algorithm

below 0.22, approximating the values obtainable with Scamp.

The improvement in the path length that the degree balancing pro-
cedure brings is depicted in Figure 5.9. As it is possible to observe
the exchange of links promoted by the degree balancing mechanism
e�ectively improves the average path length, bringing it to values
closer to Scamp.

In summary, and to �nalize the evaluation of properties of the over-
lay built by Clon, we observe that it is possible to achieve the same
tolerance to massive amounts of failures as in Scamp, while carefully
building the overlay and establishing links among nodes in a way
that re�ects the underlying network topology. The cost to pay is
a slightly increase in the clustering coe�cient, due to the fact that
the protocol tries to mimic the inherently clustered network topol-
ogy, and an increase in the average path length, related again to
the way links are established among nodes. Apart from those met-
rics, the overlay balancing mechanism proves to be e�ective, as it
tends to normalize the degree distribution by reducing the degree of
high degree nodes and consequently increasing the degree of nodes

5.2. PEER SAMPLING SERVICE EVALUATION 63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 A

liv
e

N
od

es
 R

ea
ch

ab
le

% Nodes Dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.7: Overlay Connectivity After Degree Balancing.

with lower degrees. Furthermore, it improves the connectivity, the
clustering coe�cient and the average path length of the overlay, to
levels closer of Scamp. Insofar, our experimental evaluation shows
that Clon is by no means superior to Scamp, with the exception of
the degree balancing mechanism. This is expected as Scamp builds
a completely uniform overlay, in terms of links established between
remote and local neighbours, and Clon disrupts this uniformity by
biasing the overlay to take into account locality. However, the work
done on the careful establishment of the links starts to give results
in the next Section, when we evaluate the impact of the overlay in
the dissemination process.

5.2.3 Bootstrapping mechanism

In this Subsection we analyse the proposed bootstrapping mecha-
nism in order to assess if it satis�es the requisite of providing the
joining nodes with several contact nodes.

To this end we used di�erent sendOracle con�gurations, starting
from a naive one and improving it to obtain the optimal con�guration
described in Section 4.2.3. The results obtained can be observed in
Table 5.2.3. The table is organized as follows: the �rst two columns
describe the con�guration of the sendOracle and externalContactOracle,

64 CHAPTER 5. EXPERIMENTAL EVALUATION

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 10 20 30 40 50 60 70 80 90

 C
lu

st
er

in
g

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.8: Overlay Clustering After Degree Balancing.

respectively; the third column presents the number of messages ex-
changed by the nodes in the runs of the bootstrapping mechanism,
without considering the messages sent by the joiners after receiving
the contact; in the fourth column it is possible to observe the to-
tal number of replies a given joiner obtained; �nally the last three
columns show the total, local and remote nodes e�ectively integrated
in the view of the joiner. The run consists of having a new node join
a random local area among the 5 available, initiate the bootstrap-
ping protocol, and then extract the relevant measurements. For each
con�guration we run 5000 join operations and extracted the averages
of the results obtained. Furthermore, each new run is independent of
the previous, i.e. we run the bootstrapping mechanism for a joining
node, and after the process ends, we proceed to the next experiment
with a new overlay.

As it is possible to observe for all the con�gurations the
externalContactOracle is con�gured to return true with a probabil-
ity of 50%, which means that half of the replies will be with local
nodes and the other half with remote ones.

On the �rst row of the table we show a naive con�guration of the
sendOracle, where it is con�gured to always return true. As such,
the bootstrap generates 400 messages, 200 for the initial broadcast
procedure and 200 replies to the joiner as each node always reply

5.2. PEER SAMPLING SERVICE EVALUATION 65

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

 P
at

h
Le

ng
th

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.9: Overlay Average Path Length After Degree Balancing.

to the requests in this con�guration. With this con�guration the
joiner obtains on 200 replies, one for each node on its local area,
but only integrates 20 on its view. This is due to the probability
of integration being restricted by the actual size of the view, as
explained in Section 4.2.3. Of this 20 nodes integrated into the view
12 are local and 8 are remote.

On the next con�guration, in the second row of the table, the sendOracle
only replies to the contact requests 5% of the times, which results
in sending to the joiner, on average, 10 replies (0.05 ∗ 200 = 10), on
averge. Of this 10 replies only 5 are e�ectively integrated into the
view of the joiner, of which 3 are local and 2 remote. The con�gura-
tion of 5% is just a arbitrarily small probability chosen to infer the
behaviour of the bootstrapping mechanism.

