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de Matos for all the help, guidance, motivation, feedback, and support they have given me along

the way.

To Paulo Silva for sharing his knowledge about the Ethereum implementation in go, which

was essential for this work.

To my mother, Marisa Castilho, my brother and sisters, Hugo Castilho, Barbara Castilho,

Susana Castilho, for the good times we shared, for encouraging me and discussing ideas.

To my girlfriend, Ana Novais, for her love, emotional support, patience, for helping me be a

better version of myself and never letting me give up.

To my friends, Nuno Ribeiro for distracting me through tough times, Diogo Morais for always

knowing what I needed most, Marie Castilho and Monique Castilho for all the company they

gave me when I felt alone.

To all my colleagues at Instituto Superior Técnico with a special mention to Pedro Ceyrat,
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Resumo

A maior parte das blockchains são baseadas no modelo da Bitcoin, e portanto, a sua segurança

depende de provas de trabalho (proof-of-work, ou PoW, em inglês). Para adicionar blocos à

blockchain é necessário que os utilizadores provem que usaram uma certa quantidade de poder

computacional. As provas de trabalho fazem com que os requisitos energéticos das blockchains

sejam muito elevados consumindo, no caso da Bitcoin, energia equivalente a um páıs como a

Irlanda.

Este trabalho propõe uma nova implementação de blockchain que substitui as provas de

trabalho pelas provas de espaço com o objectivo de diminuir os requisitos energéticos das

blockchains. Numa blockchain que use provas de espaço, os mineiros têm de provar que estão a

dedicar quantidades não triviais de memória ao protocolo. Antes de participarem no protocolo

começam por realizar computações cujos resultados serão guardados na memória. Quando adi-

cionarem blocos à blockchain têm de demonstrar que estão de facto a guardar corretamente o

resultado dessas computações. O uso de provas de espaço em blockchains é um tópico recente e

a maioria do trabalho nesta área é teórico, não sendo trivial como podem ser contrúıdas soluções

práticas. Este trabalho propõe uma nova implemtentação de blockchain que substitui as provas

de trabalho pelas provas de espaço, realizada em cima do protocolo do Ethereum, uma das

criptomoeadas mais populares.

Palavras-chave: Provas de trabalho, Provas de espaço, Blockchain, Ethereum, Crip-

tomoeda
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Abstract

Most blockchains follow Bitcoin’s model, and, as a result, their security relies on proof-of-

work. In order to add blocks to the chain, users must prove that they used a certain amount of

computational power. Proof-of-work is very energy-intensive, with Bitcoin’s energy consumption

being on par with a country like Ireland.

This thesis aims at proposing a novel proof-of-space alternative to proof-of-work that reduces

the energy requirements of blockchain protocols. In a blockchain that uses proof-of-space, miners

must prove that they are dedicating non-trivial amounts of memory to the protocol. Before being

able to start mining, miners must perform some computations whose results will be stored in the

memory. Whenever they add a block to the blockchain, they must prove that they are correctly

storing the result of those computations. The usage of proof-of-space in blockchains is a recent

topic, and the majority of existing work in this area is only theoretical. This work proposes a

concrete implementation of a blockchain that uses proof-of-space, built on top of the Ethereum

protocol, one of the most popular blockchains.

Keywords: Proof-of-work, Proof-of-Space Blockchain, Ethereum
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Chapter 1

Introduction

In recent years blockchains have become a popular topic. A blockchain is a data structure

maintained by a distributed network of nodes that provides an immutable append-only log of

records. The records are grouped into blocks, and each block has the cryptographic hash of the

previous one. Thus any change to the order of blocks or the content of any block will invalidate

the chain. Nodes must also run a consensus protocol to ensure that all nodes agree on the blocks

that are added to the chain.

Blockchains are essential in scenarios where we want to run a decentralized application on

an untrusted network with nodes that can have arbitrary behaviors. The most popular type

of applications that use blockchains are cryptocurrencies. A cryptocurrency is a digital asset

that provides an alternative to conventional currencies. Cryptocurrencies run in a decentralized

network where there are no trusted third-parties (in opposition to conventional currencies that

rely on central banks). Another appealing feature of blockchains is smart contracts. Smart

contracts are pieces of code that run on top of the blockchain. They allow two or more parties

to build trusted distributed applications since the underlying blockchain ensures that the code

is executed and that all nodes agree on the result of executing that code. Ethereum [7] is a

prominent blockchain platform that can be used to develop such smart contracts.

Most blockchains use a variant of the protocol known as Nakamoto Consensus [26], originally

introduced in Bitcoin [65]. One can think of Nakamoto Consensus as the combination of 3 things:

incentives, a chain selection rule, and proof-of-work. Proof-of-work is a cryptographic puzzle that

nodes must solve in order to add blocks to the blockchain that binds the ability to contribute to

the protocol with the expenditure of non-counterfeitable resources, namely computational power,

that prevents Sybil attacks [43]. Nevertheless, this mechanism is not sufficient to select which

blocks should be added to the chain. In a big network where all nodes are working to create new

blocks, two nodes might create two blocks concurrently, which results in different nodes with
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different valid blockchains, a fork. In order to make nodes agree on the same chain, we need a

chain selection rule. In Bitcoin, nodes choose the longest proof-of-work chain i.e., the chain that

required more computational power to generate. The last but maybe the most important part

is the incentive. Similarly to BitTorrent [36], incentives build robustness in Bitcoin by making

nodes want to follow the protocol. When a node adds a block to the blockchain by solving a

proof-of-work, it gets an incentive in the form of coins in the system. This incentive ensures that

nodes follow the chain selection rule. If they do not follow this rule and mine on top of arbitrary

chains, they will not receive the reward. Since producing proofs-of-work on those chains still

requires computational power that wastes electricity, they will end up losing money.

Proof-of-work has become popular and is used in several blockchains such as Ethereum

[7], Litecoin [13] and Fastcoin [10]. Unfortunately, it comes with two crucial limitations. The

amount of energy it wastes is significant. O’Dwyer and Malone [60] showed that the energy

used by Bitcoin is comparable to Ireland’s energy consumption. Their study was performed in

2014; since then, Bitcoin’s energy consumption increased [1]. This energy consumption comes

primarily from proof-of-work.

Proof-of-work also limits the scalability of blockchains. Fast record processing is important

for blockchains, especially for blockchains that provide cryptocurrencies since fast payments are

an essential feature of any electronic payment system. In order to accept a transaction, most

Bitcoin clients require that 6 blocks are mined on top of the block that contains it so that the

probability that the block will ever leave the blockchain becomes low enough [26]. Since a block

is mined roughly every 10 minutes [65], users must wait for an hour before being able to accept a

transaction. At current rates, Bitcoin is able to process 7 transactions per second (tps). Paypal

is able to process 115 tps per second, and Visa is able to handle 47 000 tps (although it only

needs about 2 000 tps) [82, 55]. One intuitive approach to increase transaction throughput

would be to increase the number of transactions that each block packs. However, it has been

shown that increasing block size without speeding up the dissemination of blocks weakens the

security of the system [55].

An alternative to eliminate the above limitations of proof-of-work is to replace it with a

radically different approach. In recent years, finding alternatives to proof-of-work has become

an important research topic. This is not an easy task because a sybil-proof mechanism requires

wasting non-counterfeitable resources (like processing power in proof-of-work), and there are not

many non-counterfeitable resources. The most popular alternative is proof-of-stake [86]. In this

model, users are weighted by the amount of digital funds they possess, instead of computational

power. Generally, a coin from the system is selected randomly, and the owner of that coin gets
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to add a block to the blockchain. By adding a block to the blockchain, the user wins a reward,

which increases his chance of being selected again. Thus adding blocks to the chain will not

require spending energy. Ethereum [7] is planning to start using Casper [84, 30], a consensus

protocol that uses proof-of-stake.

Although proof-of-stake mitigates some critical issues of proof-of-work, it introduces new

problems. Proof-of-stake gives an advantage to wealthier participants because the probability

that they are chosen to mine the next block (and receive the reward) is higher. Proof-of-stake

has another important flaw - the nothing-at-stake problem. When there is a fork, the best

strategy is mining on top of every chain. The miner will get the reward no matter which chain

wins. This thwarts the ability of the system to converge into a consistent view of the replicated

ledger.

Recently, some proof-of-stake blockchains with rigorous security proofs appeared [56, 52].

They solve some of the traditional proof-of-stake blockchains problems by generating randomness

securely. To accomplish this, they use different techniques. Ouroboros [56] uses a secure coin

flipping protocol, and Algorand [52] uses verifiable random functions (VRF) [63] to generate

randomness. However, both these models rely on strong synchrony assumptions and require

that a majority of stakeholders are online constantly.

Proof-of-space [46, 18] is another alternative to proof-of-work. In proof-of-space, the miner

must dedicate memory to the protocol. Thus, the non-counterfeitable resource becomes memory

space. Usually, the miner starts by doing some computations until the amount of memory he

wants to allocate is full. After this initialization, he is able to start mining. Each block will

have a different challenge that the miner must answer with the space he allocated. A blockchain

that uses proof-of-space will be more energy-efficient than a blockchain that uses proof-of-work.

Accessing memory periodically requires less energy than constantly computing proofs-of-work.

To the best of our knowledge, there are no blockchains on the wild that use proof-of-space1,

and the project that is closer to achieving that goal is Chia [5]. Chia is a recent cryptocurrency

proposal that combines proof-of-space with proof-of-time. It uses an elegant proof-of-space

based on inverting random functions [18]. In proof-of-time, users must prove that they invested

some predetermined amount of time to the protocol. In order to accomplish this, proof-of-

time uses Verifiable Delay Functions (VDF) [40, 83, 70, 25]. A VDF is a function that takes

a predetermined amount of time to compute, and running the function on a parallel computer

will not speed up the computation. In Chia the user starts by computing a proof-of-space, then

he computes the proof-of-time. Each proof-of-space has a quality level. This quality gives the

1One could argue that Burstcoin [4] also uses this kind of proofs. However, since they do not provide a clear
specification, we will not discuss it further.
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time that computing the VDF must take. Better proofs-of-space will give lower times and vice

versa. If successful in practice, this approach might change the way we think of blockchain

protocols. Although it still has a component that requires some degree of computation (proof-

of-time), it will not require as much energy as a pure proof-of-work blockchain. Chia uses

this combination of proof-of-space with proof-of-time to prevent attacks resulting from costless

mining, i.e., attacks that exploit the fact that adding blocks to the blockchain is inexpensive,

such as adding multiple sequential blocks at once. Proof-of-time makes mining on more than

one chain more expensive than in a proof-of-stake blockchain, preventing the nothing-at-stake

problem. The objective of most miners will be having good proofs-of-space instead of having to

compute bigger proofs-of-time, thus making this system more energy efficient.

The main problem in Chia is that VDFs are a recent area of research with several open

questions. There are two significant VDF proposals, from Pietrzak [70], and Wesolowski [83].

Pietrzak’s construction requires that the public parameters are either created by a trusted third

party or created by a multiparty-computation. Wesolowski’s construction requires that the

adaptive root assumption holds [25], this is a problem that is not well studied. It is also unknown

if there might appear Application-Specific integrated circuits (ASIC) that break VDFs’ security

properties. Moreover, an attacker with a faster VDF implementation, even if still sequential,

will be able to compromise the system.

The use of proofs-of-space in blockchain protocols is, therefore, an under-explored area, and

building practical solutions remains an open problem. This thesis aims at proposing a novel

proof-of-space alternative to proof-of-work that reduces the energy requirements of blockchain

protocols. To study this problem, we designed, implemented, and evaluated a novel approach

to proof-of-space, called Etherspace, on top of Ethereum. Our approach uses the same proof-

of-space model used in Chia [18]. However, unlike Chia, we will exclusively use proof-of-space.

Etherspace tries to solve a common problem of some non-proof-of-work blockchain models, gen-

erating secure randomness. Some proof-of-stake models, Algorand [52] and Ouroboros [56], deal

with this problem in different ways. Our model borrows techniques from the latter and adapts

them to a new context. More precisely, we use secure coin flipping protocols to generate random-

ness, with some elements of blockchains that use byzantine committees to serialize transactions

[57, 68, 17]. To the best of our knowledge, this has never been attempted with proof-of-space

models. Moreover, Etherspace solves conceptual problems that come from combining the pre-

vious techniques and problems related to the data structure were the proof-of-space data is

stored. The techniques and results of this thesis have been partially presented in the follow-

ing peer-reviewed publication: Diogo Castilho, Paulo Silva, João Barreto, and Miguel Matos.

