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Resumo

As aplicações distribúıdas são fortemente influenciadas pelas propriedades da rede subjacente,

por exemplo, largura de banda, latência e perda de pacotes. É por isso importante que os

investigadores e engenheiros sejam capazes de avaliar o impacto destas propriedades no desem-

penho do sistema e no seu comportamento correcto. Estas propriedades de rede têm efeitos

observáveis e mensuráveis directamente nas aplicações, enquanto que o comportamento interno

dos elementos de rede subjacentes, como comutadores e roteadores, é mais dif́ıcil de capturar da

perspectiva da aplicação. Esta observação permite explorar novos desenhos de emuladores que

apenas emulam o comportamento macro de topologias complexas em vez dos detalhes internos.

Apresentamos o NEED, um emulador de topologias de rede descentralizado que explora esta

ideia. O NEED emula uma topologia de rede sob aplicações não modificadas em contentores, é

agnóstico relativamente à linguagem de programação e protocolo de transporte e pode escalar

para milhares de contentores bastando para isso adicionar mais nós a um cluster de máquinas.

A nossa avaliação mostra que a precisão da emulação do NEED está ao mesmo ńıvel de outros

sistemas modernos que emulam o estado completo da rede. Mostramos também que o NEED

pode ser usado não só para reproduzir resultados anteriores presentes na literatura, mas também

para avaliar o comportamento de sistemas geodistribúıdos como se fossem colocados a funcionar

numa WAN real.

Palavras-chave: Emulação de Redes, Contentores, Descentralizado, Sistemas Dis-

tribúıdos, Reproducibilidade
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Abstract

Distributed applications are heavily influenced by the properties of the underlying network, i.e.,

bandwidth, link latency, packet loss rate and jitter. Nevertheless, researchers, practitioners and

engineers should be able to assess the impact of those properties on the system’s performance

and correctness. Those network properties have direct observable and measurable effects on the

application, while the internal behavior of the underlying network elements, such as switches

and routers, is harder to capture from an application perspective. This observation leads us

to explore designs that only emulate the macro behavior of complex topologies rather than its

internal details. We present NEED, a decentralized network topology emulator that explores

this idea. It emulates a network topology beneath unmodified containerized applications, it is

agnostic of the application language or transport protocol and can scale to thousands of con-

tainers by adding more nodes to a cluster of commodity machines. Our evaluation shows that

NEED emulation accuracy is on-par with state-of-the-art systems that emulate the full state

of the network. We show that it can be used not only to reproduce previous results from the

literature but also to assess the behavior of geo-distributed systems as if they were deployed on

a WAN testbed or production network.

Keywords: Network Emulation, Containers, Distributed Systems, Decentralized, Re-

producibility
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Chapter 1

Introduction

The development and testing of distributed systems is a complex task mainly because dis-

tributed systems must execute on a variety of different scenarios, including different hardware

and network capabilities, as well as different configurations. A given distributed system might

appear to be working correctly when tested on a single machine or even on a Local Area Net-

work (LAN), but then behave incorrectly when deployed on a Wide Area Network (WAN).

Furthermore the underlying network topology can have a drastic impact on performance met-

rics such as application throughput and latency. With the increasingly popular deployment of

geographically-distributed applications operating at a global scale, assessing the impact of geo-

distribution, and hence network topology, is fundamental to build and tune applications that

perform correctly and meet the desired Service Level Objectives (SLO).

Unfortunately it is hard and costly to perform these tests during development. On one

hand, the deployment of such geographically distributed systems was made simpler thanks to

the increasing popularity of container technology (e.g. Docker [Mer14], Linux LXC [lxc]). These

technologies have been adopted by big IT players in their commercial offerings (e.g. Amazon

Elastic Container Service [amab]) and became the de-facto standard to deploy large-scale ap-

plications. On the other hand, evaluating the performance of such systems once deployed in

production networks, especially at the early stages of prototyping, is a particularly daunting,

time-consuming and expensive task. This is mainly due to the inherent variability of network

conditions (i.e. failures, contention and reconfigurations). Hence, it is hard (if possible at all) to

systemically reproduce a specific system behavior, such as observing a performance bottleneck,

or force pathological cases, such as a high packet loss in a particular network segment, as these

events are out the of control of the system deployers.

To overcome these difficulties both network simulation and network emulation systems have

been developed. According to [BRNR15], in simulation ‘a model of an application is tested
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on a model of the platform’, while in emulation ‘a real application is tested on a model of

the platform’. Conclusions obtained from simulation are completely reproducible, however it

can be argued that the results are not obtained in real world conditions and can therefore be

unrealistic [BRNR15]. Conclusions obtained from emulation are considered more realistic since

the environment is closer to real world conditions, however, results can be harder to reproduce

due to the less stable conditions of real software and networks.

Being able to obtain the same results from running an experiment more than once is a

crucial feature for a network experimentation system. According to [BRNR15] an experimenta-

tion system should achieve replicability, if it has the ability to produce the same results when

running the same experiment multiple times under the same environment (same testbed, same

researcher). Achieving reproducibility however requires that the system can produce the same

results even if the same experiment is executed in different environments (different testbed,

different researcher). Although reproducibility is more desirable than replicability, achieving re-

producibility places further requirements on the network experimentation system, such as having

awareness of the limits in the testbed. If this knowledge is not taken into consideration when

deploying an experiment, and the limit of the available resources is reached, then results will be

skewed, and can vary when executed on different testbeds.

Furthermore, there have been two approaches to the design of network experimentation

systems: dedicated testbeds and tools. Dedicated testbeds require dedicated hardware resources

and customized software (like the underlying operating systems) to be configured solely for the

purpose of executing experiments. An example of this is Emulab [HRS+08b], where virtual

nodes, must execute on a physical node dedicated only to the execution of experiments. Since

they require significant effort to set up, the same testbed is usually shared between multiple

researchers. Network experimentation tools are more flexible by allowing experiments to be

run under broader conditions and are also generally easier to setup. An example of this is

Mininet [LHM10], where the goal is to have a network emulation system that can execute on

any machine.

One of the biggest challenges to the general adoption of experimentation systems is the high

entry barrier. A researcher must spend considerable time learning how the chosen system works

and specifying the desired experiment. We argue that some of the most popular emulation

systems are more focused on the internal behavior of the network, while distributed systems

engineers are more interested in how the macro aspects of the network - namely, end-to-end

latency, jitter, available link bandwidth and packet loss - affect the system. Also some other

systems require the user to specify their experiments using languages or frameworks that are

2



not commonly used.

Under this perspective, we propose NEED, an end-to-end decentralized network topology

emulation tool. NEED can emulate an arbitrary network topology without having to model

network elements such as routers or switches. This results in a simple, fully distributed design,

where the key idea is to collapse the full network topology to virtual links that retain the

same end-to-end network properties. Furthermore we make use of Docker containers as the

deployment unit, using terminology and workflows that are already familiar to Docker users.

The use of Docker containers also aids in achieving replicability of experiments, thanks to the

portable nature of containers which limits the variability of the environment available to the

applications.

1.1 Objectives

The objective of this work is to design and evaluate an architecture and implementation for a

network emulation system. The network characteristics to be emulated are latency, jitter, packet

loss and bandwidth. The proposed network emulation system is targeted at distributed systems

developers, as such the system should allow for large scale deployments of resource intensive

applications. It should also abstract away the details of network specific elements, that are not

relevant from an application point of view. Furthermore the proposed system should at least

achieve replicability of experiments.

1.2 Outline

The remainder of this document is divided into the following sections. In Section 2 we provide

some background by covering the technologies used by NEED. In Section 3 we discuss existing

network experimentation systems described in literature. In Section 4 we explain the design

and architecture of NEED and discuss the decisions and alternative solutions. In Section 5

we describe in detail how NEED is implemented. In Section 6 we evaluate NEED by showing

experiment results and discussing them. In Section 7 we conclude with a brief overview of the

features offered by NEED, and a discussion of future work possibilities.
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Chapter 2

Background

The fundamental building blocks for a network emulation system are the mechanisms it uses

to deploy applications, and to enforce network properties. In this section we will cover the

technologies on which we will build upon to implement the proposed network emulation system.

First, we will cover container technologies, namely the Docker platform. We choose to use

containers, and Docker in particular, due to the their agility of deployment and networking stack

isolation between instances.

Second, we will cover the methods the Linux kernel provides to perform traffic shaping. We

decided to use this technology due to its good performance and accuracy, and also because its

management is greatly simplified when performed inside containers, due to the isolation of the

networking stack.

2.1 Containers

Docker[Mer14][Doc] is a widely used container platform that leverages lightweight virtualization

techniques provided by the Linux kernel to run processes in an isolated environment. Further-

more, Docker provides utilities to facilitate the processes of development and deployment of

applications, as well as utilities to manage clusters of deployed containers. To achieve process

isolation Docker leverages Linux kernel functionality such as kernel namespaces[nam17]. Of

particular interest to this work are the mechanisms Docker uses to both isolate the networking

stack available inside containers, and to connect containers together in networks, even when

containers are deployed across separated physical hosts. Through the rest of this section we will

refer to machines running the Docker daemon as hosts, and will refer to hosts belonging to a

cluster as nodes.

In the following subsections we will briefly explain how Docker provides network isolation
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and connectivity between the containers, how management of Docker clusters can be performed,

and also how traffic shaping can be performed on Linux.

Network isolation

Docker container networking is managed by Container Network Model (CNM) plugins. It

is the responsibility of the chosen plugin to setup the networking inside the container as well as

setup any necessary routing information on the host. Docker plugins work by creating a virtual

Ethernet pair (two virtual interfaces connected together). Docker then moves one end of the

pair to a unique network namespace and assigns the processes running inside the container to

that network namespace [Hau16]. All plugins perform this setup step with the exception of

the host plugin, which gives the container direct access to the network interfaces of the host.

This operation gives the container a unique network interface together with an independent IP

stack, routing tables, firewall rules and other kernel networking data structures, and isolates the

container from other existing interfaces (both on the host and on other running containers).

Network connectivity

The default plugin used by Docker on single host deployments is the bridge plugin. The bridge

plugin creates a bridge interface on the host[Hem12], and creates a virtual Ethernet pair for

each container that is then attached to the host’s bridge (See Figure 2.1).

Host
 

Container 

br0

veth eth0

Container 

vetheth0

Figure 2.1: Illustration of the bridge driver.

This allows individual containers to have separated IP stacks, and to communicate with each

other through the bridge. Since the bridge exists only inside a single host this approach works

only for single host deployments.

For greater scalability, we are however interested in connecting together containers, that are

running across a cluster of physical machines executing the Docker daemon. We will name such

a deployment scenario a multi host deployment for the rest of this document.

The default plugin used by Docker on multi host deployments is the overlay plugin. The

overlay plugin extends the bridge plugin and achieves connectivity between nodes through the

use of VXLAN tunnels[MDD+14].
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Host
 

br0

Container 

vetheth0

Host
 

br0

Container 

veth eth0

VXLAN Tunnel

192.168.0.1 192.168.0.2

10.0.0.1 10.0.0.2

Figure 2.2: Illustration of the overlay driver.

VXLAN tunnels encapsulate data between endpoints that are created at each node in the

cluster. The tunnels encapsulate data from layer two and above, generated by the containers

connected to this network, into a layer three packet on the underlying infrastructure.

This allows for routing through the underlying physical network infrastructure to be done

transparently, and requires traffic to be encapsulated/de-encapsulated only at the tunnel end-

points (See Figure 2.2).

A different way to achieve multi host container networking is through the macvlan plugin.