On the next con�guration we start to exploit the local knowledge
available in order to approximate the desired optimal behaviour. In
this con�guration the oracle estimates the total number of nodes in
the system, but does not known the number of local areas, and as
such the probability of replying is only based on the global number
of nodes it estimated. It is important to remember that the size of
the view tends to be c + log(N), where N is the number if nodes,
and thus it is straightforward to calculate the number of total nodes,
and reply with an accordingly probability. Despite not knowing the

66 CHAPTER 5. EXPERIMENTAL EVALUATION

Oracles Probabilities Msgs

Generated

Contacts

O�ered

Nodes Integrated

sendOracle externalOracle Total Local Remote

1 0.5 400 200 20 12 8

0.05 0.5 210 10 5 3 2

based on

global view

estimation

0.5 286 86 13 8 5

based on lo-

cal view esti-

mation

0.5 238 38 9 6 3

Table 5.1: Di�erent bootstrapping con�gurations.

number of local areas,the result is interesting as it gets closer to the
ideal value of 9 links established by the joining node.

Finally, in the last con�guration we exploit the knowledge of the
previous con�guration but assume that the number of local areas is
known beforehand. As the number of local areas (or data centers) in
our scenario is fairly static, it is reasonable to assume that that value
is well known. This con�guration corresponds then to the example
oracle given in Listing 4.4. With this knowledge available, it is pos-
sible to achieve the optimal results in the bootstrapping mechanism.
In fact, in this setting the joiner receives 38 contact replies and of
those integrates 9 in its view, the value of the average degree of the
overlay. Furthermore, the proportion of local and remote nodes is
also closely approximated, as our biasing mechanism tends to build
views with 7 local nodes and 2 remote ones.

To conclude the analysis of the bootstrapping mechanism, the above
experiments show that is possible to achieve near optimal con�gu-
rations with the local knowledge available at each node, as in the
third con�guration. Furthermore, if the number of local areas of
the federation is known beforehand, it is possible to obtain an opti-
mal result that makes joining nodes indistinguishable from the other
nodes already present in the overlay.

5.3 Dissemination Protocol Evaluation

This section has two main objectives: �rst, analyse the impact of the
overlays previously constructed on the dissemination of application
level messages, and second, assess the impact of the developed dis-
semination protocol, based on Emergent. The experiments for both
protocols run as follows: each node on the overlay injects a new

5.3. DISSEMINATION PROTOCOL EVALUATION 67

message on the system, the simulator executes the dissemination
protocol and when there are no more messages to be delivered, the
data is analysed with the tools mentioned previously. For each ex-
periment, the total, remote and local number of messages transmit-
ted is logged. Furthermore, for the Emergent protocol, the number
of total, remote and local advertisements exchanged is also logged.
Unless otherwise stated, all the experiments are run on the overlays
previously analysed without applying any drop strategy.

With respect to Clon we use two di�erent overlays: one obtained
without applying the degree balancing mechanism, and the other
after applying the degree balancing mechanism as explained in the
previous Section, which is identi�ed as ClonBalance .

5.3.1 Flooding dissemination protocol

In this Subsection we conduct an experiment that consists of a �ood-
ing gossip protocol acting in a pure eager fashion. In this protocol,
as soon as a new message is received, it is relayed to all known
neighbours, following an infect and die model. This protocol is very
bandwidth demanding as multiple copies of the same payload are
received by each node, through its neighbours. The goal is to access
the impact of the peer sampling services used, with respect to the
total, remote and locally received messages by each node. The ratio-
nale is that if we are able to obtain signi�cant results, i.e. reducing
the number of messages that traverse long distance links, the results
will be even more interesting with a locality aware dissemination
protocol as the one presented in Section 4.3.

