
Large Scale Distributed Algorithms Simulator

Inês Amaral Sequeira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Miguel Ângelo Marques de Matos

Examination Committee

Chairperson: Prof. João António Madeiras Pereira
Supervisor: Prof. Miguel Ângelo Marques de Matos

Member of the Committee: Prof. João Coelho Garcia

November 2019

ii

For my parents,

iii

iv

Acknowledgments

I would like to thank my advisor Professor Miguel Matos for all the guidance throughout this

work. I would also like to thank my friends. Last but not least, I would like to thank my parents,

my sister and my brother. I could not have made it without their support.

This work is partially funded by Fundo Europeu de Desenvolvimento Regional (FEDER)

via Programa Operacional Regional de Lisboa and by Fundos Nacionais via FCT - Fundação

para a Ciência e a Tecnologia through project Lisboa-01-0145-FEDER-031456 (Angainor) and

UID/CEC/50021/2019.

v

vi

Resumo

Os sistemas distribúıdos, e os algoritmos distribúıdos subjacentes, estão na base de inúmeros

serviços usados hoje em dia, como Computação em Nuvem, Redes Sociais ou Cripto-moedas.

Devido à sua importância, é fundamental que os algoritmos distribúıdos sejam devidamente

avaliados para garantir que funcionam como especificado, mesmo na presença de condições

adversas. A simulação é uma abordagem útil para fazer essa avaliação, em particular nas fases

iniciais de desenvolvimento, pois permite testar os algoritmos num ambiente completamente

controlado. Infelizmente, os simuladores existentes têm várias lacunas como, por exemplo,

modelos de simulação irrealistas, pouca escalabilidade ou falta de funcionalidades fundamentais

como a modelação de assincronia entre processos.

Nesta tese, propomos o Corten, um novo simulador, desenhado de raiz, que preenche as

lacunas acima identificadas, produz simulações reproduźıveis e é eficiente, permitindo simular

milhares de nós numa máquina com recursos modestos. Na nossa avaliação ilustramos as prin-

cipais funcionalidades do simulador e demonstramos a sua aplicação por comparação ao estado

da arte.

Palavras-chave: Algoritmos Distribúıdos, Simulação, Larga Escala, Avaliação

vii

viii

Abstract

Distributed systems, and the underlying distributed algorithms, are at the base of countless

services used today, such as Cloud Computing, Social Networks or Criptocurrencies. Due to their

importance, it is fundamental that distributed algorithms are evaluated properly, to ensure that

they work as specified, even in the presence of adverse conditions. Simulation is a useful approach

to do that evaluation, particularly in the initial phases of development, because it allows for

the algorithms to be tested in a completely controlled environment. Unfortunately, existing

simulators have several shortcomings, for example, unrealistic simulation models, poor scalability

or lack of fundamental functionalities, such as modelling asynchrony between processes.

In this thesis, we propose Corten, a new simulator, designed from scratch, which overcomes

the shortcomings mentioned above, produces reproducible simulations and is efficient, allowing

to simulate thousands of nodes in a machine with modest resources. In our evaluation, we

illustrate the main functionalities of the simulator and demonstrate its use in comparison with

the state of the art.

Keywords: Distributed Algorithms, Simulation, Large Scale, Evaluation

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

Glossary . xvii

1 Introduction 1

2 Related Work 3

2.1 Concepts . 3

2.2 Simulation only . 4

2.2.1 PeerSim . 4

2.2.2 Optimal-sim . 5

2.2.3 PlanetSim . 5

2.2.4 NDP2PSim . 6

2.2.5 D-P2P-Sim . 7

2.2.6 PeerfactSim.KOM . 8

2.2.7 DistAlgo . 8

2.3 Simulation and real execution . 9

2.3.1 ProtoPeer . 9

2.3.2 Neko . 10

2.3.3 RealPeer . 10

2.4 Emulation and real execution . 11

2.4.1 OverlayWeaver . 11

2.5 Real execution . 12

2.5.1 SPLAY . 12

2.5.2 P2 . 13

xi

2.5.3 Mace . 13

2.6 Summary . 14

3 Corten 17

3.1 Architecture . 17

3.2 Random Number Generation . 22

3.3 Event Queue Structure . 22

3.4 Interactivity and Extensions . 23

3.5 Discussion . 23

4 Evaluation 25

4.1 Micro-benchmarks . 25

4.2 Macro-benchmarks . 29

4.2.1 Case study: Chord . 29

4.2.2 Comparison with PeerSim . 30

5 Conclusions 33

5.1 Future Work . 33

Bibliography 35

A Echo Application 39

xii

List of Tables

2.1 Overview of the state-of-the-art tools . 15

xiii

xiv

List of Figures

2.1 Common API of PlanetSim . 6

3.1 Message sending in Corten . 18

3.2 Method call in Corten . 19

3.3 Corten’s Architecture . 19

4.1 Churn configuration used in the churn experiment 26

4.2 Configuration used in the churn experiment . 26

4.3 Churn micro-benchmark . 27

4.4 Churn from the perspective of a single process 27

4.5 Network Latency micro-benchmark . 28

4.6 Process Asynchrony micro-benchmark . 29

4.7 Memory usage for Corten and PeerSim . 31

4.8 Real time duration of Corten and PeerSim simulations 32

xv

xvi

Glossary

API Application Programming Interface

DHT Distributed Hash Table

DOLR Decentralised Object Location and Routing

GUI Graphical User Interface

KBR Key-based Routing API

P2P Peer-to-Peer

RNG Random Number Generator

xvii

xviii

Chapter 1

Introduction

Distributed applications and systems have an increasingly important role in the development of