The macvlan plugin leverages the Linux kernel ability to create virtual child interfaces, that

get assigned a different MAC address, but otherwise share the same network connection as the

parent interface [Lit12] (See Figure 2.3).

Host
 

eth0

Container 

vetheth0

Host
 

eth0

Container 

veth eth0

Underlying Network

192.168.0.1 192.168.0.2

192.168.0.3 192.168.0.4

Figure 2.3: Illustration of the macvlan/ipvlan driver.

This allows for two typical setups. In the first one we use a physical network interface as the

parent and create virtual interfaces that behave as if the host had multiple physical interfaces

sharing identical connectivity. This setup allows the containers to share the same underlying

physical networking infrastructure as the host, while maintaining networking stack isolation

between virtual interfaces.

The second typical setup involves using a Virtual Local Area Network (VLAN) (802.1q) [IEE06]

parent interface. This setup shares the same properties as the first setup but allows to create

further isolation from other networks in the cluster. The macvlan plugin requires that the par-

ent interface be placed in promiscuous mode. In some situations, such as when Virtual Machines

are used, this might not always be possible.
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Another plugin that allows for multiple host container networking is the ipvlan plugin. The

ipvlan plugin is similar to the macvlan plugin, but instead of assigning a different MAC address

to each sub-interface they share the same address MAC address, but use different IP addresses.

Routing of packets is performed by the kernel in either layer 2 or layer 3 mode, assuring that

incoming/outgoing packets are correctly delivered to/from all the sub-interfaces. Unlike the

macvlan plugin, the ipvlan plugin does not need to set the parent interface in promiscuous

mode, which allows for deployment in scenarios where macvlan can not be used.

Beyond the plugins presented above, there are several third-party plugins such as Calico,

Flannel and Weave [Hau16]. These plugins also allow multi host networking based on mech-

anisms similar to the ones used by the overlay plugin, but provide features that give greater

control to the user configuring the network, namely allowing for complex policies to be defined.

These plugins are not available in the default Docker installation and must be manually installed

by the user.

Cluster management

When creating any IP network, the interfaces connected to it must be assigned unique IP ad-

dresses. This assignment can be done manually, however automatic IP Address Management

(IPAM) is desirable to reduce the effort of setting up container networks. Such a system should

be able to automatically manage IP address pools belonging to each of the networks used, and

assign containers a unique address upon start. Docker has a built-in IPAM system that can

automatically manage IP pools even when deploying on clusters. However, to date, centralized

IPAM only works when using the overlay driver [mac]. When using other plugins like macvlan

there is no IPAM cooperation between the nodes, which forces IPAM to be performed on a node

basis. It is therefore up to the user to guarantee correct configuration, by manually allocating

IP pools on each node. Third-party drivers typically provide their own IPAM systems.

When deploying Docker containers on clusters, orchestration tools are essential to automate

configurations and manage the resources in a fair and efficient way.

Docker comes with its own Swarm mode [swab] cluster management tool, which allows

the user to deploy services. A service can be a single container, or a collection of replicated

containers that execute the same image. In Swarm mode, Docker allows the user to group

together related services into stacks. When in Swarm mode, nodes can be either workers or

managers. Managers are responsible for maintaining status information about deployed services

and stacks, as well as coordinating with each other on service life-cycle decisions. To facilitate

deployment of stacks, these can be described as Docker compose files. Compose files allow
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the user to specify the services that need to be launched, together with extra information such

as where services should get their configurations from, what networks they should be attached

to, what computational resources must be guaranteed, and even on what specific nodes they

should be deployed.

Kubernetes [Kub] is a container orchestration tool designed to facilitate deployment of

containers on a cluster. Kubernetes is highly modular and is not limited to using Docker as its

underlying container platform. Kubernetes makes use of the Container Network Interface

(CNI) container network plugin architecture instead of Dockers default CNM architecture. For

most CNM plugins there are equivalent CNI ones, however Kubernetes limits the way these

plugins can be used. Namely each node in the cluster can only have a single CNI configuration

for all the containers deployed on that machine, forcing all containers that execute in that node

to belong to the same network. This fact complicates deploying containers in multiple isolated

networks.

There are other orchestration tools available that support deploying Docker containers on

clusters like Apache Mesos [Mes] or Hashicorp Nomad [Nom]. These tools however are

general purpose cluster schedulers and require time consuming and complex configuration before

being able to deploy Docker containers with non-standard networking requirements. In Docker

Swarm mode it is possible to easily setup networks through client commands and in Kubernetes

it is possible to setup networks through simple CNI configuration files.

2.2 Traffic shaping

The Linux kernel provides several techniques to control network traffic at a low level. When

socket calls are made, packets are placed into queues for later dispatching to the network inter-

face. The Linux kernel allows the user to modify the default queues, named qdiscs (queueing

discipline), therefore modifying their behaviour. These functionalities can be accessed through

the tc command [Hub01]. qdiscs can either be simple or classful. Classful qdiscs have the

advantage of allowing other qdiscs to be attached to them, so that when a packet is dequeued

it must traverse the corresponding qdisc hierarchy. Qdiscs are attached to a specific network

interface and their scope is limited to that interface.

Several qdiscs are provided in the default Linux kernel, which allow to perform traffic shap-

ing. Important to this work are the Hierarchy Token Bucket (htb) [Ber02], Network Emulator

(netem) [Ste11, Hem05] and the prio [Ale01] qdiscs.

htb is an implementation of the token bucket algorithm which allows the user to limit

the outgoing bandwidth. It has many advanced features that allow to implement complex
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QoS (Quality of Service) rules, however, in this work, we are only interested in using its basic

functionality as a token bucket implementation to enforce specific maximum output bandwidths.

netem is a qdisc that allows to implement several traffic control policies, in this work we are

only interested in its abilities to perform packet delay and randomized packet dropping. Prio is

a classfull qdisc that dequeues packets from multiple classes in the order of their priority. This

allows for certain traffic, assigned to a higher priority class, to always be dequeued before traffic

on lower priority classes.

Since a single network interface can have multiple qdiscs attached to it, its necessary for the

kernel to have a method of matching specific traffic to a specific qdisc (or class in a classful

qdisc). In order to achieve that, the kernel offers several filters that can be configured through

the tc command. Important to this work is the u32 filter [Hub15], which allows traffic to be

matched against any field in a network packet, namely the destination IP address. Another

important feature of u32 is that its implementation relies on hash tables, that allow matching

of traffic against several specific qdiscs to be performed in constant time.
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Chapter 3

Related Work

Network experimentation tools and testbeds described in literature can be categorized as either

simulators or emulators. In this section we will only cover network emulation systems, since

NEED is a network emulation system. Network emulation systems can be distinguished by

their operational mode. Some solutions can be characterized as tools while others are dedicated

testbeds. Furthermore, some solutions make use of code running in kernel space, while others

operate entirely on userspace. More recently, solutions have been created that make use of Linux

containers.

Concurrent Path Capabilities Any Deployment
Name Mode Orchestration deployments congestion B D P J Language unit

DelayLine [IP94] User Centralized 7 7 7 3 3 7 3 Process
ModelNet [VYW+02] Kernel Centralized 7 3 3 3 3 7 3 Process

Nist NET [CS03] Kernel Centralized 7 7 3 3 3 3 3 Process
NetEm [Hem05] Kernel (N/A: single link emulation only) 3 3 3 3 3 Process
Trickle [Eri05] User (N/A: single link emulation only) 3 3 7 7 3 Process

EmuSocket [AV06] User (N/A: single link emulation only) 3 3 7 7 3 Process
Dummynet [CR09] Kernel (N/A: single link emulation only) 3 3 3 3 3 Process

ACIM/FlexLab [RDS+07] Kernel Centralized 7 3 3 3 3 3 3 VM
NCTUns [WCL07] Kernel Centralized 7 3 3 3 3 3 3 Process
Emulab [HRS+08a] Kernel Centralized 7 3 3 3 3 3 3 VM
IMUNES [PPM08] Kernel Centralized 7 7 3 3 3 7 3 Process

MyP2P-World [RAAN+08] User Centralized 7 7 3 3 3 7 7 Process
P2PLab [NR08] Kernel Centralized 7 7 3 3 3 7 7 Process
Netkit [PR08] Kernel Centralized 7 3 3 3 3 7 3 VM
DFS [Tan09] User Centralized 3 7 3 3 3 3 7 Process

Mininet [LHM10] Kernel Centralized 7 3 3 3 3 3 3 Process
SliceTime [WSVL+11] Kernel Centralized 7 3 3 3 7 7 3 VM

Mininet-HiFi [HHJ+12] Kernel Centralized 7 3 3 3 3 3 3 Container
SplayNet [SRF13] User Decentralized 3 3 3 3 3 7 7 Process
MaxiNet [WDS14] Kernel Centralized 7 3 3 3 3 3 3 Process
Dockemu [TCB15] User Centralized 7 7 3 3 3 3 3 Container

EvalBox [SW15] Kernel Centralized 7 7 3 3 3 3 3 Process
ContainerNet [PKVR16] Kernel Centralized 7 3 3 3 3 7 3 Container

NEED Kernel Decentralized 3 3 3 3 3 3 3 Container

Table 3.1: Classification of network emulation tools. The following Link-Level emulation capa-
bilities are considered, B Bandwdidth, D Delay, P Packet loss, J Jitter.

Table 3.1 shows a comprehensive comparison of existing systems. Throughout the rest of

this section we present a comparison of some of the most common network emulation systems,
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and also the ones that are most related to our work.

3.1 Userspace based systems

One of the first userspace tools to be described in literature is Trickle [Eri05]. Trickle makes

use of the linking and preloading functionality of Unix based systems to insert its code between

unmodified binaries and the libraries that provide the sockets Application Programming Inter-

face (API). By doing so it can perform both bandwidth limiting and delay, before calling the

actual underlying sockets API. The main advantage of this tool is that it runs exclusively in

userspace, and therefore requires only a simple configuration step to apply specific rules for indi-

vidual processes. The main disadvantage of this approach is the lower accuracy of the emulation,

when compared to approaches that operate at lower levels in the network stack. Furthermore,

although multiple instances of trickle can cooperate, setting up a multi host system to emulate

large networks involves a lot of manual configuration since there is no central deployment control

system. To a lesser extent, this approach also has the limitation of not working with statically

linked binaries.

Splaynet [SRF13] is an extension of the SPLAY [LRF09] distributed systems development

and evaluation framework. Splaynet works entirely in userspace and can perform network emu-

lation of arbitrary network topologies, deployed across several physical hosts in a fully decentral-

ized way. Furthermore, Splaynet supports deploying several experiments simultaneously, as long

as the underlying physical infrastructure can provide enough resources. Splaynet does not create

processes for emulating the intermediate networking devices like routers or switches. In order

to emulate deployment conditions, Splaynet relies instead on graph analysis and distributed

congestion emulation algorithms, effectively collapsing the inner topology and delivering pack-

ets directly from one emulated host to the destination host. The main advantages of Splaynet

are its scalability, due to the fact that the emulation is entirely decentralized, and its ability

to run multiple experiments simultaneously while maintaining precision and accuracy in the

desired deployment conditions. Splaynet however requires the user to be familiar with the Lua

programming language and the SPLAY framework, since the experiments must be described as

Lua scripts using SPLAY framework functionality.

3.2 Kernel based systems

Dummynet [Riz97] was one of the first network emulation tools based on kernel modifications.