Figure 5.10 depicts the results obtained from the above experiment.
As it is possible to observe, the number of total messages received,
the sum of remote and local messages, by each node is the same in
both protocols and is around 9000. This value is easily explained
by the overlay characteristics and the dissemination protocol. Each
node knows on average 9 neighbours and 1000 di�erent messages are
injected on the system, one for each node, thus accounting for the
9000 messages received, on average. However, if we now focus on the
messages received remotely, the red bar, we start to see the bene-
�ts of using a peer sampling service that takes into account locality.
Whereas in Scamp nearly 7000 messages are received remotely, in
Clon this value drops slightly below 2000, an improvement of more
than three times the value obtained in Scamp. The bulk of mes-
sages transmitted in Clon is therefore done locally, for the same
reliability level, which e�ectively demonstrates the impact of a judi-

68 CHAPTER 5. EXPERIMENTAL EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Scamp Clon ClonBalance

N
um

be
r

of
 m

es
sa

ge
s

R
ec

ei
ve

d

Protocol

Messages received remotely/locally by each protocol

Local
Remote

Figure 5.10: Messages received by each node using a �ooding dis-
semination protocol.

ciously built overlay that takes into account the underlying network
topology. The results obtained by ClonBalance show a mini-
mal improvement in the number of remotely received messages with
respect to Clon. While the di�erence is minimal to support sub-
stantial claims on the improvement bring by the balanced version
of Clon, this result attests that the balancing mechanism preserves
the biasing of the overlay, while enhancing the graph properties as
shown in the previous Section. Nonetheless, if the degree balanc-
ing mechanism is run continuously, nodes with high degrees will be
eventually eliminated and thus the unnecessary redundancy in mes-
sages transmission will be eliminated, further reducing the number
of transmissions over the long distance links.

5.3.2 Improved Emergent Dissemination Proto-
col

In the next experiment, we used the improved version of the Emer-
gent dissemination protocol with a simple policy: relay messages to
local nodes using an eager strategy, and use the lazy strategy for
all the remote nodes, using the same overlays as in the previous ex-
periment. The results obtained are depicted in Figure 5.11 and we

5.3. DISSEMINATION PROTOCOL EVALUATION 69

discuss them next.

The impact of using a locality aware dissemination protocol is per-
haps the most interesting insight of Figure 5.11. In fact, by using
the aforementioned dissemination strategy, the amount of message
payloads transmitted over long distance links decreases considerably,
both in Scamp and Clon. In Scamp this value dropped from around
7000 messages to slightly above 2000, which is similar to the values
obtained solely by using Clon with a �ooding dissemination strat-
egy. The improvements of Clon is also considerably, going from
around 1900 to about 600 payload transmissions. This results is
quite important as it shows that by combining a locality-aware peer
sampling service with a locality-aware dissemination protocol, it is
possible to reduce the number of message payload transmissions over
long distance links by an order of magnitude, when comparing pro-
tocols unaware of network locality. This can be observed by the
results obtained by a combination of Scamp with a �ooding proto-
col which yields around 7000 message payload transmissions on long
distance links with a combination of Clon with the locality aware
emergent, which achieves around 600 transmissions for the same dis-
semination scenario. Nonetheless, there are other interesting results
that provides us with insights of the impact of combining the di�er-
ent dissemination and peer sampling protocols. The discrepancy of
locally received messages, green bar, in Scamp and Clon could be
explained as follows. The dissemination on local nodes uses a pure
eager strategy, i.e. �ooding, and as such a considerable amount of re-
dundant message payloads will be transmitted in each local area. As
in Scamp links are established without taking into account locality,
each node knows, on average, more remote neighbours than local
ones (remember that we have four times more remote nodes than
local ones), and as such the number of locally redundant transmis-
sions on Scamp is much lower than that of Clon. As nodes running
Clon known more local nodes than remote ones the redundancy
of locally received messages considerable increases. This could be
mitigated by using a more meticulous dissemination strategy with
respect to local nodes, such as transmitting eagerly for a certain
number of rounds when local nodes are likely to not have the mes-
sage, and then fall back to a lazy strategy to conservatively infect
the remaining nodes. However, for the sake of simplicity we have not
considered this approach in this scenario, as it is not our main goal.
A detailed analysis of possible dissemination strategies can be found
in the original Emergent paper [7]. The last result to analyse in this
experiment is the number of message advertisements in both proto-

70 CHAPTER 5. EXPERIMENTAL EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

Scamp Clon ClonBalance

N
um

be
r

of
 p

ay
lo

ad
s/

an
no

uc
em

en
ts

 r
ec

ei
ve

d

Protocol

Message payloads/annoucements received remotely/locally by each protocol

AnnoucRemote
Local
Remote

Figure 5.11: Messages/Advertisements Received using the improved
Emergent dissemination protocol.