modern computational systems. Distributed systems are ubiquitous, continuously growing and

becoming more complex. Therefore, it is important to build robust and dependable distributed

systems, because distributed systems are at the centre of several areas, such as the technolog-

ical and financial areas. Due to the importance of distributed systems, and consequently the

importance of the distributed algorithms on which they rely, it is necessary to guarantee that

the algorithms behave correctly under the specified models. However, the inherent difficulty in

designing correct algorithms led to the emergence of several techniques and tools to help the

designer.

A distributed algorithm can be described through a high-level specification language, such as

TLA+ [LMTY02], and it can be formally validated through the use of tools, such as TLC [LMTY02].

However, there is a gap between this specification and an implementation of the same algorithm,

due to simplifications in the specification and due to the fact that there is not a direct trans-

lation between a specification and an implementation. The same can be said for the relation

between the pseudocode of an algorithm presented in a scientific paper and the implementation

of the same algorithm. A good specification does not necessarily imply that the implementation

does what it is supposed to do according to the specification. Moreover, a specification does not

always model, or allow to model, what happens in adverse situations, such as churn or packet

loss. Due to this fact, there is a need to test and evaluate distributed algorithms in controlled

environments.

Tools such as simulation can be used to facilitate the development and testing of distributed

algorithms. In simulation, there is total control over the execution environment, for example, it is

possible to control churn and submit the algorithm to several adverse situations that can be found

in practice. There is a vast number of simulation tools with different goals and models. However,

1

current simulators have several limitations: poor scalability, lack of fundamental functionality,

such as modelling asynchrony between processes, or simplifying assumptions that can lead to

incorrect designs if not used with care. For example, PeerSim [MJ09] allows for applications to

make calls to methods of other nodes directly, therefore modelling atomic message exchanges

which is unrealistic in most models.

In this thesis, we solve these problems with Corten, a new simulator which covers the follow-

ing functionalities: models several types of churn; models network asynchrony (latency, jitter,

packet loss); models process asynchrony, which, to the best of our knowledge, no other simulator

currently supports; checkpointing, allowing to save a snapshot of the simulation and restore it at

a later point in time. Each experience in the simulator is reproducible, making it possible to, for

example, repeat an experiment in which there was an unexpected result and study it in more de-

tail. The reproducibility characteristic makes it possible for third parties to verify the obtained

results. Corten is available as open-source in https://github.com/miguelammatos/corten.

The rest of this document is organised as follows. Chapter 2 presents a revision of related

work. Chapter 3 describes Corten’s architecture and implementation. Chapter 4 defines the

algorithms and metrics used for Corten’s evaluation and describes the obtained results. Chapter

5 presents the conclusions and future work.

2

https://github.com/miguelammatos/corten

Chapter 2

Related Work

There are several ways to evaluate and develop distributed algorithms, namely using simulators,

emulators and real executions. We divided the discussion into sections in order to focus on each

type of solution at a time and to have a clear way of specifying which category the systems dis-

cussed belong to: Simulation only, Simulation and real execution, Emulation and real execution,

and Real execution. We introduce core concepts in Section 2.1 and discuss the above mentioned

approaches in Section 2.2 to Section 2.5.

2.1 Concepts

In this section, we introduce some core concepts that will be used throughout the rest of the

document.

There are several alternatives for testing and evaluating a distributed system: simulation,

emulation and executing a real system in a testbed. Simulation is the process of designing a

model of a real system and conducting experiments with this model for the purpose of under-

standing the behaviour of the system and/or evaluating various strategies for the operation of

the system [KHZ+05]. A network topology is the arrangement of elements, such as nodes and

links, of a communication network. Simulation does not directly represent the underlying net-

work topology for data transmission between peers, but tries to account for influencing factors

such as latency and jitter. A simulator abstracts the network through a simplified interface.

Message passing calls are passed to the simulator kernel and added to a queue. There are no

actual packets being sent and received. An emulator provides a fully fledged network interface

and typically provides its own implementation of the network stacks. Emulators are more com-

plex to implement but allow for a more detailed representation of the system and capture the

structure of the network more closely. Simulators can be used to test more complex systems

3

since they avoid the details of the network implementation by replacing it with a queue based

model. For that same reason they are more scalable than emulators. A testbed is a controlled

environment for testing systems. The execution of experiments in testbeds suffers scalability,

reproducibility and requires existing prototypes [SGR+11].