4



Etherspace: uma abordagem proof-of-space na blockchain ethereum. In INForum 2019 - Atas

do 11 o Simpósio de Informática, pages 193–204. NOVA.FCT Editorial, 2019. ISBN 978-972-

8893-75-0. URL http://inforum.org.pt/INForum2019/docs/atas-do-inforum2019.

The rest of the document is organized as follows. In Chapter 2, we discuss related work

as well as some background on the models we use in our approach. In Chapter 3, we explain

our approach, starting with a naive approach to explain some key concepts, moving to the

Etherspace approach. In Chapter 4, we discuss some implementation details, the objectives

of our evaluation, and our results. In Chapter 5, we draw the conclusion, with some crucial

remarks, and discuss the future work that needs to be done.

5



6



Chapter 2

Related Work

In this chapter, we discuss the properties that blockchains must ensure. We will talk about

proof-of-work, and its alternatives to better understand how we can improve blockchains. In

Section 2.1, we discuss what a blockchain is, and the properties they must ensure. In Section

2.2, we address Bitcoin, Nakamoto Consensus, and the role of proof-of-work. In Section 2.3, we

review some alternatives to proof-of-work. In Section 2.4, we discuss models that combine proof-

of-work and proof-of-stake. In Section 2.5, we present systems that use byzantine committees to

increase the throughput of blockchain protocols. In Section 2.6, we discuss Ripple and Stellar,

which take a different approach towards achieving consensus based on trust assumptions. In

Section 2.7, we present some alternatives to blockchains. In Section 2.8, we discuss some essential

ideas we used in our blockchain model. In Section 2.9, we wrap-up with a comparison between

different blockchain models.

2.1 Cryptocurrencies and Blockchains

Cryptocurrencies are the most popular applications that run on blockchains. The concept of

a digital currency was probably first introduced in 1983 by Chaum [33]. This model provided

strong privacy, however, it relied on a central entity. Wei Dai later published b-money [38]

on the cypherpunks mailing-list (same mailing-list where the Bitcoin white paper [65] was first

published), where he proposed two protocols for a distributed cash system. The first of these

protocols used the concept of proof-of-work to create money. Influenced by this work, Satoshi

Nakamoto (pseudonym) in 2008 released Bitcoin’s white paper [65].

In this work, he presented the first decentralized currency system, now known as cryptocur-

rencies. We can think of any cryptocurrency as a protocol that keeps a distributed ledger. This

ledger must keep an immutable append-only log of transactions that is maintained by a peer-
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to-peer network of nodes. Ensuring that the ledger is immutable is not trivial since nodes can

behave in arbitrary ways. Let us start by defining a naive solution. In cryptocurrencies, users

are represented as public keys. Each transaction has a sender, a receiver and the sender’s digital

signature. Cryptography ensures that only the owner of the corresponding private key can cre-

ate valid transactions for a given public key. This solution allows us to keep an unordered list

of transactions with valid signatures. However, we cannot get any meaningful properties from

asymmetric cryptography alone, since nothing ensures that nodes keep the same list of records.

Garay et al. [51] presented the concept of public transaction ledger as a protocol that satisfies

two properties, which we now present informally. Note that these are informal overviews of the

properties presented in [69, 51, 55].

Persistence: If an honest node declares a transaction tx as stable in a certain time slot

then the remaining honest nodes, if queried, will report tx as stable in the same time slot.

Liveness: If transaction tx was given to an honest node (to include in the ledger), then

after a certain amount of time (transaction confirmation time) all honest nodes, if queried, will

report tx as stable.

In order to provide these properties, the ledger is usually stored in a data structure called

blockchain. It consists of a list of blocks where each block consists of a batch of transactions

and a reference to the predecessor block. This reference is the cryptographic hash of that

block, ensuring that two different blocks will not have the same reference (if a sufficiently strong

cryptographic hash function is chosen). Because of this, any modification to the order of blocks,

or their content, will invalidate the chain. In [69, 55] it is shown that a blockchain that provides

the following properties ensures both persistence and liveness. Note that these again are informal

overviews of the properties. Moreover, these properties only hold as long as the percentage of

resources that the attacker controls is bounded (e.g., 50% of the hashing power in Bitcoin).

Common prefix: If two honest nodes, N1 and N2 (these nodes can coincide) that have the

chains C1 and C2 at times t1 and t2 respectively, such that t1 < t2, it holds that by removing

the last k blocks (k is an arbitrary value that must be chosen a priori) of chain C1 we get that

C1 is a prefix of C2.

Chain quality: For any honest node with blockchain C, it holds that for any sequence of l

blocks there are at least µ blocks (the chain quality coefficient) created by honest nodes.

Chain growth: For any honest node N , it holds that, over the course of s rounds, the

number of blocks added to the blockchain of N is s · τ . τ is the rate of blocks added per round

and is called the speed coefficient.

There are two different kinds of blockchains, permissioned and permissionless. In permis-
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sioned blockchains such as Hyperledger Fabric [19] users that contribute to the consensus proto-

col have to be previously approved, usually by a trusted party. This type of blockchains allows

the usage of traditional Byzantine-fault tolerant consensus protocols (such as Practical Byzan-

tine Fault Tolerance [32]) because the protocol runs among a small set of known participants.

This type of blockchains provides better throughput. For instance, Hyperledger Fabric [19] is

able to achieve more than 3500 tps which is a big improvement over Bitcoin’s 7 tps. In per-

missionless blockchains such as Bitcoin [65] and Ethereum [7], any user can contribute to the

consensus protocol without any prior membership established with a trusted entity. Traditional

Byzantine-fault tolerant consensus protocols (used in permissioned blockchains) would not work

properly in permissionless environments because they require that a majority of users are honest.

Without a central entity to validate entities, an adversary can easily spawn lots of users and

ensure that he controls the majority of users. Thus they would be vulnerable to sybil attacks

[43]. Due to this vulnerability, permissionless blockchains usually use consensus protocols that

require the user to prove possession of non-counterfeitable resources (such as computational

power or wealth). Our work focuses on permissionless blockchains because we want to reduce

the trust base, requiring only trusting the protocol. This is something permissioned blockchains

fall short of accomplishing since there must be an entity that chooses who can participate in the

protocol.

2.2 Bitcoin and Nakamoto Consensus

In order to provide the desired properties, nodes need to agree on which blocks are added to the

chain. To ensure this, Bitcoin uses what is known as Nakamoto Consensus [65, 26]. Any user can

attempt to add blocks to the chain, however, in order to do this, he must solve a cryptographical

puzzle called proof-of-work. The proof-of-work consists of solving a puzzle whose solution is

hard for the prover to compute and easy for the verifier to check. These puzzles were originally

proposed as a measure to prevent spam email and denial-of-service attacks [45, 21].

Bitcoin’s proof-of-work scheme is based on Hashcash [21]. It requires finding a nonce N such

that H(N,B, h − 1) < T where H is a hash function (in Bitcoin it is double SHA-256), B is

the current block, h − 1 is the hash of the previous block and T is the target difficulty. This

scheme is probabilistic since the number of different nonces a user must try, in order to find a

suitable solution, grows exponentially with the number of zero bits the target difficulty begins

with. Verification, on the other hand, always takes the same amount of time, i.e., the time to

run the hash function once.

In Nakamoto Consensus, any node can group valid transactions, form a block and try to add
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it to the blockchain (after computing the proof-of-work). The first transaction of a block creates

new coins that are assigned to its miner. The miner is also able to charge fees for including

transactions in his block. This creates an incentive to abide by the protocol. When nodes receive

a new block with a valid proof-of-work1, they add it to their copy of the blockchain and start

mining on top of it. However, due to the stochastic nature of proof-of-work, it is possible for

two different miners to find two different valid solutions concurrently, creating two valid blocks

at the same chain height. This leads to a fork - two different valid paths in the blockchain. To

handle forks, Nakamoto Consensus uses a chain selection rule. This rule allows nodes to know

which blockchain is the active blockchain (the blockchain that they must accept as valid). Nodes

must choose the longest proof-of-work blockchain (the blockchain whose proof-of-work required

the biggest expenditure of computation). By summing the difficulties of all the blocks in the

chain, a node can estimate how much computational power was needed to compute each chain.

The active blockchain will generally end up being the chain with more blocks. This combination

of proof-of-work, incentives and chain selection rule are the main pieces of Nakamoto Consensus.

The target difficulty of the puzzles is not static. If the computational power invested in

mining increases, blocks will be generated at a faster rate. Hence, Bitcoin periodically (every

2016 blocks) adjusts the difficulty of the crypto puzzle to keep the average block mining time

close to 10 minutes.

Nakamoto [65] does an analysis of the system’s resistance to double-spending attacks. In a

double-spending attack, the attacker starts by issuing a transaction. After the payee accepts

the transaction (and hopefully gives something in return for the digital fund), the attacker forks

the blockchain and starts building a blockchain that does not have his transaction. When his

blockchain is longer than the original one, all the nodes will choose it. Then the attacker is able

to spend, again, the funds that he had previously used. Nakamoto models the protocol as a

Binomial Random Walk between the honest users and the attacker. He concludes that, as long

as an adversary does not have more then 50% of the computational power, and the payee waits

for k blocks to be added to the blockchain on top of the block that contains his transaction, the

probability that the attacker is able to build an alternative chain (a chain that does not contain

the attacker’s transaction) drops exponentially with k. By using a sufficiently large value of k

in the protocol (in most Bitcoin clients this value is 6), the probability that the attacker is able

to perform a double-spending attack becomes negligible. This period the user has to wait is

known as transaction confirmation time, and in Bitcoin, it is roughly an hour (10 minutes times

6 blocks).

1Nodes will only accept a new block if it is not malformed and does not have invalid transactions [26].
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Nakamoto’s analysis is not sufficient to ensure the stability of the system, as it does not

consider scenarios where the attacker makes honest users disagree on the current chain instance,

splitting their mining power across different instances of the chain [51]. Garay et al. [51] show

that the Bitcoin protocol (Nakamoto consensus) provides a public ledger in the synchronous

model (as long as the majority of the computational power is controlled by honest miners).

Later, Pass et al. [69], demonstrated that these properties also hold in a partially synchronous

model (messages can be delayed up to an a-priori set bound). It might be tempting to think that

Bitcoin provides a public ledger in the asynchronous model (messages can be delayed arbitrarily),

however as a result of FLP impossibility [50] this is not possible. Pass et al. [69] prove that

neither common prefix nor chain quality holds in this model.

During the early years of Bitcoin, a general purpose CPU was enough to participate in the

mining process. However, Bitcoin’s increasing value led miners to search for hardware that

provided better hash rates - the amount of puzzles that can be solved per second. General

computers started being replaced by graphics processing units (GPU) as they are able to handle

more parallel calculations (allowing trying multiple nonces in parallel). GPUs, in turn, were

replaced by field programmable gate arrays (FPGA), that were later replaced by application

specific integrated circuits (ASIC). Taylor [81] provides a detailed description of this evolution.

Mining has become so competitive that nowadays even when the miner has good hardware

the odds that he will be able to successfully add a block to the chain are low. Therefore,

the variance of mining payments for solo mining is significant. In order to lower the varience,

miners started collaborating in solving these puzzles and sharing the rewards by participating

in mining pools [74]. Pools make mining more profitable because a lower variance of rewards

provides a more reliable source of income. The existence of pools is problematic for blockchains

since they lead towards centralization of the system. There is some research such as [59], where

a protocol for decentralized mining pool is proposed, that tries to counter this problem. A

sufficiently large mining pool can compromise the underlying blockchain. GHash.io [61] had

at some point more than 50% of the mining power invested in Bitcoin, making them able to

launch attacks on the network. Although this pool is no longer active [41] we should try to

discourage them. Works such as [64] discuss nonoutsourceable puzzles that might have the

capacity to counter this problem. In mining pools, the pool manager claims the reward of the

block and distributes it across miners in the pool proportionally to the computational power

they dedicated. These nonoutsourceable puzzles give whoever performed the mining work the

ability to claim the reward for themselves. With such puzzles the pool manager cannot trust

the miners, thus preventing the formation of mining pools.
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Proof-of-work is one of the most important parts of Nakamoto Consensus, and it is used

in several other blockchain protocols such as Ethereum [7], Litecoin [13] and Fastcoin [10].