cols. The dissemination strategy used only sends advertisements to
remote nodes and as such the blue bars re�ects at the same time
the total and remotely sent advertisements. The di�erence between
Scamp and Clon is again substantial and draws from the di�er-
ences in the overlay topologies. As in Scamp most nodes known are
remote, a considerable amount of advertisements are sent over the
long distance links and consequently the payloads are lazily pushed
over those links, which explains the reduction of message payloads
transmitted to remote nodes. In Clon, the amount of remote nodes
known is smaller and as such the quantity of advertisements sent
is smaller than that of Scamp. Once again the results obtained by
relying on the balanced overlay ClonBalance show an almost im-
perceptible improvement as in the �ooding dissemination protocol
pointed above.

The next experiment, depicted in Figure 5.12 is completely di�er-
ent from the previous ones, and measures the impact in the laten-
cy/bandwidth trade o� that the Emergent protocol o�ers. The goal
is to observe the impact of the chosen payload transmission strategy
(by means of the isEager oracle, see Listing 4.6) on the latency and
bandwidth consumption of the dissemination process. To this end
we run a set of experiments where the isEager oracle returns False

5.3. DISSEMINATION PROTOCOL EVALUATION 71

reach

Figure 5.12: Bandwidth/Latency trade o� of the di�erent strategies
using the improved Emergent dissemination protocol.

if and only if the target node is external and the external round is
below a given threshold, as depicted in Listing 5.1. The rationale
is to transmit the message payloads eagerly for a certain number
of rounds and then fall back to lazy strategy. In the experiment
we varied the TTL value from 0 to 9, and for each value we run
the emergent dissemination protocol on top of the overlay built by
Clon, without applying the degree balancing strategy. On the X
axis it is possible to observe the di�erent TTL used for each run.
As such on the leftmost part of the axis we have a completely lazy
strategy that becomes gradually eager as we move to the right. On
the left Y axis we measure the bandwidth consumption, blue line,
with respect to the number of message payloads transmitted over
the long distance links. On the right Y axis we measure the latency
of the dissemination, green line, in the number of hops necessary to
infect all nodes in the overlay.

For instance, in the completely lazy strategy, i.e. when lazy after
the round zero, nodes receive on average slightly more than 600
messages through remote links, which con�rms the values obtained
in Figure 5.11. With this con�guration the latency to infect all nodes
is 11 hops.

As expected, the bandwidth increases with the eagerness to transmit
the payloads, as more redundant messages are sent, while the latency
decreases, as messages reach all nodes quicker, without the additional
roundtrips of a lazy strategy. It is interesting to notice that in this
scenario the latency reaches its minimum after 4 eager rounds, when
it becomes close to the overlay diameter. On the other hand, the
bandwidth tends to stabilize only around the 7th round. Therefore,
in this scenario using a eager strategy for more than four rounds
will only waste bandwidth without bringing any improvement on
the latency of the dissemination process.

The point where the two lines intersect presents an interesting trade
o� as it is when the bandwidth required for the dissemination is
small, with a moderate latency penalty.

72 CHAPTER 5. EXPERIMENTAL EVALUATION

1

2 proc isEager(i,d,ri,re,p)
3 if isExternal(p)
4 return re < TTL
5 else
6 return True

Listing 5.1: isEager oracle with a TTL con�guration

Chapter 6

Conclusion

One must have a good memory to be

able to keep the promises one makes.

Friedrich Nietzsche

In this �nal Chapter we present the main conclusions drawn for the
work done, summarize the contributions this dissertation o�ers, and
give pointers to future research questions.

6.1 Conclusions

By clearly addressing the problem of reliable multicast at two dis-
tinct levels: the peer sampling service and the dissemination pro-
tocol, we have been able to satisfactorily achieve the requirements
presented in Chapter 3, as the extensive experimental evaluation con-
ducted attests. Namely, the proposed set of protocols achieves reli-
able dissemination of messages to all the correct peers in the pres-
ence of massive rates of failures, while adapting to changing system
sizes. The resilience of the protocols is assessed by the experimental
evaluation conducted in Section 5.2. The advantages of the link dif-
ferentiation promoted by Clon become evident in the dissemination
of the application level messages, as there is a substantial reduction
on the load imposed on the long distance links, as it is possible to
observe in Section 5.3.