In the context of Peer-to-Peer (P2P) applications, it is common for nodes to join and leave

the network frequently. This is called churn. Moreover, P2P applications are typically built on

top of an overlay.

An overlay network is a computer network on top of another network. The nodes in an

overlay network are connected with one another through logical or virtual links. Each of these

links correspond to a path in the underlying network.

2.2 Simulation only

In this section, we discuss systems that provide a means to develop applications for simulation,

and where the code for simulation cannot be used directly to run in a real setting. We use the

term simulation only to state that the code for simulation without any modification cannot be

run in a real environment.

2.2.1 PeerSim

PeerSim [MJ09] is a simulator for P2P systems. PeerSim models a network as a list of nodes.

In PeerSim, the actions each node will perform are called protocols. Protocols are defined

by the developers, by implementing a specific Java interface. In PeerSim, a simulation contains

initialisers and controls. Initialisers are executed before the simulation and controls are executed

during the simulation. They can be used to monitor or modify components. PeerSim provides

cycle-based and event-based engines. In the cycle-based model, protocols from the participating

nodes are executed in a round-robin fashion. In the event-based model, events or messages are

executed according to a specified chronological order. Simulations are described by plain text

configuration files. PeerSim can use trace-based datasets, in order to reproduce an experiment.

It can simulate failures and churn. It supports graph representations of the overlay networks,

which can be exported for visualisation.

On the one hand, the cycle-based engine scales well but it is not very realistic, on the other

hand the event-based engine is more realistic but does not scale as much. The cycle-based

engine is not very realistic because it does not simulate the transport layer and does not provide

concurrency, i.e. nodes communicate directly with one another and, in some sequential order,

each node performs some actions, such as calling methods and performing computations. In the

4

event-based engine, PeerSim has to handle message sending and each control has to be scheduled

explicitly.

2.2.2 Optimal-sim

Optimal-sim [WI05] is used to generate overlay network topologies and simulate behaviours of

nodes. Optimal-sim is implemented in Java. The underlying network topologies are generated

by a topology generation tool, called BRITE [MM00]. Optimal-sim is able to simulate a network

with up to 10 000 nodes. Optimal-sim is an event-based simulator and can simulate the join,

departure and failure of nodes. A simulation can be described in a simulation scenario file, which

contains the events to be executed. A description of a P2P algorithm can be written using the

API provided by Optimal-sim. P2P overlay networks built by peer nodes at the application level

are generated by Optimal-sim. The authors define the following metric: average hop count,

which is an important indicator to evaluate efficiency, and number of messages transferred.

A topology optimisation mechanism, developed by the authors, was tested using Optimal-sim.

With this optimisation mechanism, a peer node reconfigures the topology based in the neighbour

nodes’ information. Both the virtual links at the P2P level and the hop count of physical links

between peers are considered in the mechanism. This mechanism has some awareness of the

underlying network topology and by using it a reduction in the average hop count between any

pair of peer nodes was achieved. This indicates that Optimal-sim is useful and can be used to

test and compare different overlay algorithms and optimisations to existing algorithms.

2.2.3 PlanetSim

PlanetSim [GPM+05] is a simulation framework for overlay networks and services. PlanetSim

was developed in Java. PlanetSim is divided into Application Layer, Overlay Layer and Network

Layer. By using layers and the Common API [DZD+03], PlanetSim is able to decouple services

built in the application layer and P2P algorithms in the overlay layer. The Common API provides

a layer of abstraction between the services and the overlay algorithms. The Common API tries to

identify the fundamental abstractions provided by structured overlays and to define APIs for the

common services they provide. Within the Common API there is the Key-based Routing API

(KBR). The KBR represents the basic capabilities which are common to all structured overlays.

The goal of the Common API is for all overlay protocols to implement the KBR. By having all

overlay protocols implement the KBR, they can be used interchangeably, i.e. applications that

are built on top of overlays can use and be experimented on top of any overlay. For example,

in Figure 2.1 we have Application A which uses Overlay A through KBR calls, if we change

5

Figure 2.1: Common API of PlanetSim

Overlay A to Overlay B, Application A still works, as long as both Overlay A and Overlay

B implement the KBR. PlanetSim uses FreePastry’s version of the Common API. FreePastry

is an open-source implementation of Pastry [RD01] intended for deployment in the Internet.

FreePastry is intended primarily as a tool that allows interested parties to evaluate Pastry and

as a platform for the development of applications. Since PlanetSim uses FreePastry’s version of

the Common API, services and applications made for FreePastry can be used in PlanetSim and

experimented on overlay algorithms other than Pastry.

In each step of the simulation, outgoing messages are moved to incoming queues for all nodes.