Dummynet allows the user to limit bandwidth and introduce delays and packet loss on a spec-
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ified network interface. Originally using dummynet required using a custom kernel, however

nowadays it is available within the default FreeBSD and MacOS kernels[dum02]. The fact that

dummynet operates at a low level on the sockets stack allows it to achieve better accuracy

than userspace implementations of traffic shapers. Although dummynet does not implement

the functionality to emulate entire network topologies by itself, it is used by many full network

emulators like Modelnet [VYW+02][VGVY09].

Modelnet is an Internet emulation environment that allows the deployment of unmodified

application software on a scalable emulation testbed. Modelnet allows arbitrary software (and

operating systems) to run on edge nodes. All communications are routed through a set of

core routers. Core routers are dedicated machines running a modified FreeBSD kernel, that

cooperate to emulate the properties of the desired target network before relaying the packets

back to the destination edge nodes. More recent developments to Modelnet [VGVY09] have

also implemented features such as time dilation to emulate faster links on slower physical links.

In order to maintain the ability to run unmodified software this feature was implemented by

modifying a hypervisor to manipulate the guest operating system’s timers. Modelnet aims at

being a complete environment for accurately emulating large network topologies. The ability

to scale lies in the cooperation of an arbitrary number of core routers. In order to perform

efficiently, these core routers need to run on powerful hardware, and the introduction of more

core routers can incur in some overhead, due to the necessity of cooperation between them,

whenever a packet has to traverse multiple core routers before being delivered to the destination

edge node. The main disadvantage of this approach is the necessity of running on a customized

testbed.

Emulab [HRS+08b][BJL+02] is a network emulation testbed that allows to deploy emu-

lated topologies through a globally distributed and heterogeneous testbed. Emulab allows for

experiments to use unmodified software and even user-provided operating systems. The method

of network emulation is similar to Modelnet, but Emulab can also leverage tc (on Linux) or

dummynet (on BSD) to help shape the traffic at the edge nodes directly, which helps reducing

the number of hosts needed for experiments. The main advantage of the Emulab testbed is its

ability to deploy large topologies across shared clusters, while maintaining the user requested

resource allocation, and the ability to perform this scheduling optimally. The Emulab testbed

management is hierarchical, and users need to apply for accounts to run experiments on the

shared cluster. Its graph coarsening technique is similar in principle to the NEED approach for

collapsing the topology.
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Mininet [LHM10] is a widely used tool to emulate network topologies on a single host.

Mininet makes use of lightweight virtualization mechanisms provided by the Linux kernel to

emulate separated network hosts. Similarly to Docker, it creates virtual Ethernet pairs running

in separated namespaces and assigns processes to those restricted namespaces. By leveraging

this technique, Mininet can emulate up to hundreds of networked hosts (instances) on a single

physical host. The main advantages of Mininet lie in how easy it is to create arbitrarily large

network topologies, aided by both a Python API and a Graphical User Interface (GUI). Mininet

emulates actual switches and routers as instances of their own (running their own processes),

and allows Software Defined Networking (SDN) switches and routers to be deployed and man-

aged in real time. This allows for a smoother transition from an emulated environment to a

physical deployment. Mininet has evolved beyond the original cited work, and current versions

are able to perform traffic shaping between instances through the tc command by leveraging the

htb and netem qdiscs. Mininet is designed to experiment with network topologies, accurately

emulating all aspects of a real world topology, and is therefore an invaluable tool to test topol-

ogy configurations. Although Mininet can scale to hundreds of instances in a single physical

host, scalability is reduced if resource intensive applications are deployed. This fact hinders its

usability for testing large scale distributed systems.

Maxinet [WDS14] is an extension of Mininet that supports deployment to a cluster of worker

hosts. Maxinet supports the same functionality of current versions of Mininet, and also supports

deployment of hosts as Docker containers. Maxinet extends Mininet by tunneling links that cross

different workers, so that switches placed on different workers can communicate. Maxinet aims

at allowing emulation of very large scale SDN networks, however it has the drawback of forcing

all emulated hosts that connect to the same switch to be deployed on the same worker as the

switch.

Dockemu [TCB15] is a network emulation tool based on Docker containers. The main

advantages of this tool lie in the simplicity of setting up experiments, and the fact that it can

emulate various types of layers 1 and 2 links. To emulate different link types Dockemu makes

use of NS-3 [NS3], a network simulation tool. Dockemu is therefore appropriate for experiments

that seek accuracy in emulation of link types other than Ethernet, namely wireless links. The

main disadvantage lies in the fact that the tool is intended to run on a single host, and therefore

unsuitable for experiments with large network topologies.
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3.3 Summary

Single link emulation systems like dummynet and netem, although limited in capabilities

by themselves, are a solid building block for more complete network topology emulators. The

complete topology emulation systems presented above are either limited to executing on a single

machine, therefore unable to scale to large topologies with resource intensive applications, or

have high entry barriers, such as requiring dedicated testbeds or impose limitations on what

kinds of applications that can be tested.

To the best of our knowledge, NEED is the only system that can be used to deploy container-

based unmodified applications over emulated topologies without any centralized node, support-

ing a rich set of emulation features and still providing emulation accuracy on par with existing

state-of-the-art systems.
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Chapter 4

Architecture

In this section, we describe the architecture of NEED and discuss the design of its components.

NEED is a network emulation system that leverages Docker to emulate arbitrary network topolo-

gies on a cluster of physical machines. The main novelty of this work lies in proposing a solution

that combines the usage of containers, for deploying the applications to a cluster, with the usage

of techniques for performing point-to-point emulation in a decentralized way. In order to achieve

such a system, the following challenges had to be addressed.

• We needed a way to describe any arbitrary network topology.

• We had to be able to turn that topology description into a Docker deployment.

• We had to develop a way of enforcing the limitations of the network topology at each con-

tainer in a decentralized manner. Latency, jitter, packet loss rate and available bandwidth

must be respected. Also bandwidth congestion at inner nodes of the topology must be

accurately emulated.

• We had to guarantee that that the emulation is precise in a distributed environment using

a decentralized architecture.

4.1 Overall architecture

To address the above mentioned issues, we developed four main software components. The four

components are the deployment generator, the emulation core, the tc abstraction layer, and a

supervisor dashboard. Figure 4.1 illustrates the architecture of our solution, and the workflow

for deploying an experiment.

The deployment generator takes as input an XML description of the desired network topology

and produces a Docker Swarm deployment Compose file in YAML. A more thorough description
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of this component can be found in Section 5.1.

The emulation core should execute inside each of the deployed containers and run side-by-

side with the applications under experimentation. This component should take as input the

same network topology description used to generate the deployment. Also, this component has

the responsibilities of setting up the initial network conditions, monitoring outgoing commu-

nications, cooperating with other instances to maintain a global view of the emulated network

infrastructure, and modifying the network conditions in real time to match the limitations of the

emulated topology. A more thorough description of this component can be found in Section 4.3.

The tc abstraction layer is a library that hides all the interactions with tc. It provides a

short, high level API for setting network conditions and monitoring traffic.

The supervisor dashboard is a web application that provides a GUI (Graphical User Interface)

for starting and cleanly shutting down the experiments, as well as provide monitoring information

about the deployed experiment.

Beyond these components, a template was developed to facilitate extending existing Docker

images of applications to undergo testing with the emulation core.
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Figure 4.1: NEED architecture and workflow

The workflow to get an experiment running under NEED is the following.

1. Prepare the application images by extending them to include the emulation core.

2. Define the desired topology and use the deployment generator to turn it into a Docker

Swarm deployment description. Customize the deployment if necessary.

3. Deploy the experiment with Docker.

4. Manage the experiment through the Dashboard.
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We describe in greater detail the architecture of the main components in the next sections.

4.2 Topology specification

To emulate a given network topology we need to have a way of describing it that facilitates both

its specification by the user and the parsing by our tools. That description must contain a graph

that describes the desired network and its characteristics, as well as a description on how to

execute the applications under experimentation. Given a topology description, the deployment

generator should be able to produce a valid Docker Swarm deployment in the form of a Docker

compose file, that is ready to enable the emulation.

We have decided to create our own specification written in XML that can accommodate

the description of the network graph with the parameters we want to emulate, and that also

takes into consideration the particularities of deploying applications as Docker containers. The

specification is based on the one used in ModelNet.

The specification is composed of services, bridges and links. Services are a group of

containers running the same Docker image, and correspond to the same term in Docker ter-

minology. Bridges correspond to generic networking devices that can bridge together multiple

links. Incoming connections on a link can be forwarded to any other link attached to the same

bridge.

Listing 4.1 shows a short example of a topology specification, and Figure 4.2 shows the

resulting network graph.

Listing 4.1: Example of a Topology Description

1 <?xml version="1.0" encoding="UTF-8"?>

2 <experiment>

3 <s e r v i c e s>

4 <s e r v i c e name="c1" image="client:latest"/>

5 <s e r v i c e name="sv" image="nginx:latest"

6 replicas="2"/>

7 </ s e r v i c e s>

8 <br idge s>

9 <br idge name="s1"/>

10 <br idge name="s2"/>

11 </ br idge s>

12 < l i n k s>

13 < l i n k origin="c1" dest="s2" latency="10"
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14 upload="10Mbps" download="10Mbps"

15 jitter="0.25" network="swarm-mv"/>

16 < l i n k origin="s2" dest="s1" latency="20"

17 upload="100Mbps" download="100Mbps"

18 jitter="0.25" drop="0.001"

19 network="swarm-mv"/>

20 < l i n k origin="s2" dest="sv" latency="5"

21 upload="50Mbps" download="50Mbps"

22 jitter="0.25" network="swarm-mv"/>

23 </ l i n k s>

24 </ experiment>
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Figure 4.2: Example Topology Graph

Bridges are specified with the bridge tag, and must have a unique name attribute. (Example

in line 10 of Listing 4.1)

Services should use the service tag, and must be specified with attributes defining a unique

name, and a valid Docker image. Optionally, the following attributes can also be specified,

replicas, command, share, supervisor and port.

The replicas attribute allows the user to specify how many replicas of the same service should

be created, when absent this attribute defaults to 1. The command attribute can be used to

change the command (in Docker terminology) that is passed to the container. When absent

the containers use their default command. The share attribute is a boolean value that only

makes sense to use when there are multiple replicas. When set to true, it specifies that the

replicas should share the same link attached to them. When set to false the links attached to

the replicas are duplicated so that each replica gets its own link. This attribute defaults to true.

Finally the supervisor attribute is a boolean value that indicates that this service is a supervisor

service. Supervisors are a plugin architecture for NEED that allow to extend experiment logic,

a complete overview of this feature is available in Section 4.5. The port attribute indicates the

supervisor port that should be forwarded to the outside network, so that users can interact with

the supervisor even if the experiment runs on an isolated network.

Edges in the network graph should be specified using the link tag. By default links are
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unidirectional. A link must always have the following attributes, origin, dest, latency, upload

and network. The origin and dest attributes must be filled with valid names that correspond

to previously declared services or bridges. The upload attribute must be filled with a value

for bandwidth capacity. The following units are accepted bps, Kbps, Mbps and Gbps. This

bandwidth capacity applies to connections from the origin to the destination. The latency

attribute must be filled with an integer latency value specified in milliseconds. The network

attribute must be filled with the name of an already existing Docker network with Swarm scope,

that must be available at all nodes in the Swarm cluster. Services attached to this link will

be attached to the network it specifies. Its important to note that in the current version of

NEED, support for multiple networks is not yet implemented. This link attribute is present

for supporting future developments. Optionally a link can also be specified with the following

additional attributes, drop, jitter and download. The drop attribute should be filled with a float

value in the range 0.0 to 1.0 that specifies a packet loss rate for the current link. The jitter

attribute should be filled with a float value indicating a standard deviation. This will cause the

latency of that link to follow a normal distribution around the specified latency attribute and

with the indicated standard deviation. Finally the download attribute indicates that the current

link should be bidirectional, and should be filled with a bandwidth capacity in the same way as

the upload attribute. The indicated capacity will be enforced to connections from dest to origin.