However, it comes with some limitations. Transaction confirmation is slow (e.g., an hour in

Bitcoin) since this type of blockchains require that some blocks are mined on top of the block

that contains our transaction. In proof-of-work blockchains, the size of the blocks is limited. In

Bitcoin, this corresponds to the size of the block in bytes, and in Ethereum, by the amount of gas

used in transactions. Gas is the measure of the computational cost of operations that are used

by transactions. Ethereum can be used to run complex code, so it is essential to charge users

based on the computational cost of their code instead of the size of the code (small pieces of

code might result in more computational work). Changing the size of blocks without increasing

block propagation speed can be harmful to the security of the blockchain [55]. These two things

limit the throughput of this type of blockchains (e.g., 7 tps in Bitcoin). Moreover, proof-of-work

makes the blockchain waste big amounts of energy [60]. When put together, these issues limit

the scalability and applicability of proof-of-work blockchains.

2.3 Proof-of-work alternatives

As stated before, proof-of-work has some limitations. It does not scale, and it requires too much

energy. To address this, some alternatives have appeared in recent years. Most of them exploit

the usage of a different kind of non-counterfeitable resource instead of computational power.

This resource can be real (proof-of-space) or virtual (proof-of-stake). There is an alternative that

uses trusted hardware instead of wasting resources, proof-of-elapsed-time. A short description

of these follows.

Proof-of-Stake was first discussed in a Bitcoin forum [86]. Nowadays it is the most popular

alternative to proof-of-work. It requires users to prove ownership of wealth (in the correspond-

ing cryptocurrency) instead of computational resources. This method is difficult to generalize

because there are lots of different algorithms. Usually, there is some source of randomness that

is used to select a single stakeholder2, that will be able to add the next block to the chain.

Blockchains that use this type of proofs have the advantage of consuming less energy because,

unlike in proof-of-work blockchains, users do not need to waste resources to mine blocks. In

proof-of-stake blockchains attacks that require holding a majority of the resources are more ex-

pensive because the attacker needs to buy a significant amount of currency, and after performing

the attack the value of the currency will probably drop. There is a huge variety of proof-of-

stake protocols (e.g., [78, 52, 56, 39]) with different properties. Bentov et al. [23] define a pure

2The probability of a stakeholder being selected is proportional to his wealth.
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proof-of-stake as a blockchain that solely uses proof-of-stake (i.e., does not use proof-of-work

in any step of the protocol). They classify PeerCoin (the first implementation of a proof-of-

stake cryptocurrency) [78] as a pure proof-of-stake, which is inaccurate since Peercoin also uses

Proof-of-Work. According to their own concept, it cannot be considered a pure proof-of-stake.

Proof-of-stake blockchains have several well-known problems [72]. Participating on the min-

ing protocol is computationally easy, so in case a fork happens the best strategy is mining on top

of every chain because we do not know which chain will end up becoming the valid chain. This

is known as the nothing-at-stake problem. Daian et al. [39] handle this problem by ensuring

that miners that sign multiple forks can only increase their reward by a small fraction. More

aggressive alternatives such as the punishments discussed in Slasher [29] handle this problem by

punishing miners that sign multiple blocks for the same depth.

Since mining is cheap, users can simulate mining different blocks. Then, they can check

which block gives him better chances of being selected again and add it to the chain. This sort

of behavior is known as costless simulation [71]. This problem exists in proof-of-stake systems

that use the miner as a randomness source. Ouroboros [56] solves this problem by drawing

randomness from a distributed coin tossing algorithm, while in Algorand [52] this problem is

solved by using a verifiable random function (VRF) [63] that randomly selects users.

Proof-of-Burn is a variant of proof-of-stake where miners have to prove that they burned

some coins. A user is able to burn coins by sending them to an unspendable address. Users

that burned more coins have higher chances of being able to mine the next block. In such

system burning coins can be seen as buying a mining rig. Buying more mining hardware, in

proof-of-work blockchains, gives you a better chance of successfully mining blocks, and so does

burning more coins in proof-of-burn blockchains. To the best of our knowledge, the only system

that uses this type of proof is Slimcoin [66]. However Slimcoin does not rely on this proof

alone, it combines proof-of-work, proof-of-stake, and proof-of-burn. Therefore, Slimcoin cannot

be considered a pure proof-of-burn system. For now, it is questionable if a pure proof-of-burn

system is possible since, to the best of our knowledge, the potential gains and limitations of

proof-of-burn are yet to be evaluated in peer-reviewed scientific literature.

Delegated Proof-of-Spake (DPoS) is another variant of Proof-of-Stake where each user

uses his stake to vote on which users are going to be the block producers [85]. These block

producers are equivalent to miners in Bitcoin, they are the ones that add blocks to the chain.

Although there are several systems that use this type of proofs (like EOS [6], Steemit [15] and

BitShares [3]), it lacks formal analysis and evaluation. One of the potential problems of DPoS

is becoming a partially centralized system, as a result of users not changing the block producers
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they vote for on a regular basis.

Proof-of-Elapsed-Time (PoET) is a novel technique that uses trusted execution environ-

ments (TEE) to run a “lottery” that selects the user that will mine the next block [2]. This

system uses the TEE to create a timer that once expired can be attested to check if the user

really did wait the right amount of time. The user that gets the shortest timer from the TEE

is selected as the leader of the round. This proof might be the closest we have to Nakamoto’s

vision of “one-CPU-one-vote” [65]. PoET was originally contributed by Intel and is used in

Hyperledger Sawtooth Lake [2]. The TEE is Intel’s Software Guard Extensions (SGX) [11].

SGX protects selected code and data from disclosure and modification.

This approach requires that we trust hardware from a single vendor, Intel. Moreover, Chent

et al. [34] show that by corrupting a fraction of Θ( log lognlogn ) nodes an attacker is able to compro-

mise the system. Thus the possible impact of attacks on SGX [53, 27, 76] needs to be further

studied.

Proof-of-Space has been suggested as an ecological alternative to proof-of-work [67, 46, 18].

Proofs-of-space are usually defined as a protocol where a prover (miner) must prove to a verifier

that he is storing some date of size N . Moreover, this protocol is divided into two stages, the

initialization stage and the execution stage. There are two significant approaches to this type

of proofs. The first approach is based on graph pebbling lower bounds and has two stages [46].

During the initialization stage, the prover starts by choosing a hard-to-pebble directed acyclic

graph. Then he computes labels for all the nodes of the graph. The label ln for each node n ∈ V

is given by ln = H(µ, n, lp1, ..., lpm), where H is a hash function and p1, ..., pm are the parents

of node n. Then, the prover computes a Merkle tree from the labels of the nodes and sends

the root3 of the tree to the verifier. Note that the leaves of the Merkle tree are the nodes of

the graph. Next, the verifier asks the prover to give the label of some of the nodes. For each

node n, the prover must respond with the label of the node ln and the labels of all its parent

nodes lp1, ..., lpm. If for all nodes, it holds that ln = H(µ, n, lp1, ..., lpm), the verifier accepts the

commitment. During the execution phase, the verifier asks the prover to give the value of some

of the labels. After, the verifier checks if with those values he is able to get the correct value

of the root of the tree. If this check passes for all the requested values, the verifier accepts the

proof. Dziembowski et al. [46] prove that a malicious user either needs to use N space or to

compute N times the hash function in order to make the verifier accept. A rational user will

always choose the first alternative because it is cheaper and faster. These are the best security

guarantees for this type of proofs.

3For a graph with 4 nodes the root would be H(H(n1, n2)H(n3, n4)).
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To the best of our knowledge, Spacemint [67], was never deployed. This implementation

has some problems that show that proof-of-space approach is not a good direct replacement for

proof-of-work. The size of the proof is large, in the order of Mbytes. The proof cannot be made

completely non-interactive since the user must send the Merkle tree commitment to the verifier.

Spacemint requires another miner to include in his block a transaction with the commit before

a user is able to start mining. Thus, the system loses one of the nice properties of permissionless

blockchains: the node’s ability to join the mining protocol just by listening to the network. If

all miners stop accepting new commit transactions, new nodes cannot join the protocol.

The second type of proof-of-space is based on inverting random functions [18]. We will start

by showing a simple construction for this type of proof-of-space and then proceed to explain the

construction presented by Abusalah et al. [18]. During the initialization, the verifier sends to

the prover the description of a random function f : [N ] → [N ]. The prover then computes the

entire function table of f . During the execution phase, the verifier sends to the prover a random

y ∈ [N ]. If the prover replies with x such that f(x) = y, the verifier accepts. This construction

fails to give good security properties due to Hellman’s time-memory trade-offs [54]. This gives

users the ability to trade space with computational power. Fiat and Naor [49] prove that an

adversary with S bits of information can invert function f : [N ] → [N ] by making T random

oracle queries to function f where: S2 · T ∈ Õ(N2).

Abusalah et al. [18] present a new construction that provides better guarantees than the

previous simple construction. Their construction has a better lower bound: S2 ·T = Ω(ε2N2). It

consists of using a function gf : [N ]→ [N ] where g : [N ]× [N ]→ [N ] is a random function and

f : [N ]→ [N ] is a random permutation. It follows that gf (x) = g(x, x′) and f(x) = π(f(x′)) for

any involution π4. If f is a function instead of a permutation then we will not need the involution,

the condition becomes f(x) = f(x′). By nesting this construction one gets even better lower

bounds Sk · T = Ω(εkNk) where k is the number of times we nested the construction. In this

model, during the initialization phase, the verifier sends to the prover the description of the

function gf : [N ] → [N ]. Then the prover computes the function table of gf . During the

execution phase, the verifier sends to the prover a random y ∈ [N ]. If the prover replies with a

pair (x, x′) such that f(x) = f(x′) (in the case that f is a random function) and g(x, x′) = y,

the verifier accepts.

Similarly to proof-of-stake, both constructions by themselves suffer from the costless simu-

lation problem. Since computing these proofs is cheap (does not require heavy computations),

an attacker can try to compute many possible blockchains, with different blocks, starting from

4A involution is a function that is its own inverse, such as a bit flip.
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the genesis block. If one of these chains has higher quality then the current active chain other

nodes will accept it.

The proof-of-space by Abusalah et al. [18] was created to be used in Chia [5], a cryp-

tocurrency project by Bran Cohen, creator of BitTorrent protocol. It will use proof-of-space

in conjunction with proof-of-time. Proof-of-time is based on verifiable delay functions (VDF)

[40, 83, 70, 25]. A VDF is a function that takes a predetermined amount of time to compute.

The output of the function must be quickly verifiable, and for every input to the function, there

must be a unique output. Running the function on a parallel computer will not speed up its

computation. Chia uses proofs-of-time to prevent costless simulation. Since each proof-of-space

requires a proof-of-time the simulation will not be for free, requiring some time to be executed.

Proof-of-time is similar to proof-of-work, as both require computation. However, each proof-of-

work puzzle has more than one solution and we can speed up its computation by using more

computational resources. Moreover, one might get lucky and solve the proof-of-work faster than

expected because it is a probabilistic scheme.

In Chia, there will be proof-of-space miners and proof-of-time miners. Each block will have

a proof-of-space followed by a proof-of-time. In order to participate in Chia’s mining protocol

the proof-of-space miner must start by initializing the space he will use in the proof-of-space

(computing part of the function table of gf ). After initializing the space he is able to start

mining. He will fetch the hash of the previous block. This hash will be the y value the miner

must be able to invert. However, since the range of the function is quite large, miners most

likely will not have any (x, x′) pair such that g(x, x′) = y. Instead, they must present the (x, x′)

for which g(x, x′) = y′ and the difference between y and y′ is minimal. The closest y′ is to y

the higher the quality of the proof-of-space. Then proof-of-space miners will propagate the best

proofs. The quality of the proofs-of-space gives the amount of time the VDF in the proof-of-time

must run for. Higher quality proofs-of-space will give faster proofs-of time thus incentivizing

miners to invest in space rather than time. After receiving the proofs-of-space the proof-of-time

miners will compute the VDF and add the block to the blockchain.

2.4 Hybrid Proofs

Some existing work explores the idea of combining proof-of-work and proof-of-stake. This type

of proofs was formally discussed by Duong et al in [44] where they present a provably secure

2-hop blockchain protocol. Their system has a blockchain that is divided into two chains (B, B̃),

one proof-of-work chain B and one proof-of-stake chain B̃. Every block in B must be followed

by a block in B̃ (with the same height). In this protocol, there are miners that extend B and

16



stakeholders that extend B̃. It runs in a static environment where each miner has the same

amount of computational resources and each stakeholder has the same amount of stake. The

system moves in proof-of-work rounds and proof-of-stake rounds. In the proof-of-work rounds, if

both chains have the same number of blocks, each miner has access to a single call to the Random

Oracle (equivalent to calling a hash function once). If this call meets the target difficulty he can

extend B. Note that during a proof-of-work round a solution might not be found. During the

proof-of-stake round, if the number of blocks in B is bigger then B̃ by one block, each stakeholder

checks if they have been chosen to extend the chain. All of them have the same probability of

being chosen. Moreover, proof-of-work blocks do not necessarily point to a stakeholder and can

become orphaned. Doung et al. prove that this protocol is secure even if the adversary controls

more than 50% of the computational power, as long as honest users control the majority of

stake [44]. TwinCoins [35] is an implementation of a cryptocurrency that uses this type of

hybrid proofs. It follows the model presented in [44] with some adjustments. There are two

types of proof-of-work blocks, attempting blocks and successful blocks. An attempting block

only becomes a successful block when a proof-of-stake block is added on top of it. Attempting

blocks are used to measure ratios (e.g., number of proof-of-work blocks in the last 2016 blocks)

that are useful for the difficulty adjustment mechanism.