The key to the successful combination of this often adverse objectives
relies on the overlay produced by Clon: by biasing the overlay to
the network topology fewer remote links are established and there-
fore the load imposed on them is reduced; and by refusing to rely on

73

74 CHAPTER 6. CONCLUSION

special nodes to handle locality as in previous proposals, and using
instead a �at unstructured approach, the inherent resilience and scal-
ability of the latter protocols is preserved. Furthermore the natural
resilience to churn that unstructured approaches present allows our
protocol to cope with the requirement of mitigating the undesirable
churn e�ects.

The continuous balancing of the node degrees proved to be an e�ec-
tive mechanism in the improvement of the overlay properties, which
results in a superior overlay than the one obtained with the ini-
tial protocol, as shown in Section5.2. The mechanism improves the
connectivity, clustering coe�cient and average path length of the
obtained overlay, approximating them to the values obtained with a
protocol oblivious to locality, without disrupting the biasing previ-
ously established. In fact, by standardizing the degree of the nodes
is is possible to tolerate more failures than a �at locality unaware
protocol, such as Scamp.

The bootstrapping mechanism breaks some barriers by providing a
more reliable and decentralized, yet not completely, way of providing
the joining nodes with initial contact nodes. Using this mechanism
joining nodes acquire several contact points to establish the initial
links and as such the overall quality of the overlay is increased. Fur-
thermore, it was been shown that by using an appropriate oracle it
is possible to establish as many initial links as the average view size,
which contributes to the indistinguishability between joining nodes
and nodes already on the overlay.

By enabling the locality awareness on the dissemination protocol
with the introduction of distinct rounds, and taking advantage of
the overlay built by the peer sampling service we have been able
to achieve an overall improvement of an order of magnitude on the
number of messages that traverse the long distance links, when com-
pared to protocols oblivious to locality.

Finally, it is important to stress the �exibility that the oracles confer
to the proposed protocols. Instead of choosing a-priori con�gurations
to each one of the oracles that 'should work on most scenarios', we
defer that decision to the programmer who is able to adjust the pa-
rameters to his/her particular application environment. Therefore,
we not restrict the protocols to the set scenarios we envision, widen-
ing its potential applicability to novel, maybe unforeseen settings.

6.2. SUMMARY OF CONTRIBUTIONS 75

6.2 Summary of Contributions

This Section brie�y summarizes the contributions of this disserta-
tion, which are the following:

• Design of a peer sampling service that establishes links among
nodes, at construction time, taking into account locality;

• Development of a degree balancing mechanism that further in-
creases the quality of the overlay obtained, without disrupting
the locality properties of the overlay;

• Introduction of a decentralized bootstrapping mechanism that
o�ers to the joining nodes several contact points instead of just
one;

• Introduction of two distinct round types in the dissemination
protocol, to handle separately local and remote nodes;

• Reordering of the queue of pending lazy pushes to give prefer-
ence to local nodes over remote ones.

6.3 Future Work

After the work done on this thesis, we do believe that many pending
and challenging issues still remain in the problem of reliable multi-
cast in very large and dynamic distributed systems. An ambitious
research direction will be to study the possibility of applying the
knowledge obtained here in applications with di�erent requirements,
such as the ones we present below.

The overlays built by Clon mimic the network topology by estab-
lishing links with remote and local nodes with di�erent probabili-
ties. Although we have not studied it, it will be interesting to in-
fer whether the current proposal addresses scenarios where remote
nodes are at di�erent distances. For example it may be desirable to
establish links with a remote data center located in the country with
more probability than establishing links with a remote data center in
another continent. Possibly this can be achieved by con�guring the
oracles properly, but a full assessment of this scenarios will de�nitely
widen the applicability scenarios of the presented protocols.

Additionally, it will be interesting to infer the possibility of using the
rationale behind the biasing mechanism in order to provide reliable

76 CHAPTER 6. CONCLUSION

dissemination guarantees only to certain groups of nodes, based on
their interests. This will imply a careful study of message �ltering
protocols and research on the possibility of biasing the overlay to
approximate the interest groups. Thus the goal will be to reduce or
even eliminate the number of messages that reach peers that are not
particularly interested in them.