It is important to note that internally to NEED all links are unidirectional, so declaring a link

with the download attribute, will cause the creation of two identical links in oposite directions,

that share the same attributes except for the bandwidth capacity.

4.3 Emulation core architecture

The emulation core is the main component of our solution. It executes inside every container

in parallel with the application undergoing experimentation. The emulation of the network is

performed in a fully decentralized way, therefore the emulation core is responsible for parsing the

topology description, creating all the local tc infrastructure to enforce the network limitations

and cooperate with all the other instances in order to maintain an accurate emulation.

The emulation core executes only on services. This is because bridges do not really exist in

the emulation. The specified topology is effectively collapsed, into a different topology where

the services are directly connected to all the other services reachable in the original topology.

The properties of the original topology however need to be preserved.

In order to do so, an analysis of the original topology graph must be performed. In this

analysis we calculate the properties of the paths that connect a service, to all the other reachable
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services. Given a path P composed of links P = {l1, l2, . . . , ln}, the latency, jitter and packet

loss rate properties of the path can be computed as follows.

Latency(P) =

n∑
i=1

Latency(li) (4.1)

Jitter(P) =

√√√√ n∑
i=1

Jitter(li)
2 (4.2)

Loss rate(P) = 1.0−
n∏

i=1

(1.0− Loss rate(li)) (4.3)

maxBandwidth(P) = min
∀li∈P

Bandwidth(li) (4.4)

An example of the previously described topology and its collapsed counterpart is shown in

Figure 4.3
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Figure 4.3: Example of a topology and its collapsed counterpart

The latency of a path can be calculated by simply adding the latencies of all its links.

Calculating jitter and packet loss rate is more complicated. Jitter for a given link is specified

as a standard deviation following a normal distribution centered on the specified latency. In

order to calculate the standard deviation of the accumulation of several links, we must add

together the variance, which can be obtained by squaring the standard deviation. Packet loss

rate on a given link is specified as a probability, hence to calculate the packet loss rate of a path

we must take the product of the packet loss probabilities of all its links. Care must be taken

however when calculating the product of probabilities, if a given link on a path has 0% packet

loss probability then the product for the entire path would have 0% loss probability even if

other links have greater probability. To solve this we use negated probabilities. The previously

discussed properties remain constant throughout the experiment and the collapsed topology is

equivalent to the original with respect to these properties. The amount of available bandwidth,

can however change throughout the duration of the experiment, as flows from different services

compete for bandwidth on shared links. These shared links where congestion can occur are not

represented in the collapsed topology, therefore it is not equivalent to the original topology with

respect to the bandwidth properties. The maximum bandwidth available on a (collapsed) path
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will be the same as the link in the path that has the minimum available bandwidth. This allows

us to set an initial upper bound on the bandwidth of each path. The available bandwidth in a

real world scenario is dictated by bottlenecks where data arrives faster at a networking device

then it can be sent. This situation eventually leads to packets being delayed or lost at inner

network elements such as switches or routers. Protocols such as TCP know how to react to this

situation, and adjust their throughput in a way that all flows competing for bandwidth get a

fair share. In our solution however, we want packet loss and delay to be fully controlled by the

user. If a user specifies that they want 0% packet loss on all the links in the topology, then no

packet loss should occur even in the case of congestion. This decision can affect the accuracy

of the emulation, since we are not dropping packets that would be dropped in the real world

due to the operation of the inner network elements, however we gain in reproducibility of the

experiments, since the real world packet loss behavior is non deterministic. Instead of relying on

this behavior to indicate to the applications that a throughput adjustment is necessary, we rely

on a model that allows us to calculate a fair share of the available bandwidth for each competing

flow. We then use the results of the model to enforce a new maximum available bandwidth for

each path. The model used is the Round-Trip Time (RTT) Aware Min-Max model described

in [Kel, MR02]. This model maximizes bandwidth utilization on a link, while giving a share to

each flow that is proportional to its round trip time. To calculate the fair share of a flow the

following formula is used, where f ∈ {f1, f2, . . . , fn} are flows using bandwidth on a link.

Share(f) =

1
RTT (f)∑n

i=1
1

RTT (fi)

(4.5)

The formula above gives us a percentage of the maximum bandwidth that any given flow is

allowed to use, however it does not guarantee that the available bandwidth on a link will be

fully utilized. For example a flow might be using less bandwidth on the current link than the

share it is given, because it is further limited by another link in the topology. Therefore a

maximization step is required, where we increase the share of the other unrestricted flows. This

increase has to be proportional to the original shares given by the formula above. The emulation

core must periodically employ the model, taking into consideration the original topology, and

change the enforced maximum bandwidth on the collapsed paths throughout the entire duration

of the experiment.
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4.4 tc abstraction layer architecture

The tc abstraction layer is a library that provides an interface to setup initial networking con-

ditions, retrieve network usage, and modify maximum bandwidth on paths.

The exposed API is the following:

Listing 4.2: tc abstraction layer API

void i n i t ( short cont ro lPor t ) ;

void i n i t D e s t i n a t i o n ( std : : s t r i n g ip , int bandwidth , int l a tency ,

float j i t t e r , float packetLoss ) ;

void changeBandwidth ( std : : s t r i n g ip , int bandwidth ) ;

void updateUsage ( ) ;

unsigned long queryUsage ( std : : s t r i n g ip ) ;

void tearDown ( ) ;

The init function initializes the tc infrastructure. It receives as an argument a port ad-

dress for the control port, used to exchange metadata and commands between emulation core

instances. Traffic on this port has to be able to bypass any restrictions imposed on the other

traffic. The initDestination function sets up the tc infrastructure for enforcing delay, packet

loss and bandwidth throttling on all traffic directed to the specified IP address. The change-

Bandwidth function modifies the tc infrastructure changing the maximum allowed bandwidth

to the specified IP address. The updateUsage function takes a snapshot of the number of

bytes sent to each previously setup destination. The queryUsage function retrieves this infor-

mation for a specific destination. Finally the tearDown function destroys all the created tc

infrastructure.

4.5 Supervisor dashboard

The supervisor dashboard is a web interface that allows the user to control and monitor the

experiment. The dashboard allows the user to start and stop the experiment. It also displays

the current status of all service instances in the experiment and the current active flows in the

topology in real time. It also provides the user with a graphical representation of the topology.

The dashboard is made available through HTTP, and is intended to be used through a browser,

although starting and stopping the experiments can also be performed through simple HTTP

GET requests directed at specific URLs.

The supervisor dashboard makes uses of the supervisor plugin architecture built into NEED.

Supervisors are special services that can be registered in the XML topology description (see
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Figure 4.4: Supervisor dashboard screenshot showing the active flows.

Section 4.2). Supervisors can issue commands to the emulation core instances to begin executing

and also to cleanly shutdown an instance. Supervisors will also receive metadata from every

emulation core instance indicating active flows, and their bandwidth usage. Upon shutdown of

an experiment, the dashboard reports a percentage of metadata lost during the experiments.

This value is intended to give the user an indication of how accurate the emulation was.

The need to create the dashboard arose from a bug discovered in the Linux kernel that

leads to memory corruption of the host when experiments were not cleanly shutdown. The

bug is triggered when tc qdiscs are deleted while packets are being placed on them. Since this

situation would occur often if the user removed the experiment with Docker Swarm commands,

we had to provide a way of cleanly shutting down the experiment, before the removal of the

deployment could be performed. Figures 4.4 and 4.5 show examples of the interface that is

presented to the user by the dashboard application.

Figure 4.5: Supervisor dashboard screenshot showing the currently deployed topology.
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4.6 Summary

Overall NEED is split into the four main components described previously. The topology speci-

fication and the deployment generator were designed to integrate seamlessly with Docker work-

flows, and to be easily adapted to work with other container orchestration systems. The tc

abstraction layer was designed to be a simple interface for enforcing point-to-point network

characteristics. The emulation core was designed to operate in a fully decentralized fashion,

and implement the logic necessary to perform the emulation with a collapsed topology, that is

equivalent to the original. Finally, the supervisor plugin architecture was designed to allow for

extensions to experiment logic, giving the user control and real-time information on the deployed

experiments.
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Chapter 5

Implementation

In this section, we discuss the implementation of the various components of NEED. We go into

detail on how the various components were implemented and discuss the reasons behind the

decisions that were taken.

5.1 Deployment Generator implementation

The deployment generator is a Python script that accepts as input an XML file containing a

topology description that must follow the specification detailed in Section 4.2. It then writes to

the standard output a Docker Swarm compose file specification written in YAML.

An alternative would be to use the Docker API to immediately deploy the experiment on

the cluster, however in many real applications further customization of the compose file is

necessary, like for example setting application configurations, or mounting external volumes. The

deployment generator works by parsing the XML file and building a graph structure. Afterwards

a compose file generator Python class uses that graph to generate the YAML compose file. An

alternative would be to translate the XML directly to YAML, however the current approach

has two advantages. First it reuses the same code used by the emulation core (described in

Section 4.3) to generate the internal graph data structure. Secondly it allows for more easily

writing code to generate deployment descriptions for other Docker orchestration systems.

5.2 tc abstraction layer implementation

The tc abstraction layer is implemented as a library, written in C++ for performance reasons.

The tc infrastructure set up by the tc abstraction layer has the structure described in Figure 5.1.

First a prio qdisc is set up with two classes, that correspond to queues with differen priority.

The highest priority queue will be used for traffic on the control port. The lowest priority
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queue will be used for the remaining traffic, and contains a hierarchy of qdiscs for enforcing

the limitations for each destination. For each destination an htb qdisc is created and attached

to the lowest priority prio class. The htb qdisc is responsible for enforcing the bandwidth

throttling. The htb qdisc contains a class to which other qdiscs can be attached. To the

htb class we attach a netem qdisc that will be responsible for enforcing the delay and packet

loss rate. Using the u32 filter, we setup two filters. One will match the traffic on the control

port, and direct it to the high priority prio class. This allows traffic on the control port to

bypass the shaping performed by the htb and netem qdiscs. The second filter is a two level

hashtable that will match against the destination IP address of packets, and will direct them to

their corresponding netem qdisc. Traffic directed to the netem qdisc will first be subjected

to the netem rules, when it is dequeued from netem it will be queued on the parent htb qdisc,

before being queued on the parent low priority prio class.

prio

High 
priority

Low 
priority htb netem

...

qdisc class parent rule

htb netem

u32
3rd Octet 4th Octet

metadata

filter

Figure 5.1: Qdisc and filter hierarchy created by the tc abstraction layer

The initialization steps done by init and initDestination (see Listing 4.2) are performed

by executing the tc binary. This is acceptable since these operations are only executed once

at system initialization. The changeBandwidth and queryUsage (see Listing 4.2) functions

however are called very frequently, and their performance is critical to the correct functioning

of the emulation core. The process of forking, executing the tc binary and then parsing its

output was deemed too expensive. Instead these functions make use of netlink [net17] sockets

to communicate with the kernel directly, and perform their function with minimal overhead.