The authors state that, to change from simulation to a real system, the network implementation

could be changed from a simulated network into a network which routes the messages using

appropriate TCP or UDP connections on top of a real IP network, but this was not implemented.

PlanetSim is able to simulate churn and can serialise the full state of a simulation to a file. This is

useful for large simulations and saves computing time, since it can be used after stabilising a huge

overlay and later on resume the simulation from that point. PlanetSim has Chord [SMLN+03]

and Symphony [MBR03] overlays implemented, and services such as CAST, Distributed Hash

Table (DHT) and Decentralised Object Location and Routing (DOLR).

PlanetSim separates in a clear way the implementation of overlay algorithms and the imple-

mentation of services on top of existing overlays. The idea of saving a snapshot of the system

at any given time, and then being able to resume the execution from that point on is very

interesting and is incorporated in our simulator.

2.2.4 NDP2PSim

NDP2PSim [KHZ+05] is an integrated simulation platform used to develop P2P applications,

which besides including an application layer also offers support for working with a detailed

underlying network model. NDP2PSim uses Tcl/Otcl as its user interface language. NDP2PSim

6

builds on top of NS-2 [FV01], a generic network simulator, and adds application layer modules.

NS-2 is used to specify the underlying network. In the underlying network, there are application

peers and routing peers. Routing peers forward the messages. Application peers have application

components. Generating the underlying network topology to be used for a particular simulation

can be facilitated by the use of a topology-producing tool, GT-ITM [CDZ97].

NDP2PSim comprises Socket Module, Interfaces Module, P2P Application Module, Message

Handler, and Statistics Module. Socket Module simulates socket actions, supports message

transmission across peers and congestion control. Interfaces Module encapsulates the sending

and receiving of messages, doing the translation from application to sockets and vice versa. P2P

Application Module is divided into different functions P2P applications can have: assigning files

to peers according to a certain distribution model; establishment and destruction of logical links;

file store and search functions, and application multicast functions. P2P Application Module

also provides an out-of-band mechanism for peers to communicate, for example for choosing

peers’ neighbours before the peers join the network. Message Handler is used to create and

parse application-layer messages. The Statistics Module collects various kinds of data, such as

the number of control messages and data messages, of each peer, which are saved in files. The

user can add new data to be collected if necessary. NDP2PSim offers support for visualising

network simulation traces, using NAM (Network AniMator) [FV01].

Since NDP2PSim is built on top of NS-2, it can only scale as much as NS-2, that is, up to

about 5 000 nodes. This is due to the NS-2 detailed underlying network model that sacrifices

some of the efficiency for detail, resulting in poor scalability for NDP2PSim.

2.2.5 D-P2P-Sim

D-P2P-Sim [SPS+09] is a distributed simulation environment for P2P simulations. D-P2P-Sim

is implemented in Java. D-P2P-Sim is event-driven and uses a pool of threads in order to

minimise thread creation overhead and thread competition. Every time a message is sent, a

thread is assigned to the message’s destination peer to serve that particular message. D-P2P-

Sim can be used in a single machine or in several machines. There is a 10% overhead when using

multiple machines due to the coordination and communication of processes. D-P2P-Sim offers

a GUI for choosing the parameters of the simulation and to control the execution. D-P2P-Sim

generates statistical charts automatically after a simulation. D-P2P-Sim provides an extensible

API, which is based on the plugin mechanism of Java.

Over 400 000 nodes can be simulated in a single machine, but D-P2P-Sim does not take

packet loss and latency into consideration. The GUI is only available when the simulation

7

occurs in a single machine.

2.2.6 PeerfactSim.KOM

PeerfactSim.KOM [SGR+11] is a Java-based simulator for investigating large-scale P2P systems.

PeerfactSim.KOM is an event-based simulator. It has a layered architecture, providing interfaces

between the layers. PeerfactSim.KOM provides default implementations of the layers when they

can be reused without any change in the simulation. When this is not possible, PeerfactSim.KOM

provides a base implementation that needs to be extended to achieve the desired functionality.

PeerfactSim.KOM separates Overlay, Services and Application into different layers so that the

user can focus on each separately or focus in just one while using available implementations for

the others. After the execution of a simulation, it is possible to visualise the topology and the

exchanged messages from that simulation.

2.2.7 DistAlgo

DistAlgo [LSL17] is a language for the development of distributed systems. DistAlgo extends

Python with high-level features for describing distributed algorithms. The compiler applies anal-

yses and optimisations, especially to the high-level queries, and generates executable Python

code. DistAlgo supports high-level control flows where complex synchronisation conditions can

be expressed using high-level queries, namely logic quantifications, over message history se-

quences. Distributed algorithms can be expressed in DistAlgo clearly at a high level. They

can also be formally verified, since the language possesses a clear operational semantics. Dis-

tAlgo combines the advantages of pseudocode, formal specification languages, and programming

languages. Yield points are places in the DistAlgo code where received messages can be han-

dled. Yield points can be specified explicitly and declaratively. During compilation, appropriate

message handlers are inserted at each yield point. Synchronisation conditions are expressed

by the use of high-level queries: quantifications, comprehensions and aggregations. In order to

optimise quantifications they are converted into aggregations and then optimised. Incremental-

isation transforms expensive computations into efficient incremental computations with respect

to updates to the values on which the computations depend. DistAlgo maintains a message

history containing all messages sent and received by a process. This has the potential to grow

unboundedly, and it is handled by maintaining only auxiliary values needed for incremental

computation. DistAlgo programs tend to be smaller than programs written in other languages.