The developed set of protocols only guarantee the reliable dissem-
ination of messages to peers. However, in certain scenarios this is
not su�cient, as the application may require total ordering of the re-
ceived messages. Inferring whether or not the proposed set of proto-
cols is suitable, as a starting point, to provide total order guarantees
will be surely a challenging and interesting research direction.

Bibliography

[1] gnuplot. http://www.gnuplot.info.

[2] DC2MS: Dependable Cloud Computing Management Services.
http://gsd.di.uminho.pt/projects/projects/DC2MS, 2008.

[3] M. Al-Fares, A. Loukissas, and A.Vahdat. A scalable, com-
modity data center network architecture. SIGCOMM Computer
Communication Review, 38(4):63�74, 2008.

[4] Amazon.com, Inc. Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2, 2009.

[5] N. Bailey. The Mathematical Theory of Infectious Diseases and
its Applications. Hafner Press, second edition edition, 1975.

[6] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, M. Mi-
hai, and Y. Minsky. Bimodal multicast. ACM Transactions on
Computer Systems., 17(2):41�88, 1999.

[7] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues. Emer-
gent structure in unstructured epidemic multicast. In Proceed-
ings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 481�490, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized application-level multi-
cast infrastructure. IEEE Journal on Selected Areas in Com-
munications, 20:2002, 2002.

[9] M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of scal-
able application-level multicast built using peer-to-peer over-
lays. In Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 2, pages
1510�1520, 2003.

77

78 BIBLIOGRAPHY

[10] P. Eugster and R. Guerraoui. Hierarchical probabilistic mul-
ticast. Technical Report LPD-REPORT-2001-005, Ecole Poly-
technique Fédérale de Lausanne, 2001.

[11] P. Eugster, R. Guerraoui, S. Handurukande, P. Kouznetsov, and
A.-M. Kermarrec. Lightweight probabilistic broadcast. ACM
Transactions on Computer Systems, 21(4):341�374, 2003.

[12] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié.
From epidemics to distributed computing. IEEE Computer,
37(5):60�67, May 2004.

[13] Y. Fang and D. Neufeld. The pendulum swings back: individ-
ual acceptance of re-centralized application platforms. SIGMIS
Database, 37(2-3):33�41, 2006.

[14] R. Foundation. The r project for statistical computing.
http://www.r-project.org/.

[15] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. Scamp: Peer-
to-peer lightweight membership service for large-scale group
communication. In Networked Group Communication, pages
44�55, 2001.

[16] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. Hiscamp: self-
organizing hierarchical membership protocol. In Proceedings of
the 10th workshop on ACM SIGOPS European workshop, pages
133�139. ACM, 2002.

[17] C. Gkantsidis, M. Mihail, , and A. Saberi. Random walks in
peer-to-peer networks: algorithms and evaluation. Performance
Evaluation In P2P Computing Systems, 63(3):241�263, 2006.

[18] Google. App Engine. http://code.google.com/appengine, 2009.

[19] J. Jannotti, D. Gi�ord, K. Johnson, F. Kaashoek, and
J. O'Toole. Overcast: Reliable multicasting with an overlay
network. In Usenix OSDI Symposium 2000, pages 197�212, Oc-
tober 2000.

[20] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
The peer sampling service: experimental evaluation of unstruc-
tured gossip-based implementations. In Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware,
pages 79�98, New York, NY, USA, 2004. Springer-Verlag New
York, Inc.

BIBLIOGRAPHY 79

[21] B. Kaldehofe. Bu�er management in probabilistic peer-to-peer
communication protocols. In Proceedings of the 22nd Interna-
tional Symposium on Reliable Distributed Systems, pages 76�85,
Oct. 2003.

[22] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Ran-
domized rumor spreading. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, page 565,
Washington, DC, USA, 2000. IEEE Computer Society.

[23] A.-M. Kermarrec, L. Massoulié, and A. Ganesh. Probabilistic
reliable dissemination in large-scale systems. IEEE Transac-
tions on Parallel and Distributed Systems, 14:248�258, 2001.

[24] J. Leitão, J. Pereira, and L. Rodrigues. Hyparview: A member-
ship protocol for reliable gossip-based broadcast. In Proceed-
ings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 419�428. IEEE
Computer Society, 2007.