Bentov et al. in [22] proposed Proof-of-Activity, a proof-of-stake extension for Bitcoin’s

proof-of-work. This proof is similar to the previous hybrid proofs. In this system, the proof-

of-work miner starts by generating an empty block header with the solution of the puzzle.

This header does not contain any transaction. It is used to derive which N stakeholders will

validate it. All of the chosen stakeholders must sign the header. The N th stakeholder must

add transactions to the block and the signatures of the other chosen stakeholders. Unlike in the

previous systems [44, 35], there is a single blockchain and adding blocks requires the combined

effort of proof-of-work miners and stakeholders.

This type of systems can lead towards some miners having undesirable behavior. Their

intent might not be to attack the system but rather increase their reward. Before broadcasting

the proofs-of-work, a miner can check if they are the chosen stakeholder. When they are not

the chosen stakeholder they can discard the solution and try to find another more beneficial

solution (where they are the stakeholder chosen to extend the chain). Moreover, they can just

stop approving other proof-of-work miners’ solutions to stall the system, giving them more time

to compute their solutions. If this behavior becomes the norm, then this kind of blockchains

will have low throughput.

17



2.5 Byzantine committee

We can think of proof-of-work as a sybil-proof leader election mechanism. Bitcoin uses proof-of-

work to select the user that can add his block to the chain, binding leader election to transaction

serialization. Some interesting recent works [48, 68, 57, 17, 57] explore separating transaction

serialization from finding the solution for proofs-of-work. Bitcoin-NG [48] probably was the first

work to come up with this idea. In this system, the blockchain is separated in epochs where each

epoch has a single leader. There are two types of blocks, keyblocks and microblocks. When a

user finds a proof-of-work solution he adds a keyblock with it to the chain, becoming the leader of

the current epoch. During this, he is in charge of serializing transactions by adding microblocks

which contain the transactions. Miners are supposed to mine their keyblock on top of the most

recent microblock, however, nothing forbids them from mining on an older microblock (this will

orphan some microblocks). To mitigate this problem, rewards are given by microblocks. 40%

of each microblock reward goes to the leader of the respective epoch while the other 60% goes

to the leader of the next epoch. This model is able to process more transactions then Bitcoin,

however like in Bitcoin, they can only be considered final when additional keyblocks are mined

on top. This leads to a transaction confirmation time similar to Bitcoin.

Efficient solutions to the Byzantine Generals Problem [58] such as Practical Byzantine Fault

Tolerance (PBFT) [32] require a fixed group of 3f + 1 nodes to tolerate f faults. In the permis-

sionless environment, this type of protocols is hard to use because the number of participants is

not known and dynamic. However using them in the permissionless environment becomes possi-

ble if the 3f + 1 required members are chosen with proof-of-work, forming a committee. Hybrid

Consensus [68] uses this method in the formalization of their protocol. It requires that x + λ

proof-of-work solutions are added to the blockchain (λ is a security parameter that ensures that

the previous x blocks are a prefix of all honest nodes’ chain). The miners of the x first blocks

will become the committee of the protocol and, using PBFT, will decide upon the serialization

of the transactions.

PBFT [32] is separated in views, each view has a single leader. This view only changes when

2f members of the committee send a view-change message to the leader of the new view. In

this protocol, view-changes only happen when the leader is not making progress (not proposing

new blocks in a blockchain). In a blockchain, this gives a single user the ability to choose

which blocks are going to be verified. He would be able to blacklist transactions from other

users. Moreover, this protocol uses MAC-authenticated direct communication channels (with

the exception of view-change and new-view messages), and according to [57] this results in a

communication complexity of O(n2). This communication complexity limits the scalability that
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this protocol can achieve.

ByzCoin [57] adapts PBFT to the permissionless blockchain environment. Similarly to

Bitcoin-NG [48] ByzCoin has keyblocks and microblocks. Every time a new keyblock is added,

a view-change occurs and the leader changes. Also, the user that added the keyblock receives

consensus group shares that allow him to participate in the committee. The number of views

where the user is part of the committee is given by these shares. When a fork happens (two

conflicting keyblocks) Byzcoin uses a deterministic function to break the tie. However, they

also state that if more then 33% of miners commit to the “losing” block before receiving the

“winning” block, either the system will accept the first block or lose liveness.

The use of direct communication channels does not scale when a leader needs to establish

connections with a big number of nodes. Serializing a batch of transactions requires that a

majority of the consensus group approve it. Since all nodes need to be authenticated all messages

that nodes send require a digital signature. Distributing, verifying and waiting for other members

of the committee to also verify a large number of signatures is inefficient. For solving this problem

Byzcoin uses a distributed collective signing protocol called CoSi [79]. The main benefit of

using this protocol is that participants instead of receiving a message of size O(n) only receive a

message of size O(1). Moreover, the complexity of verifying the signatures becomes O(1) instead

of O(n).

Byzcoin does not define how the reconfiguration of the consensus group is performed (re-

placing old members with newer members). This is an important part of the protocol because

a corrupt leader might be able to stall the reconfiguration process and slow down the system.

Solida [17] improves this part of the protocol. In their design when a miner finds a proof-of-

work solution it becomes an external leader. He is in charge of getting himself elected into the

committee. This ensures that the current members of the group are not able to stall this process.

All of the previous systems we discussed use proof-of-work. Nevertheless, a similar approach

that uses proof-of-stake exists, Algorand [52]. This system uses a VRF [63] to choose the elements

of the consensus group. The probability that a user is chosen is proportional to the amount

of stake they have. Algorand avoids forks by prioritizing safety and finality over liveness. A

block will only be inserted into the blockchain after the committee reaches an agreement. If the

committee does not reach an agreement, an empty block will be added instead.

Proof-of-Work consensus group protocols such as Solida [17] assume that an adversary is

not able to corrupt other participants instantly. In this context, corruption means that the

adversary is able to send messages on behalf of the corrupted node. If the adversary is able to

corrupt all the members of the committee, he is able to compromise the integrity of the system.
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Even if the adversary starts corrupting a node by the time he presents a proof-of-work solution,

by the time he is corrupted, the node will already have left the committee. Algorand achieves

instant corruption tolerance (adversary is able to instantly corrupt nodes) because the identity

of the committee is only known after their task is finished. The VRF ensures that only selected

users are able to verify that they were chosen. Nevertheless, this result can later be verified by

other users. After being selected committee members only need to send a single message.

2.6 Ripple and Stellar

Ripple [42] and Stellar [62] are exchange networks that have intrinsic cryptocurrencies. Unlike

traditional consensus protocols, they do not require a majority of honest nodes or resources

controlled by honest nodes. Instead, nodes require flexible trust assumptions; Each node has a

list of nodes that it trusts, unique node list (UNL) in Ripple, and quorum slices in Stellar.

In the Ripple consensus protocol, the ledger is maintained by validator nodes. Each node

stores the list of validators that he trusts in its UNL. Validators are responsible for adding new

entries to the ledger. The protocol works in rounds. Initially, servers gather valid transactions

and group them into the candidate set. Then, validators collect the candidate sets of other

servers in their UNL. In the first round, they propose the candidate set that is agreed by 50%

of the servers in their UNL. They proceed to vote on which transactions will be added. In the

following rounds, validators must propose new candidate sets. The percentage of servers in their

UNL that agree with the new sets must increase by 10% in each round. Once the percentage

becomes 80% the selected transactions are added to the ledger.

As long as 4
5 of the servers in the UNL of a node work correctly, Ripple consensus is correct.

According to [20] there must be an overlap of at least 40% of validators in each nodes’ UNL,

otherwise, forks might happen. As result, users do not change their UNL [62]. Ripple provides a

default list of 5 trusted validators that are controlled by Ripple Labs [31]. This results in users

needing to trust a third party and leads to centralization of this cryptocurrency.

Stellar is the intellectual descendant of Ripple. The Stellar consensus protocol (SCP) uses a

consensus model called federated Byzantine agreement (FBA). In this protocol, each validator

chooses his own quorum slice. A quorum slice is the sufficient set of nodes that convinces a

particular node of agreement(all nodes agree on the same version of the ledger). This is based

on the principle that once a sufficient number of trusted nodes agree on which transactions must

be added to the ledger, no honest node will ever disagree. This quorum slice can be kept in a

hierarchical structure. Different sets of nodes are organized in levels. Different levels can have

different agreement requirements, on the top tier a validator might need 3
4 of servers in that set
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to agree on new transactions, while on a low level only requiring 1
4 . Quorum slices must overlap

in order to prevent forks.

According to [31] there is not enough information to determine the fault tolerance of this

system. Moreover, this model can be vulnerable to sybil attacks. A malicious user can create

multiple identities and behave correctly over the years so that other validators end up trusting

his nodes. After achieving a significant influence over the protocol he might be able to disturb

the integrity of the system.

2.7 Alternatives to Blockchain

Tangle [73] is the data structure used to store the distributed ledger in IOTA [12]. It uses

a novel model that replaces the blockchain with a directed acyclic graph (DAG). Transactions

are the vertices of this graph, each transaction is connected to two previous transactions (that

may coincide) forming the edges of the graph. In order to add a transaction to the tangle, a

user must approve two transactions that are already in the DAG and solve a proof-of-work.

Solving this proof-of-work does not give a monetary reward as all coins were created in the

genesis transaction. If two transactions t1 and t2 are connected by an edge from t1 to t2, then

t1 approves t2. If t1 and t2 are not connected by an edge but there is a path that connects

t1 to t2, then t1 indirectly approves t2. If there are two conflicting transactions one of them

will become orphaned, meaning that it will not be indirectly approved by new transactions.

Each transaction has an associated weight that is proportional to the difficulty of its respective

proof-of-work. How strongly a transaction approves other transactions depends on this weight,

meaning that the stability of the system depends on the assumption that the majority of the

computational power is controlled by honest nodes.

IOTA’s developers initially decided to use their own hash function, Curl, in their system.

This was not a good decision, since later on a vulnerability that allowed forging signatures was

found in it [47]. This vulnerability was fixed and the hash function was replaced by a new hash

function based on SHA-3. On top of this, the lack of peer-reviewed analysis (as pointed out in

[31]) makes it unclear whether this system provides the same correctness guarantees that other

blockchain systems have.

Serialization of Proof-of-work Events (SPECTRE) [77] is a consensus protocol for

cryptocurrencies. It replaces the blockchain with a DAG, similarly to tangle [73]. The vertices

of this DAG are blocks, equivalent to blockchain’s blocks. New blocks should reference all 0-

depth blocks that the miner knows off. Each block orders the blocks he references (past blocks),

and the blocks that reach him (future blocks, i.e., blocks that will be mined on top of it). The
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union of these sets is called the cone, the blocks that the current block is able to serialize.

The anticone is the complementary set of the cone. In this system if two transactions share

a common input they are conflicting transactions, i.e., they spend the same money. If there

are conflicting transactions, the first transaction should be accepted. To ensure this, SPECTRE

uses a voting mechanism that is able to order blocks. One limitation of this model is that it does

not guarantee anything if two conflicting transactions are issued at the same time. It requires

that the user waits before issuing the second transaction. Their justification is that the payee is

able to see the conflicting transaction before considering his transaction accepted. However, if

the attacker is able to partition the network (e.g., separating honest nodes from the rest of the

network), the payee might only see the conflicting transaction when it is too late.

2.8 Background

In this section, we will discuss some topics that are not directly related to blockchains. Never-

theless, they are used in some blockchain models [56] as well as on our approach. We will mainly

discuss protocols where two (or more) parties generate a random bit (or a group of bits) in a

secure, non-biased way.