The authors claim that in some cases DistAlgo programs are a half to a fifth of the size of

comparable programs in other languages.

8

Quantifications are dominantly used in writing synchronisation conditions and assertions

in specifications, but they are not used in programming languages because they are not easy

to implement efficiently. DistAlgo solves this by providing quantifications, which the compiler

transforms into aggregations, and then they can be incrementalised in order to be more effi-

cient. In terms of execution time and considering the tested algorithms, DistAlgo programs run

considerably slower, taking more than twice as long as the equivalent in other programming

languages.

The language of DistAlgo is concise yet expressive. As a future development of Corten we

are considering providing a high-level language with similar characteristics to DistAlgo in order

to facilitate the programming of Corten applications.

2.3 Simulation and real execution

In this section, we discuss systems that provide a means to develop applications for simulation,

in such a way that these applications can also be executed in a real setting without any code

modifications.

2.3.1 ProtoPeer

ProtoPeer [GADK09] is a simulator implemented in Java used for prototyping, building and

evaluating P2P systems. Message passing logic and the state of each of the protocols is encap-

sulated in components called peerlets. A peer can be composed of several peerlets, and each

peerlet can be reused across applications. ProtoPeer provides APIs for message passing, message

queuing, timer operations, overlay routing and managing the overlay neighbours. Both time and

network are abstracted through APIs. Switching from the simulated system to the actual system

can be done by switching from one time and networking implementation to another. ProtoPeer

supports packet loss and delay. Developers can personalise the implementation of packet loss

and delay. ProtoPeer can simulate churn and failures. To do this, ProtoPeer uses events. Each

event is specified by a triple which consists of time, the set of unique peer indices to be affected,

and the method to call. A set of events defines a scenario, which is loaded on startup by the

peers. Peers execute the events in the scenario. ProtoPeer provides a measurement API, that

allows to obtain measurements, in order to evaluate the system. ProtoPeer is complex and

memory-intensive, limiting scalability.

In ProtoPeer, no code needs to be changed in order to switch from simulation of a P2P

system to its deployment in a real network.

9

2.3.2 Neko

Neko [UDS01] is a communication platform for prototyping and simulating distributed algo-

rithms. Neko is implemented in Java. In Neko, there are two main parts: application and

networks. There are several processes at the application level. Each process has layers. Mes-

sages are used for the communication between layers within processes and between different

processes. For each process, there is a Process object that connects it to the network. This ob-

ject is responsible for holding some process wide information, such as the address of the process,

for implementing message logging services, and dispatching and collecting messages from the

network. Configuration files describe all the aspects of an application, including the number of

processes and the network protocol to be used. In a real implementation, Java Threads could

be used, whereas in a simulation one would have to use a simulation package, but these details

are abstracted away by Neko’s API for threads. Thus, by using Neko’s API for threads, an

application can be used in simulation and deployed in a real network without any code changes.

Neko was deliberately kept simple, easy to use and extensible, and since it is written in Java, it

is highly portable.

The same code, without any change, can be used for both simulation and execution on a

real network. Neko is focused more on the application part, rather than on the network. The

network was not designed for efficiency but for simplicity. In a simulation, all processes run on

a single JVM, hence simulations are not distributed, they only simulate distribution. Therefore,

there is no isolation between the processes during simulation, and because of this developers

must be careful when using static variables.

2.3.3 RealPeer

RealPeer [HBH07] provides a means to develop P2P systems from simulation to a real system.

RealPeer is implemented in Java. For RealPeer, the central element is the P2P application,

which is represented in such a way that it can both be used as a model in simulation and a

real application in a real system. A P2P application in RealPeer is divided into four layers:

P2P Core, which has responsibilities such as maintaining the overlay network and routing; P2P

Services, which is responsible for common services such as resource management; Application,

which has the specific functionality within the application domain, and User Interface, which

provides an interface to the user. In the beginning of development, each layer is a very simple

version of the system. In RealPeer, an initial model of a P2P system is iteratively transformed

into the intended real P2P system. Different layers can be in different stages of development.

This gives the opportunity to test a real application with a model of a network, for example, and

10

many other combinations of parts of a real system and parts of a model. Elements of the domain

model are represented by hot-spots. The developer can extend the hot-spots by implementing

plug-ins for them. A central scheduler is used to control system time and execution of the model.

By the way it is designed it does not allow for concurrent execution. According to the authors,

memory consumption seems to be the major bottleneck when performing experiments.