[25] M. Lin and K. Marzullo. Directional gossip: Gossip in a wide
area network. In Proceedings of Third European Dependable
Computing Conference, volume 1667 of Lecture Notes in Com-
puter Science, pages 364�379. Springer, 1999.

[26] F. Makikawa, T. Matsuo, T. Tsuchiya, and T. Kikuno. Con-
structing overlay networks with low link costs and short paths.
Sixth IEEE International Symposium on Network Computing
and Applications, pages 299�304, July 2007.

[27] L. Massoulié, A.-M. Kermarrec, and A. Ganesh. Network aware-
ness and failure resilience in self-organising overlay networks. In
Proceedings of the 22nd Symposium on Reliable Distributed Sys-
tems, pages 47�55, 2003.

[28] M. Matos, J. Pereira, and R. Oliveira. Self tuning with self
con�dence. In "Fast Abstract", Supplement of the 38th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks. IEEE, 2008.

[29] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in
the presence of faults. Journal of ACM, 27(2):228�234, 1980.

[30] J. Pereira and R. Oliveira. Rewriting 'the turtle and the hare':
Sleeping to get there faster. In First Workshop on Hot Topics
in System Dependability, 2005.

80 BIBLIOGRAPHY

[31] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable
multicast: De�nition, implementation, and performance evalu-
ation. IEEE Transactions on Computers, 52(2):150�165, 2003.

[32] J. Pereira, L. Rodrigues, R. Oliveira, and A.-M. Kermarrec.
Neem: Network-friendly epidemic multicast. In Proceedings of
the 22nd Symposium on Reliable Distributed Systems, pages 15�
24. IEEE, 2003.

[33] Python Software Foundation. Python programming language.
http://python.org, 1990-2009.

[34] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In Pro-
ceedings of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, pages
161�172, New York, NY, USA, 2001. ACM.

[35] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable networks.
In Proceedings of the Third International COST264 Workshop
on Networked Group Communication, pages 14�29, London,
UK, 2001. Springer-Verlag.

[36] R. V. Renesse, K. Birman, and W. Vogels. Astrolabe: A ro-
bust and scalable technology for distributed system monitoring,
management, and data mining. ACM Transactions on Com-
puter Systems, 21(2):164�206, May 2003.

[37] L. Rodrigues, S. Handurukande, J. Pereira, R. Guerraoui, and
A.-M. Kermarrec. Adaptive gossip-based broadcast. In Proceed-
ings of the International Conference on Dependable Systems and
Networks, pages 47�56, 2003.

[38] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems.
In Lecture Notes in Computer Science, volume 2218, pages 329�
350, 2001.

[39] salesforce.com, inc. http://www.salesforce.com, 2000 - 2009.

[40] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust
p2p system to handle �ash crowds. In IEEE Journal on Selected
Areas in Communications, pages 6�17, 2002.

BIBLIOGRAPHY 81

[41] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Network-
ing Transactions, 11(1):17�32, 2003.

[42] S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Jour-
nal of Network and Systems Management, 13(2):197�217, June
2005.

[43] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, apr 2001.

[44] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In Proceedings of the 11th Inter-
national Workshop on Network and Operating Systems Support
for Digital Audio and Video, pages 11�20. ACM Press, 2001.

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Brief Problem Presentation
	Dissertation Outline

	Related Work
	Background
	Structured Overlay Networks
	Unstructured Overlay Networks

	State of the Art of Unstructured Networks
	Flat Protocols
	Hierarchical/Locality-aware Protocols
	Dissemination Protocols

	Problem Statement
	Network-Aware Epidemic Broadcast
	Approach
	Peer Sampling Service
	Network-awareness
	Degree Balancing
	Bootstrapping mechanism

	Dissemination Protocol
	Locality awareness on the selection of peers
	Lazy push optimization

	Experimental Evaluation
	Experimental Scenario Description
	Peer Sampling Service Evaluation
	Overlay properties
	Degree balancing mechanism
	Bootstrapping mechanism

	Dissemination Protocol Evaluation
	Flooding dissemination protocol
	Improved Emergent Dissemination Protocol

	Conclusion
	Conclusions
	Summary of Contributions
	Future Work

	References