Classical Coin flipping

A coin flipping protocol is a protocol where two (or more) parties generate a non-biased random

bit. In the original setting, presented by Blum [24], Alice and Bob want to flip a coin over

the telephone. They use a commitment scheme, a cryptographic primitive that allows Alice to

choose a value and to send a message with a commitment of that choice to Bob. Bob can’t

recover the value from this message. Later on, Alice can reveal the value, and Bob can check

with the commit if the value she revealed is, in fact, the value she chose initially. In order to

produce a random bit, Alice starts by sending Bob a commitment of a value x1. Then Bob sends

Alice a value x2. Alice reveals x1 to Bob, and they can both compute x = x1 + x2 mod 2.

The classical approach to this problem suffers from a problem, after receiving x2 from Bob,

Alice can abort before revealing her commit. This behavior prevents Bob from knowing x1 and

computing x. In the two-party setting, this problem is hard to avoid. Following, we will discuss

the n-party setting.

Coin flipping using Publicly Verifiable Secret Sharing

To avoid the aborting problem from the classical coin flipping setting, Kiayias et al. [56], run

the protocol in a multi-party setting and use a publicly verifiable secret sharing (PVSS) scheme
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[75]. A PVSS is essentially a verifiable secret sharing (VSS) scheme. A VSS scheme works in

two phases. In the distribution phase, a dealer divides a secret s into n shares s1, ..., sn and

sends them to participants p1, ..., pn. Then, in the reconstruction phase, the participants can

reconstruct the secret by pooling together the shares from at least t participants. Moreover,

participants can check if the share they received is correct. VSS schemes are prepared to resist

malicious users, such as a dealer that sends incorrect shares, and participants that submit invalid

shares.

In a PVSS [75], the goal is that everyone (not just the participants), can verify the proto-

col. The dealer sends encrypted shares E(si) as well as a non-interactive zero-knowledge proof

(NIZK) that E(si) is the encryption of a valid share. During the reconstruction phase, partici-

pants must publish si and a NIZK that prooves that si is the correct decryption of E(si). Like

in the VSS scheme, by combining at least t shares, it is possible to recover the secret.

In a coin flipping protocol that uses PVSS, the participants start by sharing the shares of

the secret (a string chosen at random). After this phase, even if the dealer of the secret aborts

and as long as there is an honest majority amongst the participants, they can reconstruct all

secrets. By combining all the secrets, they create a random bit. In Ouroboros [56], Kiayias et

al. use this protocol in a way that is not adaptable to most blockchain models. Ouroboros is

a proof-of-stake blockchain, that is divided into epochs that are divided into slots. A random

coin is selected for each slot; the owner of this coin is the slot leader. The slot leader is allowed

to generate a block and insert it into its slot. During each epoch, each slot leader (only the

leaders of the slots of the current epoch participate in this protocol) must choose a secret, split

it into shares, and distribute them. Then, leaders must reveal their secrets. If any leader does

not disclose its secret, the other leaders will use the shares to reconstruct it. The result of this

protocol is a random string that is used to select at random the slot leaders of the next epoch.

This protocol exploits the fact that the identity of the slot leaders is known at the start of each

epoch, i.e., we know who is going to add the following blocks. However, in most blockchain

protocols, we do not know who will be the users generating the following blocks.

Syta et al. created some coin flipping protocols that are resistant against Byzantine ad-

versaries, RandShare and RandHound [80]. RandShare is a protocol that securely creates a

random string as long as at least 2f + 1 out of the 3f + 1 participants are honest. Nevertheless,

this protocol is not scalable, with a message complexity of O(n3), where n is the number of

participants.

RandHound is similar to RandShare, as it also creates a random string, and can tolerate

f malicious nodes, but uses a client/server model. RandHound is able to scale better than
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RandShare by dividing nodes into smaller sub-groups. Nodes send the shares to the members

of their sub-group, instead of sending them to all nodes. This reduces the communication

complexity to O(nc2), where c is the average size of the sub-group. Moreover, the client can

produce a log that proves that the random string was created correctly. RandHound ensures

unbiasability, and unpredictability, even if an adversary controls the client and at most f − 1

node. Nonetheless, RandHound does not account for clients that abort. If the client aborts, the

protocol will not return the random string. We will use this protocol in our approach with a

small change that allows us to account for the case where the client aborts.

2.9 Summary

There are many protocols for blockchains in permissionless environments with different prop-

erties. To finish this section we present a summary of the main properties of some blockchain

models in Table 2.1

The classical method, proof-of-work, has some limitations that impair the potential of

blockchains. Alternatives such as proof-of-stake and proof-of-space are vulnerable to simula-

tion attacks because computing simulations is cheap. A possible solution is combining these

proofs with proof-of-work, trying to get the best of both worlds. Existing methods that com-

bine proof-of-work with proof-of-stake such as [22, 35] require that different users take turns

collaborating to extend the chain. This is something that must be avoided because it gives the

second user the ability to stall the system. Moreover, they inherit the energy consumption from

proof-of-work and, like proof-of-stake, are unfair to smaller stakeholders.

Blockchain protocols that use committees [57, 17, 68] are an interesting alternative to proof-

of-work. These protocols achieve better throughput, however, they require that the members of

the committee are online.
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Protocol Pros Cons

Proof-of-work Well studied and proven
to work in pratice.

Poor throughput, high
energy consumption.

Proof-of-stake Energy efficient. Does
not require wasting re-
sources.

Nothing-at-stake, cost-
less simulation and un-
fair to smaller miners.

Proof-of-elapsed-
time

Energy efficient. Does
not require wasting re-
sources.

Requires having to trust
hardware from a single
vendor. It is not safe if
a small fraction of nodes
is corrupted.

Proof-of-space Energy efficient. ASIC
resistant.

Costeless simulation.

Hybrid Proofs Attacks require a ma-
jority of both types of
resources.

Energy consumption
similar to proof-of-
work.

Byzantine commit-
tee

Good throughput. The members of the
committee must be on-
line.

Table 2.1: Blockchain models summary.
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Chapter 3

Etherspace

In this chapter, we start by presenting a naive approach where we replace proof-of-work with

proof-of-space in the Ethereum protocol. Then we discuss why this approach fails. We then

present an abstract design of Etherspace, which solves the identified problems. Finally, we

describe two concrete implementations of that abstraction.

3.1 Intuition

We aim at implementing a permissionless blockchain protocol that is more energy efficient, and

that provides similar levels of performance and security as proof-of-work blockchains. Some

blockchains such as Ouroboros [56] and Algorand [52] achieve the energy-efficiency goal at the

expense of tight timing assumptions, which in turn harm the security of the protocol. To

accomplish our goal, we will use an underexplored alternative to proof-of-work, proof-of-space.

Replacing proof-of-work with proof-of-space is not an easy task; multiple problems arise when

making this change. In a proof-of-work blockchain, miners race to find the solution to the proof-

of-work puzzle. The first miner that finds the solution broadcasts its block, and other miners

will start mining on top of that block. In a proof-of-space blockchain, all miners try to add their

block to the chain. Therefore, we must be able to select one of these blocks as the winner of

that round. Moreover, we need to prevent miners from compromising the winning criteria. In

our approach, the winning criteria is the quality of the proof. Miners must generate answers

to proof-of-space challenges; to each answer, we assign a quality level. This challenge must be

randomly generated; if miners can bias the challenge, for instance, by drawing randomness from

the blockchain, they can compromise the winning criteria. To ensure the unbiasability of the

challenge, we draw randomness from a source other than the blockchain. To the best of our

knowledge, this is the first proposal of a proof-of-space blockchain that uses this approach.
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Figure 3.1: This figure depicts the table of the function gf .

3.2 From a Naive Approach to the Requirements of Etherspace

In this section, we discuss a naive approach that we will use as the base for our solution. This

naive approach introduces some important aspects of our model.

From the two proof-of-space models that we discussed in Section 2.3, we have chosen the

one that is based on inverting random functions [18]. The model based on graph pebbling lower

bounds gives better security guarantees [67], however, it is not possible to make the proofs

completely non-interactive. This hinders its usability as a proof-of-work alternative because

new miners will have to be approved by previous miners. Moreover, this proof-of-space model

has proofs with larger sizes. The model based on inverting random functions [18] can be made

completely non-interactive, making it a better choice.

Before the miner is able to start mining, he must allocate his target amount of memory,

which corresponds to computing the function table of gf [18]. This is done as follows - the miner

starts by computing the table of f . Every time he finds a collision in function f , it means that

he has a suitable input pair (x, x′) for the function g, i.e., the condition f(x) = f(x′) : x 6= x′

must hold. Then he must compute g(x, x′) and store it along with x,x′ as portrayed in Figure

3.1. When the table gf reaches the desired size, the miner can discard the table of f and start

mining.

In this approach, the last n bits of the hash of the last block will be used as the proof-of-space

challenge y, i.e., the value that the miner must invert. Since the size of the full table of gf is

very large, and because no miner can generate the entire table, there is the probability that no

miner has the pair (x, x′), such that gf (x) = y, for a given challenge y. Instead of presenting

the exact inversion of y, the miners will have to present the inversion of y′, from the locally

stored pairs, such that the absolute difference between y and y′ is minimal. Then, we can assign

quality levels to each answer of the miners. The bigger the difference between y and y′ the lower

the quality of the proof-of-space. The worst possible answer for a given challenge will be given

either by 0 or 2n. The value of the worst possible answer will be used as a reference for the
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Figure 3.2: This figure shows how the vales the miner must invert are generated, and an example
of a proof-of-space with three iterations.

quality of each proof-of-space.

Since there is the probability that different miners have answers with the same quality for

the same challenge y, we make them invert more than one challenge. This will reduce the odds

of a tie. The hash of the last block gives the first of these values; the remaining ones are given

by the hash of the previous challenge, as can be seen of Figure 3.2.

In this approach, blocks will be slightly different from blocks in the Ethereum blockchain.

Blocks in Ethereum do not have signatures. At first, this might seem like a security flaw;

without signatures, integrity is not guaranteed. However, we have to take into account the fact

that blocks must contain a valid proof-of-work. If we change a single bit from a valid block, the

hash of the block will change, invalidating the proof-of-work. So in order to change an existing

block, a miner would need to compute a new proof-of-work. We can conclude that proof-of-work

gives us integrity guarantees over the block. Nevertheless, we do not have non-repudiation.

It is, therefore, possible to mine blocks on behalf of other miners. Although this is possible,

it is unlikely that there are miners wasting resources while someone else gets the reward. By

removing proof-of-work from our model, we lose integrity. Thus, in our approach, all blocks

must contain the signature of the miner that created them.

One of the most critical parts of blockchain protocols is the chain selection rule. In our

approach, we will use a variation of the chain selection rule used in Nakamoto Consensus [26].

While on Nakamoto Consensus, the active chain is the chain that needed more computational

power, in our model, the active chain will be the one that needed more space (i.e., the sum of

the proof-of-space qualities of all blocks in the chain is higher).

At first, this approach might seem correct. However, it has two flaws. By using the hash

of the last block as the challenge of the next block, we are giving the miner control over the

challenge of the next block. Allowing a malicious miner to manipulate the challenge of the next
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block. Before adding his block to the chain, the miner can check if he has a good answer (i.e.,

an answer with high quality) to the proof-of-space challenge that is generated by his block. If

his answer has low quality, he is able to change the block that he is adding to the chain, by

changing the order of the transactions, which will change the hash of the block and generate a

different proof-of-space challenge.

The second problem is that nothing ensures a time interval between blocks. If the time that

a miner takes to create a block is less than the time that it takes to propagate the block to the

network, it will be harder for the blockchain to converge. Besides, since proofs-of-space can be

generated quickly because they essentially boil down to looks on local disk, a malicious miner

can quickly create a long sequence of blocks. Even if the quality of the proof-of-space of each

block is low, the total quality of the chain might be higher than that of a chain with few blocks

with proof-of-space with high quality. Due to these problems, a malicious miner with limited

space can rewrite the blockchain starting at any point.

After considering these problems, we conclude that any blockchain needs to satisfy the

following requirements:

1. Concurrent deterrence - No miner should be able to gain an advantage by generating blocks

concurrently for the same chain height.

2. Gradual generation - No miner should be able to create long sequences of continuous blocks

quickly on top of the blockchain.

3. Chain integrity - No miner should be able to rewrite the blockchain by producing a block

with a high-quality proof-of-space for a lower height.

The first two requirements are related to the problems of our naive approach. Concurrent

deterrence is related to the first problem. In this blockchain model miners have an incentive to

to produce blocks concurrently. When they create a block, they get to peak at the challenge of

the next block. Creating multiple blocks allows miners to select the block that generates the

challenge for which they have the best answer. In a traditional proof-of-work blockchain, miners

do not win anything by producing blocks concurrently for the same height. The probability

that they solve one proof-of-work puzzle does not increase. Gradual generation is related to

the second problem. If we can ensure that there is a time interval between each block, we also

assure that miners cannot generate a continuous chain of blocks quickly. Although the third

requirement is not related to the problems of the naive approach, it is essential and transversal

to blockchains in general. We want to prevent adversaries from rewriting the blockchain.
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3.3 Etherspace

In this section, we present the general approach used in Etherspace, which solves the previous

problems.