5.3 Emulation core implementation

The implementation of the emulation core, is split into two parts. The program itself is written

in Python, and implements the algorithms required to manage the emulation. The emulation

core makes use of the tc abstraction layer to interact with tc and enforce the calculated network
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limitations. (See Figure 4.1.) The emulation core is split into two main execution steps, an

initialization step and the emulation loop. When the emulation core is launched, it will start

by parsing the XML topology description file and build an internal graph data structure. The

code to perform this is shared with the deployment generator. After the graph is built, the

emulation core then resolves the names of all services to obtain their IP addresses. This is done

using the Docker Swarm built-in name resolution system. Once the addresses of all services are

known, the emulation core must find the service instance for which it is responsible. With this

information, the emulation core executes an implementation of Dijkstra shortest paths algorithm

to find the shortest paths between the instance it is responsible for and all the other reachable

service instances. In the case of ties one of the alternative paths is picked deterministically,

based on the order of links on the topology description. With the shortest paths calculated, the

emulation core proceeds to calculate the properties of the collapsed topology using the methods

described in Section 4.3. The properties of the paths are then applied using the tc abstraction

layer. The emulation core keeps the information about the links in the original topology, that

correspond to each path, as well as the original graph in memory, as this information will be

crucial for calculating bandwidth congestion restrictions. As soon as the path properties are

applied in tc, emulation is ready to begin, and the emulation core moves over to the emulation

loop.

A pseudo code description of the emulation loop can be seen in Listing 5.1.

Listing 5.1: Emulation core main loop pseudo-code

p o o l p e r i o d = 50 #50ms is the default

i t e r a t i o n c o u n t = 2 #2 iterations are the default

while True :

for i in i t e r a t i o n c o u n t :

c l e a r l o c a l s t a t e ( )

c h e c k a c t i v e f l o w s ( )

b roadca s t f l ows ( )

s l e e p ( p o o l p e r i o d )

r e ca l cu l a t e bandwid th s ( ) # See Section 4.3

c l e a r g l o b a l s t a t e ( )

The loop starts by clearing all state regarding active flows produced by the service instance it is

responsible for. Then the tc abstraction layer is queried for the amount of data sent to other ser-

vice instances. That information allows us to calculate how much bandwidth is currently being

used on each path, and therefore also on each link of the original topology. We will refer to this

information as the emulation metadata. The metadata is saved locally and then broadcasted
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to all the other emulation core instances. The broadcasting of the metadata is offloaded to a

process pool so that it can be performed in parallel. There is a separate thread running that

is responsible for collecting metadata from other emulation core instances. The program then

sleeps for a default of 50 milliseconds. This period, referred to as pool period, is configurable and

should allow enough time to pass for metadata from other instances to arrive and be processed.

The steps described above get executed twice, by default, before the emulation core uses all

the collected metadata to decide on new bandwidth limits for each path. The number of times

these steps are executed is referred to as iteration count, and it is a configurable variable. After

this is done all information on active flows is deleted. The calculations involved in deciding new

bandwidth limits are also offloaded to another parallel process. This is done to minimize the

impact of lengthy calculations on large topologies on the intervals between sending metadata.

To decide on new bandwidth limits for the paths, the RTT Aware Min-Max model is employed,

which has been described in Section 4.3.

The algorithm presented above can suffer from two problems that can cause the calculation

of bandwidth shares to produce a wrong value. The first problem is metadata packet loss. Each

instance is broadcasting the flows it is producing to other instances using UDP packets. We

assume that the network supporting the experiment has very low packet loss rates, however the

loss of a single packet could be enough for the system to misbehave for a short amount of time.

This is because the flows contained in the lost packet would not be taken into consideration

when employing the RTT Aware Min-Max model. The second problem is more subtle but

leads to the same incorrect behavior. If packets are delayed, they might arrive too late at a

given instance to be considered for the RTT Aware Min-Max model. This can happen since

the windows of time between cycles of the emulation loop are not guaranteed to be constant

across all instances. Also, under heavy networking load it is common to observe such packet

delays. Using TCP would prevent packets from being completely lost, as they would eventually

be retransmitted. However this would cause delay in the arrival of packets which would bring us

to the same situation as when packets are delayed, and therefore arriving too late. To deal with

the above mentioned problems we have come up with two techniques that attempt to mitigate

the problem and its consequences. When available bandwidth on a given path is decreased, the

smaller value is applied immediately. However when it is increased, we can not be sure if the

increase is due to a flow effectively terminating, or because a metadata packet was lost or delayed.

Therefore, when increasing available bandwidth on a path, we employ an exponential weighted

moving average to smooth out temporary spikes. The second method we employ is repeating the

broadcast of metadata a number of times controlled by the iteration count variable (2 by default),
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before taking the available data into consideration for calculating bandwidth restrictions. Under

the situation where no data is lost, and delay is not significant we should effectively receive

two measurements from each instance before calculating the bandwidth restrictions. In this

situation we only consider the last measurement to have arrived. However when packets are

lost or delayed, it is much more likely that we have at least one recent measurement to take

into consideration. This is a simple fault tolerance scheme that can tolerate iteration count− 1

omission faults. This method was chosen since more complicated fault tolerance schemes would

involve more communication steps which were deemed too expensive. The default value for

iteration count of 2 was chosen to minimize the impact on system responsiveness, while allowing

for accurate emulation of moderate scale topologies. The default value of the pool period (50

milliseconds) can also be configured by the user, and similarly to iteration count it controls

system responsiveness. A smaller value will improve the reaction time of the system, however

resource utilization will also increase proportionally.

In Section 4.5 we stated that supervisor services are able to send commands to emulation core

instances. Every emulation core instance listens on a TCP port for supervisor commands. The

interface provided to supervisors is the following, check if an instance is ready to start emulation,

begin emulation and launch the application, stop emulation and terminate the application. The

procedure to stop the emulation is the following:

1. Send the application under experimentation a terminate signal.

2. Bring the network interface down.

3. Destroy the previously setup tc infrastructure.

4. Bring the network interface back up.

This procedure prevents packets from being inserted into qdiscs while the tc infrastructure

is being deleted, avoiding kernel memory corruption errors, that could otherwise occur. In

Section 4.5 we also stated that upon shutdown of an experiment, the supervisor dashboard

presented the user with a metadata loss percentage. Whenever the emulation core sends meta-

data to other emulation core instances a counter is incremented that keeps track of how many

packets were sent. Upon receiving a metadata packet from another instance, another counter is

also incremented that keeps track of the total number of metadata packets received. When an

emulation core instance receives a shutdown command it responds with the value of both these

counters. When a supervisor shuts down all instances it is therefore able to sum the values of all

counters from all instances, and calculate exactly how many metadata packets were lost. This
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information serves as an indication for the user, of whether or not the experiment results can

be trusted to be accurate.

5.4 Privileged bootstrapping

In order for an application running inside a Docker container to be able to use tc, it must be

executed with the CAP NET ADMIN Linux capability [cap17]. Although Docker allows for

executing applications in individual containers with user specified capabilities, this functionality

is currently not present when deploying to a Swarm cluster [swaa]. Since the emulation core

must execute with elevated privileges, the following workaround had to be developed. A special

bootstrapping container has to be deployed at every node in the Swarm cluster. This container

has access to the local Docker daemon, and uses it to monitor the creation of new containers

on that node. When a new container is created that belongs to a NEED experiment, the

bootstrapping container uses its access to the docker daemon to launch the emulation core inside

the container with elevated privileges. The ability to deploy containers to a Docker Swarm with

elevated privileges is expected to be available in a future Docker release, at which point this

workaround could be completely removed.

5.5 Docker image template

NEED has to be able to execute in parallel with the application inside every container. In order

to do so, the emulation core has to be part of the application container image. There are two

possible approaches to achieve that. The first one is providing a NEED image that users can

extend with their application. The second one is providing a template for extending an existing

application image with the emulation core. We argue that the second approach is more flexible

and requires less effort, since we do not force the users to adapt their existing application to

work on a potentially different environment.

There are two steps required to extend an image with the emulation core. First the user

has to adapt the provided template Dockerfile. The purpose of this Dockerfile is to extend the

existing application image by installing the emulation core and its dependencies. An example of

this Dockerfile can be seen in Listing 5.2. Then the user must modify a provided script named

need-entrypoint.sh with instructions on how to launch their application, so that the emulation

core can launch and terminate the application when the experiment starts and finishes. An

example of this can be seen in Listing 5.3.
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Listing 5.2: Example of extending a third-party Docker image of the Cassandra NoSQL datastore

to be used with Need.

1 FROM cassandra : 3 . 1 1

2 ADD need−ent rypo int . sh /

3 RUN apt−get update && apt−get i n s t a l l (NEED dependenc ies )

4 RUN mkdir / opt/ && cd / opt && g i t c l one NEED. g i t && cd NEED && make ;

5 ENV NETWORK INTERFACE="eth0"

6 ENTRYPOINT [ "/bin/sh" , "/need-entrypoint.sh" ]

Listing 5.3: Example of extending the entrypoint with instructions for running the Cassandra

NoSQL datastore.

1 #! /bin/bash

2 readypipe=/tmp/ readypipe

3 donepipe=/tmp/ donepipe

4

5 function execute program {

6 # Instructions for starting the application go in here

7 / usr /local/ bin / docker−ent rypo int . sh cassandra −f

8 }

9

10 export −f execute program

11

12 echo ”Waiting f o r the boots t rap code to f i n i s h . . . ”

13 read l i n e <$readypipe ;

14 echo ”System has been bootstrapped ! ”

15

16 s e t s i d bash −c execute program $ ( printf ” %q” ”$@” ) &

17 pid=$ !

18

19 read l i n e <$donepipe

20 echo ” Terminating a p p l i c a t i o n ”

21 kill −− −$pid

22

23 rm $readypipe

24 rm $donepipe
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5.6 Summary

The implementation of NEED is split between the deployment generator, the emulation core and

the tc abstraction layer. The deployment generator transforms topology descriptions written in

XML into Docker Compose files written in YAML, that are ready to deploy the experiment on

Docker Swarm. The emulation core executes inside all containers and enforces the characteristics

of the emulated topology. To do so, it makes use of the tc abstraction layer, which is a library

that interacts with the kernel to allow for modification of point-to-point network properties.

Beyond these components, it was necessary to develop a method for executing the emulation

core inside the containers with elevated privileges, and templates were developed for easily

extending existing application images to integrate with NEED. An example with instructions

on how to execute an experiment with NEED is provided in Appendix A.

34



Chapter 6

Evaluation

We evaluated NEED through a series of micro- and macro-benchmark experiments in a cluster.

Further, to validate the soundness of our approach against more realistic scenarios, we compare

the behavior of applications running on Amazon EC2 [amaa] and under NEED. Overall, our

results show that:

• NEED scales linearly with the number of flows and containers, and has constant cost

regarding bandwidth usage.

• NEED emulation accuracy is comparable with other common network emulation systems

such as Mininet.

• Running an application with NEED in a cluster or in Amazon EC2 yields similar results.

We start by comparing bandwidth emulation accuracy between NEED and other systems (Sec-

tion 6.1). Next we verify that NEED emulates latency and bandwidth with precision and

accuracy in simple topologies (Section 6.2). Next we assess the amount of bandwidth that em-

ulation metadata produced by NEED uses on a given experiment (Section 6.3). Then we assess

the scalability of NEED. First we assess the scalability regarding bandwidth congestion scenar-

ios (Section 6.4), and also the ability to execute several experiments in simultaneously. Then

we assess the scalability regarding only latency emulation by showing results from executing

large scale-free topologies (Section 6.5). Finally, we show that NEED is able to reproduce, in

a cluster environment, results obtained on geo-replicated deployments performed on Amazon

EC2 (Section 6.6). To this end we reproduce the results of BFT-Smart [BSA14]. And finally,

we compare the results of a geo-replicated Apache Cassandra [cas] deployment over 2 continents

with a deployment in our cluster.