2.4 Emulation and real execution

In this section, we discuss systems that provide a means to develop applications for emulation.

Applications developed for emulation can also be executed in a real setting.

2.4.1 OverlayWeaver

Overlay Weaver [STS08] was created with the goal of facilitating the rapid development of

realistic overlay algorithms and their applications. Overlay Weaver is implemented in Java.

The routing process was separated from the routing layer and a programming interface was

created between the common routing process and routing algorithms. Overlay Weaver provides

implementations of the common routing process, so that the developers can use their API

and focus their coding efforts on the algorithms themselves. OverlayWeaver provides both an

iterative and a recursive implementation of the common routing process. The routing driver is

a component that conducts the common routing process. In Overlay Weaver, the operations to

be performed are described in an emulation scenario. A scenario can be produced by the user or

generated automatically. The emulator can be run on a single machine or on multiple machines.

In both cases, the emulator reads and executes the same emulation scenario. Overlay Weaver

provides a distributed environment emulator, which can host thousands of nodes on a single

computer. Developers can improve new algorithms and their implementations rapidly by testing

them iteratively on the emulator. Overlay Weaver provides a Messaging visualiser, which can be

used to show nodes and communication among them. Overlay Weaver provides implementations

of well known routing algorithms Chord [SMLN+03], Pastry [RD01], Tapestry [ZHS+04], and

Kademlia [MM02]. The authors have implemented these algorithms with just a few hundreds

of lines of code each.

The visualiser provided by Overlay Weaver imposes a burden on the emulator by visualisation

in addition to doubling the number of messages. This results in reducing the maximum number

of emulated nodes [SJG17].

11

2.5 Real execution

In this section, we discuss systems that provide a means to develop applications that can execute

in a real setting. Although the main focus of our work is simulation, in the end the purpose of

any distributed application is to be executed in a real setting. Our proposed simulator, Corten,

is designed in such a way that it would be possible to exchange the simulated network with a

real one, even though, due to time constraints, the actual translation to a real network will not

be implemented.

2.5.1 SPLAY

SPLAY [LRF09] simplifies the prototyping, development, deployment and evaluation of dis-

tributed algorithms. SPLAY applications are written in a lightweight platform-independent

language called Lua. SPLAY provides libraries for the development of distributed protocols. In

order to prevent SPLAY applications from accessing data or resources on the host they are not

supposed to, SPLAY provides its own versions of some libraries in order to offer restricted access

to system resources, like files, in an OS-independent way. SPLAY applications are sandboxed.

SPLAY allows for deployments where some nodes may be part of different testbeds. SPLAY’s

infrastructure manages to hide away much of the complexity, therefore greatly simplifying the

implementation of SPLAY applications, which tend to be concise. SPLAY has three main com-

ponents: controllers, daemons and applications. The controller manages the deployment and

execution of applications. A daemon process runs on every machine of the testbed. When

instructed by the controller, a daemon process instantiates, stops and monitors applications.

Many SPLAY applications can run on the same host simultaneously. Controllers keep track of

the active daemons and applications. There can be several controllers. Data for all the hosts

and applications are stored in a database shared by all the controllers. Churn management

provides a means to start and stop processes on demand by sending instructions to daemons. It

is possible to reproduce an experiment, by using traces or scripts. SPLAY provides a log library

that allows the developer to print information locally or to send it over the network to a log

collector, in order to debug and collect statistics.

SPLAY applications’ code looks similar to research papers’ pseudocode. However, since

SPLAY uses Lua and thread support in Lua is not preemptive, SPLAY has to rely on cooperative

multitasking. Coroutines are supposed to yield the processor to one another when they are about

to do an operation that might block. Thus, it is the responsibility of the programmer to write

code that yields the system resources at appropriate places.

12

2.5.2 P2

P2 [LCH+05] is a tool for developing systems that are based on overlay networks and will execute

in a real setting. P2’s goal is to explore the feasibility of the declarative approach in practice

at a coarse grain, without worrying about all possible optimisations. P2 takes a concise logical

description, written in a language designed by the authors, OverLog. Then P2 translates it into

a dataflow graph, which maintains overlays at runtime. Since P2 specifications are of a logical

nature, they can be decomposed into logically reusable units. P2 uses tuples and tables to store

information about the network. P2 also provides logging and debugging mechanisms. According

to the authors, P2 provides acceptable performance, compared to hand-coded implementations,

despite the simplicity of the specification.

P2 can be used for prototyping systems and eventually for deploying them, but it does not

provide support for deployment, i.e. the user needs to write scripts to deploy the system in

a real setting [LRF09]. P2 specifications are succinct but their performance is not as good as

other solutions [KAB+07]. Since OverLog is a high-level language, it hides most of the low-level

implementation details.