To solve the problems of the naive approach we start by defining an oracle. All nodes (note

that miners are the subset of nodes that add blocks to the blockchain and some nodes do not add

blocks to the blockchain) have access to this oracle, which ensures all the requirements presented

in the previous section. The oracle recieves as argument a number h > 0 that represents a

blockchain height, and returns the proof-of-space challenge for which the block at height h must

contain an answer. Moreover, the oracle only returns the challenge for height h, after an interval

of t seconds has passed since it returned the challenge for height h− 1. Initially, the oracle only

returns the challenge for height 1, and for any other height, it returns nothing. When a node

asks the challenge for height 1 for the first time, the oracle starts a timer. After t seconds, when

the timer finishes, the oracle, when prompted, returns the challenge for height 2. When a node

asks for the challenge for height 2 for the first time, the oracle will once again start the timer,

and so forth. In the next subsections, we present two possible implementations for this oracle,

but before, we discuss how the oracle satisfies the requirements.

In a system that uses the naive approach discussed in the previous section, miners could bias

the challenge of the following block by generating blocks concurrently. Thus, granting malicious

miners an advantage. This problem comes from using the blockchain as a source of randomness.

Etherspace uses the oracle as a source of randomness. Therefore, preventing miners from biasing

proof-of-space challenges and assuring concurrent deterrence.

The oracle directly ensures gradual generation. It is only possible to create blocks for the top

of the blockchain when the oracle releases a challenge. If the oracle only releases the challenge

on strict intervals, miners will always have to wait before creating another new block for a higher

blockchain height. The speed by which miners can add continuous chains of blocks to the top

of the blockchain becomes bounded by the oracle.

Proof-of-space grants the last requirement. In order for a miner to cause a rewrite of the

blockchain from an older block, most of the blocks of his private chain would need to have

proofs-of-space with higher quality. However, he will only be able to produce better proofs-of-

space for every height if he has more space dedicated to the protocol then the others. We can

use a variation of the common assumption used in blockchains; the resources of the attacker are

bounded (persistent memory in this case). Further research is needed to define the bound that

this approach can tolerate. The closest blockchain model, Chia [37], is reported to be secure

as long as honest miners control at least approximately 61.5% of the space dedicated to the
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protocol.

This oracle enforces a strict notion of rounds in our protocol. In each round, every miner

will try to add its block to the chain. This will lead to a large number of blocks flooding the

network. All but one of the blocks will be orphaned since there can only be a winner per round.

In order to reduce the number of blocks that will end up orphaned in the network, each node

keeps a record with the quality of the best proof-of-space it saw in each round. If a node receives

a block with a proof-of-space with lower quality than the best of that round it will discard it

immediately. Conversely, if the quality of the proof-of-space is higher than the best, the node

will update the register and broadcast the block.

3.3.1 Etherspace using SGX

The first option to implement our oracle is using a trusted execution environment (TEE) such

as SGX [11]. We can use the TEE to generate the same timer (across all nodes). When the

timer finishes, it will return the proof-of-space challenge for the current blockchain height (the

SGX will ensure that this challenge is the same for all nodes in the network). Moreover, we can

ensure by using the TEE that the challenge in incoming blocks is correct.

Using this approach would require miners to trust the protocol as well as hardware from an

individual vendor. Moreover, if an attacker was able to compromise its TEE into returning the

challenges earlier, he could use the time advantage to find a better proof-of-space. Due to these

problems, we decided not to explore this alternative.

3.3.2 Etherspace using Coin Flipping

This section, covers the second possible oracle implementation. This is the approach we chose to

implement and further explore in this work. It consists of combining the usage of committees,

similar to what is used in Byzcoin [57], with a coin flipping protocol, akin to what is used in

Ouroboros [56], to generate a random challenge for the next block. As long as the space resources

of a malicious miner are bounded, we know that the majority of the members of the committee

will be honest. This protocol requires that miners communicate with each other; its execution

will take some time that is limited by the latency of the network. This way, we ensure that

there is a time interval between each block, bounded by the time that the protocol takes. The

protocol that we use for coin flipping is Practical Hound, a variant of the RandHound protocol

[80], further discussed in Section 3.4. This protocol has a useful feature, it generates a log. This

log can be used to check if the challenge was created correctly.

Since a large number of miners add blocks asynchronously to the blockchain, the last k blocks
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Figure 3.3: Example of a sliding window of size w = 5 and k = 4

might change. Let H be the height of the block at the top of the blockchain. If we select a big

enough k, we get that, with high probability, the blocks below height H − k will never leave the

blockchain. Then, we can select a fixed-size continuous group of w blocks from height H − k

to H − (k + w). This fixed-size group of w blocks will be the Practical Hound sliding window,

described in more detail in the next section and similar to what is used in Byzcoin [57]. In Figure

3.3 we can see an example of a sliding window. The miners of the blocks in the sliding window

will run the Practical Hound protocol to generate the challenge of the next block. When an

iteration of the Practical Hound protocol ends, the challenge of the next block is released, the

sliding window moves one block forward, and a new iteration of Practical Hound starts. After

each round finishes, all nodes will learn of the challenge in two different ways. Either they will

receive the challenge creation log, or they receive a new block. In this approach, whenever a

node sends a block, it also sends the challenge creation log. Even if a malicious miner wanted to

hide the result of the challenge, he would need to reveal it in order for its block to be accepted.

In this model, the blockchain will end up having a slightly different structure. Practical

Hound ensures that there will be a log of the creation of the challenge. This log proves that the

challenge was created correctly. All blocks will have a reference to a proof-of-space challenge

and its creation log. Each Practical Hound iteration depends on the challenge of the previous

iteration. In turn, we get that the challenge creation logs will be connected and that each

iteration cannot start before the previous one finished. Thus, apart from maintaining the regular

blockchain, nodes also maintain a parallel chain of proof-of-space challenges, as depicted in

Figure 3.4.

3.4 Practical Hound

Out of the two protocols we discussed in Section 2.8, we decided to explore RandHound. Rand-

Hound has better scalability than RandShare and generates a log that allows checking whether

or not the randomness was created correctly. Nevertheless, in order to use RandHound, we had

to make some modifications. RandHound uses a client/server model. The client is the partici-
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Figure 3.4: New structure of the blockchain

pant that divides the servers into smaller sub-groups and moves the protocol forward. In order

to bias the protocol, the client would need to control f − 1 other nodes, but he can prevent the

protocol from finishing by aborting.

We can consider the client in RandHound the leader of the protocol; we will use this de-

nomination from now on. We need a mechanism that enables us to detect if the leader is not

making progress and replace it. To achieve this, we can use a view-change mechanism like in

Practical Byzantine Fault Tolerance [32]. This mechanism allows us to replace the leader if he

is not making progress. We will call Practical Hound to this version of RandHound.

Let n be the size of the committee, let h be a height of the blockchain (the blockchain height

for which the challenge must be connected), let v be the current view number (which will start

as zero for every new committee), let C be the most recent proof-of-space challenge, and let H

be a secure hash function. The leader of the new committee will be given by H(h, v, C) mod n.

If, at any step of the protocol, the leader stops making progress, the members of the committee

will start sending view-change messages. Once a node receives 2f view-change messages, he will

increase the view number and check who is the leader of the new view. The leader of the new

view will send a new initialization message to signal the start of the Practical Hound run of the

new view. Whenever a node receives a view-change message, it will add it to his copy of the log.

When the current committee finishes creating the challenge at height h, the sliding window

moves one step forward, changing one of the members of the committee. The new committee

will start creating the challenge for height h + 1. The Practical Hound run for height h + 1

cannot start before the challenge of height h because each run uses the challenge of the previous

run as entropy for selecting the leader. The rest of the Pratical Hound protocol is equal to

RandHound [80].
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3.5 Vulnerabilities

To the best of our knowledge, our approach has two possible security vulnerabilities. The first

affects the general Etherspace approach, while the second comes from the implementation of the

oracle. In our model, blocks can create more than one block for each height and more than one

block with the same proof-of-space. A malicious miner can try to compromise the protocol by

broadcasting a large number of different blocks for the same heigh with the same proof-of-space.

If the quality of the proof-of-space is low, then miners will drop these blocks, as discussed in

Section 3.3. Moreover, if the quality of the blocks is high, then the possible effects of this attack

are not clear.

To mitigate this vulnerability, we can extend the responsibility of our committee. Besides

creating randomness, it could also serialize transactions, like in Byzcoin [57]. The committee

would choose which transactions are to be added for each blockchain height. Moreover, we

could remove uncles entirely from our protocol. With these changes, miners can only produce

one block for each height using the same proof-of-space. Even if a miner produces a second block

using his second-best proof-of-space, the new block will most likely be dropped by the protocol.

The second vulnerability comes from implementing the oracle using a coin flipping protocol.

Note that this vulnerability will not be present when implementing the oracle with a TEE.

A malicious miner can choose a point in the blockchain, and start growing a private chain

simulating the committee (even if its blocks have low quality proofs-of-space). At some point,

if it continued to add blocks, the miner would control the committee of his private chain. The

miner would then be able to produce challenges at a faster rate than in the active chain and

eventually outgrow it, making his private chain the active chain. He would be successful even

if he only added low quality blocks because, eventually, the sum of the qualities of all blocks in

his chain would be higher.

This vulnerability is trickier to solve. It comes from the fact that the reconfiguration of the

committee is not ingrained into the blockchain. In our approach, only the chain selection rule

can solve a disagreement on who is the committee. We need to ensure that there is no room for

doubting who the next committee will be. By modifying the protocol, we can ensure that there

is an agreement on the reconfiguration of the protocol. We can do reconfigurations in a similar

way to Solida [17]. Let h be the height for which the committee will produce a challenge, w the

size of the committee, and k the security parameter that defines the number of blocks that we

have to prune from the blockchains of all honest nodes to find a common prefix. The committee

that will create the challenge for height h consists of the miners that generated the blocks from

height h− k to h− (k + w). However, before producing the next challenge, the miner that will
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enter the committee for creating the challenge for height h+ 1 must be selected in a similar way

to how the committee reconfiguration is done in Solida. To do this, the miners that generated

the blocks from height h− (k− 1) to h− (k+w− 1) will run a consensus protocol to select the

new member. The miner of block h − (k − 1) will be the external leader in charge of selecting

the new member. At first, this might look like a bad decision. There is a probability that nodes

do not have the same block at height h− (k − 1). However, due to the different qualities of the

proofs-of-space of the different blocks, we can rank the different possible external leaders. Miners

will only accept as the external leader, the miner that is trying to elect himself as a member of

the next committee if he has the best proof-of-space amongst all miners that are trying to elect

themselves. Once a miner claims to be the external leader, he must actively work to perform

the reconfiguration. To protect the protocol from external leaders that stalls (e.g., a malicious

miner that has the highest proof-of-space for height h− (k− 1), makes his leadership claim but

is trying to prevent the protocol from moving forward), we allow the remaining members of the

committee to vote on removing the external leader. As a consequence, the claim of the miner

with second-highest proof-of-space will be accepted. Once an external leader is accepted and

elected as the new member, the block at height h− (k− 1) is finalized, and the miners of blocks

h−k to h− (k+w) will execute the Practical Hound Protocol. The blockchain will also have to

include the log of messages of the new member selection protocol, which can be stored alongside

the Practical Hound log.

With this mitigation to produce two different valid new members for the next committee,

an attacker needs to control more than f of the members of the committee. Our previous

assumption covers this scenario; honest miners control more than 2f + 1 of the members of the

committee.

It is necessary to explore these vulnerabilities further. In this work, we were not able to

study them enough. A continuation of this work will have to address them adequately.

3.6 Summary

This chapter discussed the key design ideas behind Etherspace. Etherspace is a novel proof-

of-space approach to blockchain protocols that aims at reducing the energy requirements of

blockchains. To accomplish this goal, it combines coin flipping to create randomness and byzan-

tine committees to solve problems that come from replacing proof-of-work with proof-of-space.
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Chapter 4

Evaluation

In this chapter, we evaluate Etherspace. The main goal of the evaluation is to answer the

following questions:

• How much energy does Etherspace consume? This question is essential to our evaluation

since the primary goal of this work is reducing the energy consumption of blockchain

protocols.

• Is Etherspace able to converge? We want our approach to offer similar levels of security

to a proof-of-work blockchain, and thus ensure that the blockchain converges.