Evaluation settings. Unless otherwise noted tests were executed on a cluster composed

of 4 Dell PowerEdge R630 server machines, with 64-cores Intel Xeon E5-2683v4 clocked at
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2.10 GHz CPU, 128 GB of RAM and connected by a Dell S6010-ON 40 GbE switch. The nodes

run Ubuntu Linux 16.04 LTS, kernel v4.4.0-127-generic. The tests conducted on Amazon EC2

use r4.16xlarge instances, the closest type in terms of hardware-specs to the machines in our

cluster. Unless otherwise stated the Docker network driver used was overlay. We use the latest

stable versions of Mininet (v2.2.2) and Maxinet (v1.2).

6.1 Link-level emulation accuracy

First we evaluate the accuracy of our bandwidth shaping mechanism under a simple scenario.

The topology used consists only of two services, connected by one link. One of the services

executes an iPerf [ipe] server, the other executes an iPerf client. We access accuracy across a

range of different target bandwidths, and compare the results with the same experiment executed

with Mininet and Trickle. On all cases the iPerf client is configured to execute for 60 seconds

before terminating, the average throughput reported at the server can be seen in Figure 6.1.

The values obtained with NEED and Mininet are very similar. This is because both systems

C S128 Kb/s…4 Gb/s
1ms

Link BW NEED MiniNet Trickle (def.) Trickle (tuned)
Low:

128 Kb/s 122 Kb/s 123 Kb/s 262 Kb/s 131 Kb/s
256 Kb/s 245 Kb/s 286 Kb/s 472 Kb/s 262 Kb/s
512 Kb/s 490 Kb/s 490 Kb/s 717 Kb/s 525 Kb/s

Mid:
128 Mb/s 122 Mb/s 122 Mb/s 250 Mb/s 131 Mb/s
256 Mb/s 245 Mb/s 245 Mb/s 493 Mb/s 261 Mb/s
512 Mb/s 487 Mb/s 486 Mb/s 952 Mb/s 518 Mb/s

High:
1 Gb/s 954 Mb/s 933 Mb/s 1.67 Gb/s 1.00 Gb/s
2 Gb/s 1.91 Gb/s N/A 1.93 Gb/s 1.97 Gb/s
4 Gb/s 3.79 Gb/s N/A 4.12 Gb/s 3.61 Gb/s

Figure 6.1: Study of the bandwidth shaping accuracy for different emulated link capacities and
tools on a point-to-point topology (above the table).

rely on the htb qdisc to perform the bandwidth shaping. It should be noted however that

Mininet does not allow imposing bandwidth limits greater than 1Gb/s. NEED does not impose

that restriction, and in fact accuracy is always maintained within 5% of error across all ranges

of target bandwidths. Although NEED and Mininet use the same htb qdiscs for performing

bandwidth shaping, NEED configures it differently from Mininet. Throughout the emulation

adjustments are made to cope with varying target bandwidths. Mininet on the other hand only

configures htb at initialization, and is therefore optimized only for bandwidth targets below

1Gb/s.

Finally we also compare results against executing the same experiment with Trickle, a

userspace bandwidth shaper. Results using the default settings deviate significantly from the
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specified throughput rates. In order to achieve accuracy comparable with the other systems, we

were forced to tune iPerf to use smaller TCP sending buffers. This shows that even though it is

possible to achieve acceptable accuracy with userspace tools, the fact that they operate so high

on the network stack leads to variable accuracy that depends on application behavior. This does

not happen in kernel shapers since those systems operate directly at a network packet level.

6.2 Emulation accuracy in simple topologies

Next we present a series of experiments to access the precision and accuracy of NEED under a

more complex topology. The topology we chose to use is represented in Figure 6.2 and consists

of 3 servers, 3 clients and 2 bridges.

50Mb/s
10ms

100Mb/s
5ms

100Mb/s
5ms

c1

s1 s2

sv1

sv3

Bandwidth
Latency

Container
Router
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100Mb/s
5ms

sv2100Mb/s
5ms

100Mb/s
10ms

10Mb/s
5ms

Figure 6.2: Dumbbell topology with 3 clients and 3 servers where the links connecting the clients
to switch s1 all have different properties.

The presented topology has several characteristics that make it interesting for testing the

behavior of NEED under bandwidth contention. The link between the switches is limited to

50Mbps, which is the main bottleneck of the topology, however client c3 connects to the switch

with a 10Mbps link. Furthermore even though clients c1 and c2 have no such bottleneck, the

latencies of their links to the switch are different (10ms and 5ms respectively). These character-

istics allow us to test all the corner cases of our RTT Aware Min-Max model implementation.

For the first experiment each client pings a server. Ping measures round trip time, as such

the expected results are 50ms for client c1, and 40ms for both clients c2 and c3. Measurements

were taken from the output of ping, and the results can be seen in Figure 6.3. The results match
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Figure 6.3: 3 Clients ping 3 Servers on a dumbbell topology
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the expectations. There are small deviations below 1ms of error, that are likely to be caused by

the underlying network.

For the second test case each server executes an iPerf server, and each client establishes a

connection to a different server. iPerf is configured to use TCP and will attempt to transmit

data at the maximum possible throughput rate in a continuous flow. If we analyze the topology

we can see that client c3 connects to bridge s1 through a 10Mbps link, as such client c1 will only

be able to achieve a maximum throughput of 10Mbps, since this is its bottleneck link. Clients

c1 and c2 connect to bridge s1 through links with 100Mbps of bandwidth capacity, however they

share a common bottleneck of 50Mbps at the link that connects bridges s1 and s2. Furthermore

the flow produced by client c3 will also use 10Mbps of the capacity of this link. According to

the RTT Aware Min-Max model employed, and taking into consideration the RTT of the flows,

the flow from c1 should get 28.6% of the available 50Mbps, and the flows from c2 and c3 should

receive 35.7%. This would result in a throughput of 14.3Mbps for client c1 and a throughput of

17.85Mbps for both clients c2 and c3. Client c3 however is limited to using just 10Mbps, which

leaves 7.85Mbps of spare bandwidth capacity on the link between both switches. The algorithm

should therefore scale the allocation for flows from c1 and c2 proportionally to their RTT, which

should result in a final allocation of 17.77Mbps for client c1, 22.2Mbps for client c2 and 10Mbps

for client c3. The results of running this test case can be seen in Figure 6.4. Measurements were

taken by analyzing network traces captured at the servers. The experiment ran for a total of 10

minutes, we discard the first 60 seconds and report the following 500 seconds.
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Figure 6.4: 3 clients saturate the bandwidth capacity of a dumbbell topology in NEED

As expected when the 3 clients reach their steady state, they assume the throughput values

previously presented. Small deviations can be observed below 1.5% of error.

Next we compare the results of the previous experiment with the results obtained from

deploying the same topology in Mininet. As has been previously discussed in Section 4.3,

Mininet emulates the switches in the topology, and these switches have limited buffers. Since
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the output link of switch s1 is capped at 50Mbps and the input links can altogether provide

210Mbps, the buffers at the switch will periodically fill, and packets will be dropped. This packet

loss can be observed in the output of iPerf. TCP will also react to that loss, which creates

fluctuations in throughput. Once again this is the behavior that would be observed on a real

network, but it is non-deterministic as multiple executions of the same experiment on Mininet

yield very different outcomes every time.
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Figure 6.5: 3 clients saturate the bandwidth capacity of a dumbbell topology in Mininet

Figure 6.5 shows one execution of the experiment on Mininet. Although steady state through-

put assumes values close to the ones assumed in NEED, there are spikes whenever large quanti-

ties of packets are lost, causing TCP to adjust the throughput. NEED does not emulate buffers

at the switches, hence preventing by design implicit packet loss from occurring at links with

expected 0% packet loss probability.

Implicit packet loss in Mininet only occurs when bottleneck links are saturated, therefore

it is expected that both NEED and Mininet behave the same when the bottleneck links are

not saturated. To show this we have limited iPerf on clients c1 and c2 to produce flows with

20Mbps and 15Mbps respectively. This means that the total bandwidth used by all three clients

is now just 45Mbps, 90% of the capacity of the link between s1 and s2. Figure 6.6 shows that

in this scenario NEED and Mininet behave exactly the same.

Finally for the third test case with the same topology, we desynchronized the flows so that

we can observe how the system reacts when new flows are created and when they cease. The

experiment proceeds as follows. Initially, only c1 has an active flow, and hence it should use all

the available bandwidth. After 3.5 seconds, c2 starts and thus it will compete for bandwidth over

the shared link. At this point, since c2 has a smaller RTT than c1, it should get a proportionally

higher share of bandwidth. At second 8, c3 starts and should reach its bandwidth limit of

10Mbit/s. The bandwidth of the other two clients should get proportionally adjusted to cope

with this new competing flow. Finally, c2 and c3 stop allowing c1 to once again use the maximum
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Mininet

bandwidth allowed by the topology. The results can bee seen in Figure 6.7. As can be seen,

0

10

20

30

40

50

 0  5  10  15  20  25  30  35  40  45

Cli. 2

 start
Cli. 3

 start
Cli. 2

 stop
Cli. 3

 stop

B
a
n
d
w

id
th

 (
M

b
it
/s

)

Seconds

Client 1 Client 2 Client 3

Figure 6.7: Reaction time to throttle 3 flows that vary in time

there is a short interval of time that the system takes to react to new flows. This interval of time

has a lower limit of 100ms (the time it takes to complete one cycle of the emulation loop, as

described in Section 5.3). We can however observe that it can take as long as 1 second to reach

a new steady state. This is in part caused by TCP slow start which causes incremental increases

in throughput. NEED takes at least 100ms to react to the increments, leading to further delay

in the adjustment. Another observable behavior is the effect of the exponential weighted moving

average when the bandwidth limit is increased (whenever a competing flow terminates).

6.3 Metadata bandwidth usage

Bandwidth congestion emulation in NEED relies on a distributed algorithm to calculate new

maximum bandwidth rates. This algorithm (described in Section 5.3) takes as input the amount

of bandwidth that every currently active flow is using on the topology. We refer to this infor-

mation as emulation metadata. Every container that is producing flows must disseminate this
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metadata to every other container running the emulation core. In this section we will explore

the costs of metadata dissemination in NEED. Understanding how the flow of metadata works

will be crucial for later understanding the scalability limitations of the current design.

In Figure 6.8 we present the total bandwidth that is consumed by metadata under 6 different

scenarios.
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Figure 6.8: NEED metadata bandwidth usage with an increasing number of flows and containers.
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The scenarios are described by the number of flows that are active, the total number of

containers in the topology and the number of containers that are receivers of metadata. This

later distinction is necessary since a container does not send metadata to itself. On all scenarios

we have containers acting as iPerf clients and others are iPerf servers. The number of flows

is dictated by the number of client containers. In the first scenario we have two containers, a

client and a server,that are producing a single flow. Since there are only two containers, there

is only one receiver of the metadata produced by the client container. The total amount of

bandwidth used by metadata in this scenario is 8.26Kbps. On the second scenario we add an

extra server that is idle. This container will however also be a receiver of metadata, hence the

client container will have to send metadata to both other containers, resulting in a bandwidth

usage of 16.5Kbps, effectively twice as much as when there was only one receiver. The third

scenario reinforces this linear growth, as we add a third idle server, metadata bandwidth rises to

24.7Kbps. In the fourth scenario we add a second client producing a second flow, while keeping

3 servers (one of them is idle). We have therefore 2 flows, 5 containers and a total of 4 receivers

for each flow. This results in a total usage of 65.9Kbps. For both the fifth and sixth scenarios

we increase the number of clients to 3 and servers to 4. The difference between both is that

in the sixth scenario, the flows produced by the clients use double the bandwidth than in the

fifth scenario. We can observe that metadata bandwidth is the same for both scenarios, and is

equal to 148Kbps, which means that metadata bandwidth usage is not affected by the amount
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of bandwidth being used by the experiment. With these results in mind, we can deduce that

the formula for calculating metadata bandwidth usage is:

Bandwidth = α ∗ F ∗R (6.1)

Where α is the amount of bandwidth used by disseminating a single flow to a single other

container, in this case 8.26Kbps. And where F is the total number of active flows in the

topology and R is the number of containers receiving metadata. Since every container is a

receiver of metadata except for the container that produces it, we can conclude that R =

number of containers − 1. A formula for accurately calculating the value of α for any given

experiment is however complicated to derive since it can depend on the following variables: total

number of links in the topology; number of flows a single container is producing; length of the

paths that each flow must traverse. We can however state that the amount of bandwidth used

by metadata grows linearly with the total number of containers in the topology and the number

of flows that are active at a given moment.