2.5.3 Mace

Mace [KAB+07] is a language extension for C++ and source-to-source compiler, that supports

building robust and high-performance distributed systems. It allows the compilation of readable

high-level descriptions into implementations with performance similar to that of hand-coded im-

plementations. Mace is designed around three main entities: objects, events and aspects. Service

objects are connected through interfaces. Each event corresponds to a method implemented by

a service object. Aspects define tasks that need to be performed when certain conditions are

satisfied. Aspects are used to separate code for debugging and log statistics, for example, from

the event handling implementation. Service objects correspond to layers. Each service object

is specified as a state transition system, where transitions represent the execution of methods

corresponding to received events. Systems’ specifications in Mace provide semantic information,

which is used to generate code. Mace can also generate code for failure detection and handling.

This reduces complexity and helps maintaining application consistency. Mace provides message

serialisation and event dispatch, so developers do not have to implement this, which means the

implementation size is reduced. Mace’s layering mechanism and state-event semantics make it

easier to use model checking to detect liveness bugs. The authors of Mace created a model

checking tool, MaceMC [KAJV07], and used it to detect bugs in some systems.

In Mace, the system is decomposed into layers and interfaces, allowing for the reuse of

13

subsystems implementations in different systems. The task of detecting, notifying and handling

failures is simplified by the use of service objects. Mace provides good performance results,

however it does not provide any built-in facility for deploying the system [LRF09].

2.6 Summary

In this section, we compare the systems discussed above and also our proposed simulator, Corten.

Table 2.1 summarises the tools based on characteristics that they possess, where each row

corresponds to a tool and each column corresponds to a characteristic. For a certain tool, in

its row, if in a given column there is a Xthen it means that that system has the characteristic

from that column. If there is a ?, then we were not able to find sufficient information to know

if the system has that characteristic or not. If it is left blank, then the system does not have

that characteristic. The column “simulation” means that that tool provides a simulator. The

column “emulation” means that that tool provides an emulator. The column “real execution”

means that an application made for that tool can be executed in a real setting. The column

“packet loss” means that packet loss is simulated or emulated by the tool. The column “latency”

means that latency is simulated or emulated by the tool. The column “jitter” means that jitter is

simulated or emulated by the tool. The column “reproducibility” means that multiple executions

of an application with the same initial parameters have the same outcome. The column “number

of nodes” indicates the maximum number of nodes achieved for the tool. The column “churn”

indicates whether the tool provides churn capabilities. The column “logging” indicates if logging

is available in the tool. The column “asynchrony” indicates if the tool takes into consideration

that a computation can take an arbitrary time to finish. The column “checkpointing” indicates

if the tool has the possibility of saving and loading the state of the application.

In summary, most tools implemented in Java do not scale better due to Java’s memory

overhead, therefore fewer nodes can be simulated or emulated in a single machine.

None of the discussed systems take asynchrony into consideration. As far as we know,

asynchrony is a novel feature that we are taking into consideration in our simulator. Only one of

the discussed systems, PlanetSim, can save the state and load it multiple times to test different

scenarios from a common start point. This is important to reduce the time each subsequent

simulation will take since the common part of each simulation can be done just once, the state

can be saved, then that state can be loaded multiple times and different experiments can be

done over that state.

Our proposed simulator, Corten, is the only one that covers all the characteristics mentioned

in the Table 2.1, apart from emulation.

14

Table 2.1: Overview of the state-of-the-art tools

si
m

u
la

ti
on

em
u

la
ti

on

re
a
l

ex
ec

u
ti

on

p
ac

ke
t

lo
ss

la
te

n
cy

ji
tt

er

re
p

ro
d

u
ci

b
il

it
y

n
u

m
b

er
o
f

n
o
d

es

ch
u

rn

lo
g
gi

n
g

as
y
n

ch
ro

n
y

ch
ec

k
p

oi
n
ti

n
g

PeerSim X X X X X 106 ∗

2.5 × 105 ∗∗ X X

Optimal-sim X ? ? ? ? 10 000 X X
PlanetSim X X 100 000 X X X
NDP2PSim X X X ? ? 480 X X
D-P2P-Sim X X 400 000† X X
PeerfactSim.KOM X X X X X 50 000‡ X X
DistAlgo X ? ? ? ? ? ? X
ProtoPeer X X X X X X 50 000 X X
Neko X X ? ? ? ? § ? X
RealPeer X X X 20 000 ? X
OverlayWeaver X X X X X 4 000 X X
SPLAY ¶ X X 500† X X
P2 X X
Mace X X

Corten X X‖ X X X X 106 X X X X

Our goal with Corten is to support all these features while being able to scale to a very large

number of nodes. In the next section, we present how this is achieved.

∗cycle-based
∗∗event-based
†per host
‡according to [SGR+11]; 106 peers for simple overlays 105 peers for complex overlays, according to [SJG17]
§information not available
¶facilitates the integration with emulators
‖in a future version

15

16

Chapter 3

Corten

In this chapter, we describe Corten in detail. Section 3.1 describes Corten’s architeture. Section

3.2 discusses the importance of Random Number Generation in simulation and the approach

taken in Corten. Section 3.3 discusses the event structure used. In Section 3.4, we describe how

the user can interact with Corten and how extensions can be implemented. We end this chapter

with a discussion of the main functionalities of Corten in Section 3.5.