• How much throughput is Etherspace able to handle? We want our approach at least to

have the same performance as Ethereum.

To evaluate our approach, we deployed a private Ethereum network with 50 miners, spread

across three machines, with the following specifications:

• one machine with an Intel(R) Xeon(R) Gold 6138 CPU with 20 cores with a clock rate of

2, 00 GHz and 62GB of RAM

• one machine with an Intel(R) Xeon(R) CPU E5− 2660 v4 with 28 cores with a clock rate

of 2, 00 GHz and 62GB of RAM

• one machine with an Intel(R) Xeon(R) CPU E5 − 2648L v4 with 28 cores with a clock

rate of 1, 80 GHz and 31GB of RAM

For the workload, we used real Ethereum transactions (from block 0x50f8f4 to block 0x5f308)

taken from Etherscan [9]. The transactions were fed to the miners by a Python script running

in the corresponding machine. We ran each experiment for 1 hour and discarded the first and

last ten minutes of each experiment.
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4.1 Implementation

To test our approach, we implemented the Etherspace prototype on top of the Go Ethereum

implementation version 8. To instantiate the functions f and g required for the proof-of-space,

we followed the proposal of Abusalah et al. [18], and used truncated AES with mode CBC (by

truncating the output of AES, it becomes a one-way function). The 128 bit block that serves as

input is formed by a nonce (this nonce has a fixed size of n bits), preceded by 128−n zeros. We

use as initialization vector (IV) the hash of the nonce combined with the address of the miner.

After computing AES, we will remove the most significant bits of the result, leaving only n bits.

To store the proof-of-space data, we started by using the database used in geth, goleveldb1,

an implementation of the LevelDB2 key-value store. We used as database key the value that the

miner is able to invert (y) and, as the value, the input pair that originated it (x, x′). We chose

to store it like this because we only perform searches on this database based on the inversion y.

Unfortunately, the time to construct the proof-of-space using goleveldb was significant. Besides,

most of the time, miners will not have the exact inversion of the challenge, and goleveldb does

not have a successor or a predecessor method. The only solution becomes iterating the table

until we find the closest value, which will have a time complexity of O(n), where n is the number

of entries in the table. Since the miner has to invert m values in each proof-of-space, the time

complexity of computing the proof-of-space will be O(mn).

To reduce the time that constructing proof-of-space took with goleveldb, we decided to use

a B-tree that offered successor and predecessor methods. We based our B-tree implementation

on a publicly available implementation3. We had to modify the original implementation because

it was an in-memory B-tree, and we needed persistent storage B-tree. By using a B-tree, we

reduced the time complexity of computing proof-of-space from O(mn) to O(m logn)

In Ethereum, blocks do not have a size limit. However, in practice, they are limited by

the amount of gas used in transactions. The gas limit is not constant; miners can increase it

or decrease it over time. We decided to use the gas limit registered in 30/09/2019, which was

9 976 323 in the Ethereum blockchain, according to Etherscan [9], as the starting gas limit.

For simplicity, transactions do not affect the state of the system in our experiments, i.e.,

they are not executed.

1https://github.com/syndtr/goleveldb
2https://opensource.googleblog.com/2011/07/leveldb-fast-persistent-key-value-store.html
3https://github.com/google/btree
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4.1.1 Probabilistic Approximation in Etherspace

Testing the protocol with a large number of miners would require large amounts of space, which

is not practical to obtain for our experiments. Therefore, we decided to replace the proof-of-

space with a probabilistic approximation. In order to do this, we measured the distribution

of the quality of the proofs-of-space. We instantiated the size n of the values required by the

proof-of-space (x, x′, y) to be 164. Theoretically, with this parameter, the maximum number of

entries of the table of gf is 65 536 (a single account cannot produce the entire table of gf ). In

reality, the tables of all accounts will be different, and some of them will not contain inversions of

some of the possible values. We started by generating the proof-of-space table of 500 addresses.

These tables ended up having a maximum of nearly 48 000 entries. We also instantiated the

number of inversions that each miner must present for each proof to be 100. The first of the

values the miner must invert was created at random. The next ones were created by applying

two times the hash function Keccak-2565 to the previous value.

We created a total of 42 693 proof-of-space challenges and measured the quality of the answers

generated by each table. The quality of the proofs-of-space follows a normal distribution with

a mean of 95 514.2 and a standard deviation of 470.7. Then, we replaced the proof-of-space in

our Etherspace prototype with a random number generator that follows this distribution.

4.1.2 Probabilistic Approximation Ethereum

In order to run experiments with a much larger number of miners than our available number

of physical nodes, we disabled the proof-of-work component. This enabled co-locating multiple

miners on the same machine. Proof-of-work was replaced by a probabilistic mining selection

process, implementing a poisson distribution. After tunning the process, we got an average

block time of 14.26 seconds which is approximately one second higher than the current Ethereum

average block time (i.e., approximately 13 seconds) and similar to last year’s block time [9].

4.1.3 Practical Hound Prototype

For our tests, we did not develop a full Practical Hound implementation due to time constraints.

We consider that our system is in a steady state when the Practical Hound committee does not

go through reconfiguration (changing the leader). In our evaluation, we only take into account

the steady state, so we did not implement the view-change mechanism. We use 30 as the k

parameter, the difference between the height of the head of the blockchain and the block of

4In a real proof-of-space implementation, this value would be higher. However, reducing the size of the problem
will most probably not affect the distribution of the quality significantly.

5We chose to use Keccak-256 because it is the hash function used by the Etheruem protocol.
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the last member of the committee. Note that choosing a safe k parameter will require further

research. For our testing purposes, we only need a high value.

The Practical Hound protocol requires the usage of collective signatures known as CoSi

[79]. Since we only use honest miners, we did not implement this signature scheme. The

computational cost of Cosi in a group of 512 members is approximately 0.5 seconds [79]. We

used smaller groups in our tests, so we expect this time to be negligible with respect to the time

to run the protocol, which requires the exchange of messages in a WAN environment. Moreover,

not using Cosi in our prototype does not reduce message complexity. We can conclude that the

time difference between a Practical Hound round that uses Cosi, and one round that does not,

is negligible. Even though we do not use Cosi, all messages that are sent through our prototype

still contain an ECDSA signature that is verified by all miners that receive it (even when using

Cosi, Practical Hound still requires that all messages are signed).

We also implemented Schoenmakers’s PVSS scheme [75]. We started by trying to reuse EPFL

DEDIS lab’s Cothority framework6 implementation, but unfortunately, we could not reuse the

code since they used a different elliptic curve from Ethereum, and some of the required operations

were not implemented in Ethereum. Instead, we implemented a similar algorithm that only used

what is available in Ethereum, based on EPFL DEDIS lab’s PVSS implementation.

Moreover, we do not check if the log produced by the Practical Hound protocol is correct. In

our testing setting, we know that this log will always be correct because all miners are honest.

Naturally, in a full Practical Hound implementation, these simplifications are not acceptable.

However, for our testing purposes and because of the reasons provided above, these simplifica-

tions do not affect the main experimental conclusions.

4.1.4 Practical Hound Committee Size

The size of the Practical Hound committee size is an important parameter. Moreover, even

with a fixed committee size, we can change the number of sub-groups and the cardinality of

sub-groups. The sub-groups should be balanced, i.e., approximately have the same number of

members. Increasing the size of the committee increases the number of malicious participants

that the committee tolerates, at the expense of increasing the running time of Practical Hound,

and in turn, the time between blocks. Note that increasing the time between blocks is not

necessarily a bad thing as it allows bigger blocks with more transactions.

In an ideal setting, we want a large committee. If the Etherspace network had the same size

as the Ethereum Mainnet (7 369 nodes [8]), a committee of 100 nodes would only account for

6https://github.com/dedis/cothority
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Committee
Configuration

Number of
sub-groups

Participants
per

sub-group

Total number
of

participants

Average Block
Time (sec)

Standard
deviation (sec)

Number of
blocks

Configuration 1 2 4 9 14.89 2.53 161

Configuration 2 4 4 17 18.35 4.19 131

Configuration 3 6 4 25 23.88 6.74 101

Configuration 4 2 6 13 18.15 3.72 132

Configuration 5 4 6 25 24.78 5.49 97

Configuration 6 2 9 19 23.17 5.55 104

Table 4.1: Configuration of the Pratical Hound committee used in our experiments.

approximately 1.36% of the nodes. However, the available resources limit the number of nodes

and, in turn, the size of the committee. We are only running 50 nodes, and we want no more

than 50% of the nodes participating in the committee.

We tested our protocol with different committee configurations to determine how it impacts

the protocol (e.g., its effect on block time and throughput). Table 4.1 shows for the different

configurations used, the number of blocks added to the blockchain during the experiment, the

average block time, and the standard deviation. Note that the leader of the protocol also counts

as a participant but is not in any of the sub-groups.

From the results in Table 4.1, we can see that increasing the size of the sub-groups has a

significant effect on the average block time. While configuration 6 and configuration 3 have a

similar block time,the latter has more participants. This result is expected since the message

complexity of this protocol is O(nc2), where n is the number of participants, and c is the average

size of the sub-groups. In a real setting, using a large number of small sub-groups seems to be

the best alternative if we want shorter block times. Note that if a miner has mined more than

one block in a Practical Hound sliding window, he will play the role of more than one participant

in the Practical Hound protocol. Since the participants of this protocol make up a significant

amount of all miners (18% for configuration 1 and 50% for configuration 3 and 5), it is highly

probable that some miners had to play more than one role. Whenever this happens, the miner

will have to perform the roles sequentially (our implementation does not parallelize these cases),

which will slow down the average block time.

4.2 Energy Consumption

To compare the energy consumption of Etherspace and Ethereum, we estimate how much energy

is needed to add a block to both blockchains. At the time of this writing, the current number

of nodes in the Ethereum main network is 7 369 [8]. If Etherspace had the same amount of

miners as the Ethereum network has nodes, each miner would call the hash function 198 times
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to generate all the proof-of-space challenge values for every block. (if we use the same number

of iterations that we used to measure the quality distribution of the proof-of-space answers,

each miner will have to generate 99 values. To generate each value, it will need to call the

hash function 2 times. All miners, in total, will call the hash function 1 459 062 times for each

block. At the time of the writing of this work, the proof-of-work difficulty in the Ethereum

main network is 2 466 TH [9], meaning that a solution to the proof-of-work is found, on average,

once every 2 466 ∗ 1012 calls to the hash function. We can use this number as an estimate

of the number of calls to the hash function that are required for adding a block to Ethereum

blockchain. We can see that the number of calls to the hash function that is needed per block

for Ethereum is several orders of magnitude higher than for Etherspace.

To have a rough idea of how those hash functions calls translate to energy, we will use as a

reference an Nvidia Geforce GTX 1070 (not overclocked) that has a hash rate of 27 MH/s and a

consumption of 135 W [14]. With this GPU, adding a block to the Ethereum blockchain would

cost 12 329 999 999.99 Joule (J), while adding a block to the Etherspace blockchain would cost

7.30 J. As expected, the energy required to add a block to the Ethereum blockchain is several

orders of magnitude higher than in Etherspace. We can conclude that Etherspace achieves its

goal of being substantially more energy efficient than Ethereum.

4.3 Blockchain convergence

To analyze the convergence of the blockchain, we will count the number of times that miners

switched active chains, i.e., the occurrence of forks. Note that when a miner adds a block to

its active chain, it is not switching chain, it is extending its active chain. If the miner switches

between two chains with the same number of blocks, where the only different block is the block

with the highest height, we consider it a fork (i.e., a fork with a single block). We consider that

the size of a fork is equal to the number of blocks that the miner pruned to switch between

chains.

The number of forks can be seen in Figure 4.1. Note that the figure shows the total number

of forks over 40 minutes and does not show the number of forks for each blockchain height. We

can see that Etherspace has approximately ten times more forks of one block than Ethereum.

This result is expected since in Etherspace, all miners create blocks for every blockchain height,

while on Ethereum, only a limited (sometimes only one) miner create blocks for each height.

Nevertheless, Etherspace had no forks bigger than one block, while, Ethereum had forks of two

and three blocks. This is probably due to Etherspace having a better differentiation mechanism

for blocks at the same height (i.e., the quality of the proof-of-space).
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Figure 4.1: Size and number of occurences of forks during the course of the experiments.