On large scale experiments with hundreds of containers producing flows, the total amount

of bandwidth used by metadata dissemination can rise to a Gbps order of magnitude, however

it should be noted that a portion of this traffic will never cross the physical network, as it is

destined to containers deployed on the same physical machine. Nevertheless it is the ability of

the underlying cluster to handle these large amounts of traffic that will dictate the scalability

limits of NEED.

6.4 Bandwidth emulation accuracy at scale

So far the method used to measure throughput was through analysis of network traces. However

when scaling to larger experiments, this method quickly becomes unfeasible. The captured

traces occupy large amounts of storage space (even if only packet headers are captured), and

their analysis is also very time consuming. Another problem is that even though one instance of

tcpdump might use few resources, when scaling to large experiments with tens of instances on

a single Docker Swarm node, the CPU usage of the multiple tcpdump instances is no longer

negligible, and will in fact interfere with the experiment results. Measuring the throughput with

the output of iPerf would also not be acceptable since it measures application throughput and

therefore shows spikes that are not visible in a network trace. This can be due to a socket blocking

(when measuring at the client) or because of packet retransmissions (when measuring at the

server). Measuring throughput with software like dstat is also not accurate, since they lack the
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ability to differentiate traffic, and would therefore include metadata traffic in the measurements.

We needed a way to measure throughput that differentiated application traffic from metadata

traffic, and that was as the least intrusive. Since NEED was already collecting throughput

information from tc, we decided to log it and use it for the larger scale experiments.

In the following experiment we deploy a dumbbell topology similar to the previous one,

but with 30 clients and 30 servers. In this topology the dumbbell is symmetrical, all the links

between service instances and the switches are the same. The link connecting the switches is

once again the bottleneck, and has a capacity of 600Mbps. This should give each client a share

of 20Mbps. We start by deploying a single experiment with this topology, and then deploy

2 and 4 simultaneous deployments of the same experiment. The goal is to verify that NEED

can execute multiple experiments simultaneously on the same cluster accurately, and also that

the results of the same experiment are reproducible within a small error margin. Figure 6.9
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Figure 6.9: Deviation from ideal bandwidth share on the execution of up to 4 concurrent exper-
iments in NEED

shows a bar plot where we represent percentiles 25th to 99th of the throughput values assumed

during the execution. Once again the experiments ran for a total of 10 minutes, the first 60

seconds were discarded and the following 500 seconds are reported. With a single deployment all

clients achieve the steady state throughput of 20Mbps. There is an error below 1%, this error is

consistent with the precision provided by the htb qdisc. When deploying 2 and 4 experiments

concurrently, we observe that the maximum error is still around 1%.

In Section 5.3, we presented the pseudocode for the emulation loop. There we explained

that the emulation core broadcasts the local bandwidth usage twice, with an interval of 50ms

between broadcasts, before taking the available information into consideration to calculate new

bandwidth limits. Both the interval of time between broadcasts (default of 50ms), and the

number of broadcast iterations (default of 2) are configurable by the user, and can affect the

precision of the emulation. We have named these variables as pool period, and iteration count
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respectively, as explained in Section 5.3. These default values were chosen as they yield a

good compromise between the response time of the system (demonstrated in Figure 6.7), and

scalability to moderate sized topologies. In the following experiments we show how changes to

these variables can affect system accuracy. The topology used for these experiments consists

of a dumbell topology with initially 100 containers (50 iPerf clients and 50 servers) and then

with 200 containers (100 iPerf clients and 100 servers). In both scenarios we set the available

bandwidth in the middle link such that each container should get a share of 20Mbps for their

network flow. Figure 6.10 shows one bar for each different setup of the experiment. The first
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Figure 6.10: Accuracy in large scale experiments and the effects of tuning system parameters
on scalability.

bar shows the first scenario with 100 containers. In this scenario we use the default pool period

of 50ms and the default iteration count of 2. Results show a 99th percentile that is below 1% of

error. The second bar shows the same topology with 100 containers, but this time we decrease

the pool period from 50ms to just 10ms. Decreasing the pool period has 2 direct effects on the

emulation. Reaction time to new and terminating flows will improve, however this comes at

the cost of increased metadata bandwidth usage. In this case metadata bandwidth usage will

be 5 times larger. The results show a 99th percentile that has 2% of error. Decreasing the

pool period is only safe with small topologies, but it might be desirable to improve reaction

time in experiments where the applications produce intermittent network flows. The increased

error observed in this experiment, when compared to the previous one that used the default

pool period of 50ms, is due to the fact that it takes slightly longer than 10ms for an instance

to broadcast all metadata packets. This means that, in the case of packet loss or delay in the

network, other instances might not get at least one metadata packet from every other active

instance, leading to calculation errors.

The third bar shows the results for deploying 200 containers with the default values for pool

period and iteration count. As can be observed, the results are no longer accurate, with the
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99th percentile reaching 32Mbps (expected is 20Mbps). The default values no longer allow for

accurate results at these high scales. With 200 containers, the amount of metadata being broad-

casted is enough to cause delays in the network. These delays are significant enough to cause

instances not to receive metadata from other instances in time to take them into consideration

when calculating new bandwidth limits. In the fourth bar we attempt to mitigate this issue by

increasing the pool period from 50ms to 100ms. As can be observed, there is an improvement in

the accuracy, with the 99th percentile dropping to 28Mbps (previous was 32Mbps). By increas-

ing the pool period to 100ms we are reducing the stress on the network, effectively halving the

amount of metadata flowing between instances, which helps reduce network delays and packet

loss. Note that by increasing the pool period we are effectively doubling the amount of time

the system takes to react to new and terminating flows. This is however not enough to achieve

accurate results. Finally in the fifth and last bar, we attempt the same deployment but this time

we increase the iteration count from the default of 2 to 4, while keeping the pool period at the

default 50ms. The default iteration count of 2, allows us to tolerate at most one omission fault

(see Section 5.3). An iteration count of 4 should allow us to tolerate up to 3 sequential omission

faults. Once again this comes at the cost of doubling the reaction time to new and terminating

flows. This configuration allows us to reach more accurate results for the 200 container scenario,

with the 99th percentile exhibiting only 3% of error. These experiments were executed using

the ipvlan Docker network driver instead of the overlay driver used so far. Using the overlay

driver is still possible at this scale, however we observed slightly degraded results when doing

so. We believe the cause for this is related to the high bandwidth being used, which appears to

be on the limits of what the overlay driver can handle.

6.5 Latency emulation accuracy at scale

On Section 6.4 we evaluated how NEED scales to large topologies while maintaining accuracy

regarding the bandwidth sharing. In the current Section we will explore the scalability of NEED

with regard to the accuracy of latency emulation. In Section 4.3 we stated that bandwidth em-

ulation requires constant computations throughout the duration of the experiment to maintain

accurate behavior. Latency emulation however, requires only computations during initialization,

since latency values remain the same throughout the experiment. It is therefore expected that

we can scale to larger topologies in experiments where there is no competition for bandwidth

shares. So far our experiments have focused on simple dumbbell topologies, in this section,

experiments will use more complex scale-free topologies. To generate topologies we use the pref-

erential attachment method described in [BA99]. This method yields scale-free networks, which
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are representative of the characteristics of Internet topologies. The experiments described in

this section consist of end-nodes sending ICMP echo requests to other random end-nodes, and

comparing the obtained round trip times, with the theoretical ones. The latency of individual

links is randomly generated between 1ms and 20ms. We have generated two topologies, one

with 1000 nodes (666 services, 334 bridges), and another with 2000 nodes (1344 services, 656

bridges). On Table 6.1 we show the results of our experiments as a mean squared error between

Node count NEED (overlay) NEED (ipvlan) MiniNet MaxiNet
1000 0.0595 0.0261 0.0079 28.0779
2000 0.0799 0.0384 NA 347.5303

Table 6.1: Mean square error exhibited on latency tests with large scale-free topologies in NEED,
Mininet and Maxinet.

theoretical expected values, that were computed during the generation of the topology, and

experimentally obtained values. We have tested the same topologies on both NEED, Mininet

and Maxinet, and within NEED we tested using both the overlay and ipvlan network drivers.

It should be noted that the Mininet experiment was executed on a single machine, while the

NEED and Maxinet experiments were executed on a cluster of 4 machines. We can observe

that Mininet has a smaller error than NEED, this is likely caused by the overhead of container

networking in Docker that introduces small but measurable delays. This overhead error can

also be observed when comparing NEED with overlay and with ipvlan. Due to the different

way both drivers are implemented, it was expected that overlay would exhibit higher overhead.

The largest deviation from the theoretical round trip time value in NEED with overlay was

0.4ms, and with ipvlan was 0.2ms. For reference, the smallest theoretical RTT between two

end-nodes in the 1000 and 2000 topologies is 10ms and 22ms, respectively, as such we consider

the errors exhibited in NEED acceptable. It should be noted that precision below 0.1ms would

be impossible for NEED, since it is executing on several physical hosts, and the communication

between services on different hosts must always traverse physical networking links, that have

been measured on our cluster to introduce a round trip time of 0.1ms. It should also be noted

that ping was executed for a total of 10 minutes, and that the first 60 seconds were removed

from the results. This was necessary because on Mininet the first 60 seconds of results were very

inaccurate, leading to a very high mean square error. This is due to the network in Mininet

requiring some packets to be exchanged before all the network elements are fully initialized and

ready to operate at full speed. With NEED there is no such issue, results were accurate from

the first measurement. Regarding the experiments with 2000 nodes, the results show a slight

increase in error. Still the largest deviation from the expected value was the same as before,

at 0.4ms with overlay, however errors occur more often, due to the higher resource utilization,
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which leads to the increased mean square error. Mininet freezes while launching this experiment,

which prevents a comparison. Regarding Maxinet, the errors observed on both the 1000 and

2000 nodes experiments are significantly higher than on NEED or Mininet. We can observe a

maximum deviation of 11ms and 40ms on the 1000 and 2000 nodes experiments respectively. It

should be noted however that we found these errors to be directly related to both the OpenFlow

controllers used and the scale of the experiments, and that it is perhaps possible to achieve

better results with more advanced controller configurations. The controller configuration used

for these experiments consisted of 4 POX [pox18] controllers executing the forwarding.l2 nx

module. We experimented with several POX sample modules and also with Floodlight [flo18]

and Opendaylight [ope18] controller configurations, and found this to be the configuration that

produced the best results.

6.6 Geo-replicated systems

So far we have only executed experiments with synthetic traffic generation tools like ping and

iPerf. In this section we evaluate NEED using typical distributed applications, and topologies

that are representative of real-world deployments. We compare real geo-replicated deployments

with emulated deployments in NEED.