4.4 Throughput

To evaluate the throughput of Etherspace and Ethereum, we must start by answering the ques-

tion: How many blocks should we wait until we consider that a block is finalized? If we want

to compare both models on a similar level, it is essential to use the same number of blocks for

both of them. The time between blocks is similar in both models; if we give one of the models

a larger margin, then the transaction confirmation time (TCT) of that model will always be

better. According to Ethereum’s creator [28] in a blockchain with an estimated block time of 17

seconds, ten confirmation blocks give a secure waiting margin, which corresponds to the number

of blocks added in three minutes. For this evaluation, we decided to use a slightly larger margin,

12 blocks, which corresponds approximately to the number of blocks added in three minutes in

the Ethereum experiment. Note that since the most extensive fork that we had observed was of

3 blocks, we could have used a smaller margin (i.e., four blocks).

In our test environment, we have a Python script that feeds transactions to the miners. Every

time a miner receives a transaction, we store the timestamp at which the transaction entered the

network (note that miners only store the timestamp when they receive the transaction from the

script, if they receive it from another miner, they do not store the timestamp). Whenever a block

stored in the chain of a miner gets 12 blocks on top of it, we store a timestamp and associate

it with all the transactions of the block. These timestamps allow us to measure how much time

it took for each transaction to be accepted in the blockchain - the transaction confirmation
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time (TCT). We can also consider the number of transactions that were finalized during the

experiment, divide it by the time of the experiment (i.e., 40 minutes since we discard the first

and last 10 minutes) and get an idea of how many transactions our system can handle, we

measure the throughput in transactions per second (TPS).

Protocol TCT (sec) TPS (tx/sec)

Etherspace config 1 3 min 07 5.26

Etherspace config 2 3 min 50 4.46

Etherspace config 3 5 min 04 3.60

Etherspace config 4 3 min 47 4.44

Etherspace config 5 5 min 13 3.48

Etherspace config 6 4 min 52 3.67

Ethereum 3 min 06 4.11

Table 4.2: Transaction confirmation time and transactions per second of each protocol.

We can see in Table 4.2 both the TCT and TPS of each protocol. We can conclude that

both Ethereum and Etherspace have similar throughputs. Moreover, in Figure 4.2, we can see

the relation between the Etherspace block time and the number of transactions per second that

the system can handle. This relation is probably caused by the significant ratio of committee

members to miners in the network. A decrease of the ratio of committee members to miners

will probably increase the throughput of Etherspace significantly.

Figure 4.2: Relation between average block time and transactions per second
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4.5 Discussion

In this chapter, we presented the evaluation of Etherspace and described the experimentation

environment. Our main results are the following:

• The energy consumption of Etherspace is several orders of magnitude lower than Ethereum.

• Etherspace converges faster than Ethereum.

• The throughput of Etherspace is similar to Ethereum.

In this evaluation, we only considered honest miners. Measuring the fault tolerance and

security of our protocol is an important task that we leave for future work. Moreover, some

questions about this work remain open, and further research is needed. Nevertheless, this

work shows promising results and Etherspace achieves its primary goal, it is an energy-efficient

alternative to traditional blockchain protocols.
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Chapter 5

Conclusions

Proof-of-work has been successful in maintaining the security of blockchain protocols while

wasting vast amounts of energy. This work explored the usage of proof-of-space in blockchains.

We analyzed the problems that come from replacing proof-of-space with proof-of-work, such as

secure randomness generation, and proposed a novel approach that combines multiple techniques

used in different blockchain models.

With this work, we were able to implement a practical proof-of-space blockchain on top of

Ethereum, named Etherspace. Etherspace is an important milestone in making proof-of-space

more than a promising theoretical alternative. Etherspace consumes considerably less energy

than Ethereum. Each block in Etherspace requires ten orders of magnitude less energy to be

generated than an Ethereum block. Besides, Etherspace has shorter forks than Ethereum and

similar levels of throughput. We can conclude that Etherspace provides a promising blockchain

model that can one day replace traditional proof-of-work blockchains and reduce the environ-

mental impact of blockchain protocols.

A blockchain that uses proofs-of-space will consume less energy. Therefore, mining will also

be cheaper, which will result in more small miners and, in turn, increase the decentralization

of the protocol while providing a sustainable blockchain. A sustainable future demands green

blockchains. The techniques and results of this thesis have been partially presented in the

following peer-reviewed publication: Diogo Castilho, Paulo Silva, João Barreto, and Miguel

Matos. Etherspace: uma abordagem proof-of-space na blockchain ethereum. In INForum 2019

- Atas do 11 o Simpósio de Informática, pages 193–204. NOVA.FCT Editorial, 2019. ISBN

978-972-8893-75-0. URL http://inforum.org.pt/INForum2019/docs/atas-do-inforum2019.
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5.1 Future Work

This work focused on exploring proof-of-space in blockchain protocols as a replacement for proof-

of-work. While the results look very promising, several research and implementation questions

remain open.

The approach that we explored needs to be tested with dishonest nodes that use different

strategies, such as trying to double-spend transactions or meddling with the Practical Hound

protocol. It is crucial to measure the resistance of the system against attacks and the impact

on performance.

We also need to study further the possible vulnerabilities of this protocol. Furthermore, we

need to implement mitigations to the vulnerabilities mentioned in Section 3.5.

Recently, Chia released a document with more details about their proof-of-space construction

[16]. This document will have to be analyzed to find possible improvements for our proof-of-space

implementation.

The implementation of the Practical Hound protocol has to be completed and possibly

improved. We used a naive approach to the broadcast of Practical Hound messages, which

definitely can be improved. A better implementation of Practical Hound will lead to faster

block times. Moreover, parameters used in the Practical Hound protocol will have to be further

studied, such as the size of the committee.
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[18] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid

Reyzin. Beyond hellman’s time-memory trade-offs with applications to proofs of space.

Cryptology ePrint Archive, Report 2017/893, 2017. https://eprint.iacr.org/2017/893.

[19] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,

Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,

Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith

Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed

Cocco, and Jason Yellick. Hyperledger fabric: A distributed operating system for per-

missioned blockchains. CoRR, abs/1801.10228, 2018. URL http://arxiv.org/abs/1801.

10228.

[20] Frederik Armknecht, Ghassan Karame, Avikarsha Mandal, Franck Youssef, and Erik Zen-

ner. Ripple: Overview and outlook. volume 9229, 08 2015. doi: 10.1007/978-3-319-22846-4

10.

[21] Adam Back. Hashcash - a denial of service counter-measure. Technical report, 2002.

[22] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of activity: Extending

bitcoin’s proof of work via proof of stake. Cryptology ePrint Archive, Report 2014/452,

2014. https://eprint.iacr.org/2014/452.

[23] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work.

In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan Wallach, Michael Brenner, and

Kurt Rohloff, editors, Financial Cryptography and Data Security, pages 142–157, Berlin,

Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-53357-4.

[24] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems.

SIGACT News, 15(1):23–27, January 1983. ISSN 0163-5700. doi: 10.1145/1008908.1008911.

URL http://doi.acm.org/10.1145/1008908.1008911.

50

http://drops.dagstuhl.de/opus/volltexte/2018/8640
https://eprint.iacr.org/2017/893
http://arxiv.org/abs/1801.10228
http://arxiv.org/abs/1801.10228
https://eprint.iacr.org/2014/452
http://doi.acm.org/10.1145/1008908.1008911


[25] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay functions.

Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712.

[26] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and

Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocur-

rencies. 2015:104–121, 07 2015. doi: 10.1109/SP.2015.14.

[27] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger Kapitza. Roll-

back and forking detection for trusted execution environments using lightweight collective

memory. CoRR, abs/1701.00981, 2017. URL http://arxiv.org/abs/1701.00981.

[28] Vitalik Buterin. On slow and fast block times. https://blog.ethereum.org/2015/09/14/on-

slow-and-fast-block-times/, . Accessed: 17-10-2019.

[29] Vitalik Buterin. Slasher: A punitive proof-of-stake algorithm.

https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/, .

Accessed: 28-11-2018.

[30] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,

abs/1710.09437, 2017. URL http://arxiv.org/abs/1710.09437.

[31] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild. CoRR,

abs/1707.01873, 2017. URL http://arxiv.org/abs/1707.01873.

[32] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings

of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99,

pages 173–186, Berkeley, CA, USA, 1999. USENIX Association. ISBN 1-880446-39-1. URL

http://dl.acm.org/citation.cfm?id=296806.296824.

[33] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.

Rivest, and Alan T. Sherman, editors, Advances in Cryptology, pages 199–203, Boston, MA,

1983. Springer US. ISBN 978-1-4757-0602-4.

[34] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On security

analysis of proof-of-elapsed-time (poet). In Paul Spirakis and Philippas Tsigas, editors,

Stabilization, Safety, and Security of Distributed Systems, pages 282–297, Cham, 2017.

Springer International Publishing. ISBN 978-3-319-69084-1.

[35] Alexander Chepurnoy, Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. Twinscoin: A

cryptocurrency via proof-of-work and proof-of-stake. Cryptology ePrint Archive, Report

2017/232, 2017. https://eprint.iacr.org/2017/232.

51

https://eprint.iacr.org/2018/712
http://arxiv.org/abs/1701.00981
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1707.01873
http://dl.acm.org/citation.cfm?id=296806.296824
https://eprint.iacr.org/2017/232


[36] Bram Cohen. Incentives build robustness in bittorrent, 2003.

[37] Bram Cohen, , and Krzysztof Pietrzak. The chia network blockchain. hhttps://www.chia.

net/assets/ChiaGreenPaper.pdf, 2019.

[38] Wei Dai. b-money. http://www.weidai.com/bmoney.txt, 1998.

[39] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake.

Cryptology ePrint Archive, Report 2016/919, 2016. https://eprint.iacr.org/2016/919.

[40] Benedikt Bünz Dan Boneh, Joseph Bonneau and Ben Fisch. Verifiable delay functions.

Cryptology ePrint Archive, Report 2018/601, 2018. https://eprint.iacr.org/2018/601.

[41] Helga Danova. Ghash.io pool is closed. https://blog.cex.io/news/announcement-ghash-io-

pool-closing-15878. Accessed: 22-11-2018.

[42] Arthur Britto David Schwartz, Noah Youngs. The ripple protocol consensus algorithm.

https://ripple.com/files/ripple_consensus_whitepaper.pdf.

[43] John R. Douceur. The sybil attack. In Revised Papers from the First International

Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London, UK, UK, 2002.

Springer-Verlag. ISBN 3-540-44179-4. URL http://dl.acm.org/citation.cfm?id=

646334.687813.

[44] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2-hop blockchain: Combining proof-of-work

and proof-of-stake securely. Cryptology ePrint Archive, Report 2016/716, 2016. https:

//eprint.iacr.org/2016/716.

[45] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Proceed-

ings of the 12th Annual International Cryptology Conference on Advances in Cryptology,

CRYPTO ’92, pages 139–147, London, UK, UK, 1993. Springer-Verlag. ISBN 3-540-57340-

2. URL http://dl.acm.org/citation.cfm?id=646757.705669.

[46] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.

Proofs of space. Cryptology ePrint Archive, Report 2013/796, 2013. https://eprint.

iacr.org/2013/796.

[47] Thaddeus Dryja Ethan Heilman, Neha Narula and Madars Virza. Iota vulnerability report:

Cryptanalysis of the curl hash function enabling practical signature forgery attacks on the

iota cryptocurrency. https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md.

Accessed: 30-11-2018.

52

hhttps://www.chia.net/assets/ChiaGreenPaper.pdf
hhttps://www.chia.net/assets/ChiaGreenPaper.pdf
https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2018/601
https://ripple.com/files/ripple_consensus_whitepaper.pdf
http://dl.acm.org/citation.cfm?id=646334.687813
http://dl.acm.org/citation.cfm?id=646334.687813
https://eprint.iacr.org/2016/716
https://eprint.iacr.org/2016/716
http://dl.acm.org/citation.cfm?id=646757.705669
https://eprint.iacr.org/2013/796
https://eprint.iacr.org/2013/796


[48] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. Bitcoin-ng: A

scalable blockchain protocol. CoRR, abs/1510.02037, 2015. URL http://arxiv.org/abs/

1510.02037.

[49] Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions.

SIAM J. Comput., 29(3):790–803, December 1999. ISSN 0097-5397. doi: 10.1137/

S0097539795280512. URL https://doi.org/10.1137/S0097539795280512.

[50] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process, 1985.

[51] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:

Analysis and applications. Cryptology ePrint Archive, Report 2014/765, 2014. https:

//eprint.iacr.org/2014/765.

[52] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-

gorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17, pages 51–68, New York, NY,

USA, 2017. ACM. ISBN 978-1-4503-5085-3. doi: 10.1145/3132747.3132757. URL http:

//doi.acm.org/10.1145/3132747.3132757.
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