Reproduction of results Our first experiment that replicates a real deployment within

NEED makes use of BFT-SMaRt [BSA14], and its optimized version Wheat [SB16]. BFT-

SMaRt is a library for development of distributed systems that implements Byzantine fault

tolerant state machine replication. The authors of the previously mentioned systems evaluate

and compare them in [SB16] by deploying both systems on geo-distributed Amazon EC2 in-

stances spanning 5 regions. In [SB16], the authors provide together with the results of their

experiments, a table with the average latency measured between the used regions, and also the

measured jitter. With this data we were able to model a topology in NEED that should be-

have close to the real, global scale topology that connects EC2 regions. The modeled topology

consists of a bridge at each region, that connects together the hosts on that region, and a link

between every two regions. The latency within a region was set to 0ms, and the latency and

jitter between regions was set according to the values provided in the paper. Since BFT-SMaRt

is constricted by the high latencies between geo-distributed replicas, the experiment uses very

little bandwidth (below 250kbps). We do not know the actual bandwidth limits between Ama-

zon EC2 instances or regions, but it is safe to assume they are much higher than the bandwidth

effectively used by BFT-SMaRt under this scenario. We therefore set the bandwidth limit on
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the links to safe values of 100Mbps between regions and 1Gbps inside a region. The experiment

consists of placing one server and one client at each region. The servers run a simple replicated

counter application, and the clients place requests to increment the counter. The 90th and 50th

percentiles of the latency of requests is measured at each client. Figure 6.11a shows the results
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(a) BFT-SMart deployment on Amazon EC2. Data from [SB16].
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(b) BFT-SMaRT deployed on a local cluster with NEED.

Figure 6.11: Reproduction of an experiment with a geo-replicated deployment of BFT-SMart
and Wheat - two Byzantine fault tolerant state machine replication libraries. The experiment
measures the latencies of clients located in different Amazon EC2 regions. On the top, we have
the results from the original paper, on the bottom the same experiment done with NEED.

from the original experiment on EC2. Figure 6.11b shows the results of executing the same

experiments on NEED. As can be observed in the plots, the results of executing the experiment

in NEED are close to the results achieved by the authors on EC2, with a maximum error of

6.8%. This deviation is thought to be caused by jitter on Amazon EC2 instances being highly

variable, especially on the t1.micro instances used by the authors in the original experiments. In

NEED jitter is assumed to follow a normal distribution. Since BFT-SMaRt and Wheat use very

little CPU resources under this high latency scenario, these experiments were not executed on

the cluster. Instead they were executed on a single commodity laptop, which shows that NEED

is not limited to running experiments on powerful clusters.

NoSQL database evaluation The second experiment we performed to compare a NEED

deployment with a real deployment makes use of Apache Cassandra [cas, LM10]. Cassandra

is a NoSQL database system, widely adopted in production geo-replicated deployments. In

our experiment we make use of YCSB [CST+10] to benchmark a Cassandra geo-replicated
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deployment, first on Amazon EC2, and then on our cluster with NEED. The deployment

consists of 4 Cassandra replicas in Frankfurt, and another 4 replicas in Sydney. Also 4 YCSB

clients are deployed in Frankfurt. We setup Cassandra so that there is a replication factor of

2 at each region, meaning that each region will hold 2 copies of the same data. We also setup

the regions to actively replicate one another, meaning that there should always be 4 copies of

the same data overall. We configure YCSB to use a workload consisting of reads and updates

in equal proportion. Furthermore we configure the consistency of YCSB operations to require a

quorum on writes, and only one response on reads. Also we inform the YCSB clients that the

closest Cassandra replicas are the ones located in Frankfurt. Due to the default load-balancer

used in the YCSB client, this causes most requests to be directed at the Frankfurt replicas,

leaving the Sydney replicas to only be directly contacted when the Frankfurt ones are under

high load. However, due to the requirement of a quorum on updates, and the replication factor

used, a response from at least 1 Sydney replica must always be present on every update to satisfy

the quorum. In order to model the network topology in NEED, we collected the average latency

and overall jitter between all the Amazon EC2 instances used prior to executing the experiment

on Amazon. We found that the latency between two instances in the same region was negligible

(below 0.1ms), and that the average round trip times between instances in Frankfurt and Sydney

was 290ms with a standard deviation of 0.343. With that information we modeled a topology

consisting of a bridge representing the Frankfurt region and another bridge representing the

Sydney region. We created links connecting the two that forced a latency of 145ms with a

standard deviation (jitter) of 0.243 in each direction. We then attached 4 Cassandra services to

each of the previous bridges and 4 YCSB services to the Frankfurt bridge with no delay. Once

again, we do not know the bandwidth limits between Amazon EC2 instances or regions, so we

set them to 1Gbps in our modeled topology. We did however observe, that during the execution

of the experiment, the bandwidth used between any two instances was always far bellow this

value. Figure 6.12 shows the throughput-latency curve obtained from the benchmark on both

the real deployment on Amazon, and on NEED. The curves for both reads and updates are a

close match, showing only more significant differences after the turning point where response

latencies climb fast, as Cassandra replicas are under high stress. It should be noted that it

was unexpected to find that the latencies on the update curve decrease slightly as throughput

increases before the turning point. However this behaviour occurs both on the real deployment

and on NEED, and is likely caused by our Cassandra configuration. The fact that such issues are

visible in emulation with NEED, aids our argument that they can be debugged and eliminated

in emulation, which should be simpler and more cost-efficient than debugging them on real
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Figure 6.12: Comparison between benchmarking a Cassandra deployment on Amazon EC2 and
on NEED. Each point corresponds to an increase of 100 threads distributed across 4 clients.

deployments.

Finally we present the results of executing the same Cassandra experiment but on a differ-

ent hypothetical topology, where the latency between regions was reduced to half. Results are

presented in Figure 6.13, alongside with the previous results to facilitate the comparison. As a
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Figure 6.13: Benchmarking a Cassandra deployment on a hypothetical topology with NEED.
Original results are included for comparison.

result of halving the latency between regions, the same Cassandra cluster was able to achieve

a much higher throughput, and write latencies dropped to about half. Halving the latencies

between Sydney and Frankfurt could correspond to testing what would happen if the Sydney

replicas where moved somewhere else instead. This shows that NEED can be used for exper-

imenting with hypothetical what-if scenarios, in order to assess application behavior under a

wide range of deployment scenarios.
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Chapter 7

Conclusions

The evaluation of distributed systems is a crucial step to assess their correctness and good perfor-

mance. Network emulation systems help developers and researchers reduce the costs and effort

of performing this task. In this work we have presented the architecture and an implementation

of a network emulation system targeted at distributed systems developers. The presented system

combines the usage of containers and a decentralized design that allow to introduce new ideas

on the design of network emulation systems. By collapsing the topologies into end-to-end links

that retain the high level properties of the original topology, we free the users from dealing with

issues and unexpected behaviors, related to the components that form the network, and allow

them to focus on the applications and on the macro properties of the network that affect them.

By basing our system on containers we come closer to achieving reproducibility of experiments,

and allow for a broad range of applications to be tested.

The presented system can scale to hundreds of nodes while maintaining accuracy on all

emulated properties, however in scenarios where bandwidth contention does not occur, the de-

centralized point-to-point architecture of the system presents no limitations, and the system can

scale as far as the underlying Docker Swarm technology allows. We have shown that despite

the simplifications made about network state, the presented system is able to accurately repro-

duce real-world deployments of off-the-shelf popular systems such as Apache Cassandra. We

have also shown that the presented system is capable of reproducing results presented in liter-

ature. We showed this by reproducing results from a geo-replicated state machine replication

system presented in the literature [SB16]. The presented system can also be used to conduct

what-if scenarios, allowing engineers to evaluate application performance and correctness under

hypothetical, but fully controlled, network conditions.
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7.1 Future Work

The presented system has shown potential as a useful tool for distributed systems developers,

however it is still only a prototype. Next we present some limitations of the system and discuss

possible solutions.

Reproducibility NEED is capable of achieving replicability of experiments, however to achieve

full reproducibility, awareness of the resource limits of the underlying cluster (such as maximum

bandwidth between nodes) must be taken into consideration. With this information NEED

could perform scheduling of its containers to avoid attempts to use more resources than those

that are available.

Dynamic topologies The current system has no support for dynamic topologies, which pre-

vents common evaluation scenarios like hosts leaving and new hosts joining the network. This

functionality could be added to NEED, simply by making all emulation core instances coordi-

nate to switch to a new topology at the same time, however coordinating thousands of instances

to do so is challenging.

Scalability Finally, although the presented system has been shown to scale to as much as

2000 nodes, scaling the number of nodes while maintaining accurate bandwidth contention

emulation, requires sacrificing response times. The main bottleneck of the system lies in the large

amount of metadata traffic that is generated with large topologies. We present two alternative

solutions to mitigate this problem. The first alternative would be to centralize the broadcasting

of metadata within each node to a separate container. This container would be responsible

for disseminating metadata to all containers within the same host, and to the other broadcast

containers on the other hosts. This approach would significantly reduce the amount of metadata

that must cross the physical network, by removing duplicated data that is originally targeted

at multiple destinations. The second alternative would be to change the current behavior of

always broadcasting the current bandwidth usage at fixed intervals, and only broadcast when

a significant change occurs to the active flows. To do so the emulation core would have to be

modified to remember previous data, and metadata would have to be exchanged on a reliable

channel.
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Appendix A

NEED experiment example

Listing A.1: Instructions for executing an experiment with NEED

This experiment execute s 3 i p e r f 3 c l i e n t s ( and r e s p e c t i v e s e r v e r s ) .
To execute t h i s example a machine running Docker i s r equ i r ed .
A s i n g l e laptop i s enough .

The docker images provided in . / Docker Images f o l d e r need to be b u i l t .
To do so execute the f o l l o w i n g commands :

$docker bu i ld −t need/ c l i e n t : 1 . 0 . / Docker Images / c l i e n t
$docker bu i ld −t need/ s e r v e r : 1 . 0 . / Docker Images / s e r v e r
$docker bu i ld −t need/ dashboard : 1 . 0 . / Docker Images / dashboard
$docker bu i ld −t p r i v i l e g e d b o o t s t r a p p e r : 1 . 3 . / Docker Images / boots t rapper image

I f the cur rent machine i s not part o f any Swarm c l u s t e r c r e a t e one with :
$docker swarm i n i t

A docker swarm network named t e s t o v e r l a y must a l s o e x i s t .
To c r e a t e i t run :

$docker network c r e a t e −−d r i v e r over lay t e s t o v e r l a y

This f o l d e r conta in s a topology d e s c r i p t i o n f i l e ” . / topology5 . xml ” .
To turn t h i s d e s c r i p t i o n in to a Docker Swarm deployment execute :

$ . . /NEED/ deploymentGenerator . py . / topology5 . xml > topology5 . yaml

Now the experiment can be deployed with :
$docker s tack deploy −c topology5 . yaml topology5

Next open a browser and nav igate to :
http : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 8

This w i l l open the dashboard that a l l ows f o r monitor ing the experiment .
C l i ck ”START” at the top r i g h t o f the s c r e en to begin the experiment .
The a c t i v e f l ows can be monitored in the ” Active f l ows ” tab .
A g r a p h i c a l r e p r e s e n t a t i o n o f the topology can be seen in the ”Graph” tab .

To stop the experiment c l i c k ”STOP” at the top r i g h t corner .
The deployment can then be removed with :

$docker s tack rm topology5
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