3.1 Architecture

In this section, we describe Corten’s components in detail.

Corten is a simulator designed in a modular way. Each component is responsible for a

specific functionality. This choice allows us to achieve good efficiency and flexibility. Corten is

extensively configurable by the user to fit the needs of each particular simulation.

In Figure 3.1, there is an execution flow of a message being sent. For each application there

is an associated process. (1) When an application wants to send a message it will call the send

method of the corresponding process. (2) The process will then ask the network model for the

latency of the message, which is how long the message will take to go from source to destination.

(3) Then the process will add the event with the message to the event queue. (4) At a later point

in time, the Simulation Kernel will get the next event to be executed from the event queue. It

will give the event to the destination process by calling the receive method of the destination

process. (5) The process will call the corresponding method in the application.

In Figure 3.2, there is an execution flow of a local method call. (1) When an application

wants to make a local method call, it will call the method call of the corresponding process.

(2) The process will ask the asynchrony model for the asynchrony of that call. The asynchrony

model will calculate the asynchrony according to some distribution. (3) Then the process will

17

Figure 3.1: Message sending in Corten

add the event to the event queue. (4) At a later point in time, the Simulation Kernel will get

the next event to be executed from the event queue. It will give the event to the destination

process by calling the receive method of the destination process. (5) The process will call the

corresponding method in the application.

Corten’s components are represented in Figure 3.3, along with their main methods.

Application An application contains user defined code and interacts with the system through

the interface exposed by Process.

An application needs to implement the following methods:

init: invoked when the application becomes active for the first time (i.e. after join).

leave: invoked when the application knows it is going to become inactive, this gives the

application the possibility of warning other applications that it is going to become inactive

in case it is relevant to the algorithm. Models a controlled exit from the system.

recover: invoked when an application had become inactive previously and it wants to become

active again. Models crash-recover systems.

on load: invoked when saved state from a previous simulation is loaded.

Process Each application is associated to a process. The process acts as a bridge between the

application and the remaining components. Each process has a unique identifier.

The send method sends a message to a destination application identified by the process

identifier. This message is the operation that will be executed in the destination. The receive

18

Figure 3.2: Method call in Corten

Figure 3.3: Corten’s Architecture

19

method receives an event which contains the operation to be executed. This method has the role

of calling the operation to execute in the target application. The call method and the periodic

method are used for making local application calls. In both methods, it is specified the time

after which the calls should be executed (delta), and for the periodic method it is specified

how many times the method should be executed (count). A periodic method can be executed

an infinite amount of times, in which case the count is zero. In this case, the simulation must

be explicitly stopped, either from a save event which saves and stops (defined in configuration),

or from an end event (defined in churn configuration). The above mentioned methods model

the execution of the application and model the interaction between applications through the

exchange of messages.

Network In the network, latency, jitter and packet loss are modelled. Latency can be specified

in two ways. The first is called ConstantNetwork, where latency is a constant value for all pairs

of processes. The second is called MatrixNetwork, where latency is given by a latency matrix.

Jitter can be used with a uniform distribution, a lognormal distribution, or it can be disabled.

Packet loss is defined by the percentage of packets lost, from 0.0 (0%) to 1.0 (100%). To

determine the latency for a particular message, the Network module provides the get latency

method which returns an optional. If the message is lost due to packet loss, get latency returns

None. Otherwise, the network latency is computed through the latency and the jitter, and it is

returned.

Asynchrony In a real execution, a local method call can execute before or after the expected

time. This can happen due to the concurrent execution of multiple processes in the same

machine, or due to an irregular advancement of the physical clock. Let’s call this process

asynchrony.

Let t0 be the time at which the method is called for the first time. Due to process asyn-

chrony, the effective time at which the method is executed might be different. The Asynchrony

model calculates the time t′0, which takes process asynchrony into consideration in the following

manner t′0 = t0 + async factor× op duration, where async factor is an asynchrony factor, and

op duration is a configuration parameter. This asynchrony factor corresponds to a percentage

and it is randomly generated according to one of these distributions: normal, uniform or Weibull.

There is also the possibility of not taking process asynchrony into consideration, in that case

the method is executed at simulation time t0.

20

Configuration The configuration is described in a YAML file. In the configuration file, it

is possible to describe the simulation configuration parameters, and the application ones as

well. In the simulation’s configuration, it is possible to define the total number of processes (n),

the asynchrony and network (latency, jitter, packet loss) parameters, the RNG’s seed, among

others. It is possible to specify the simulation time at which to save a snapshot of the state of the

simulation. In a later simulation, it is possible to load the state. It is possible to provide a new

seed for the RNG, in order to load the state multiple times and perform different experiments

over that state. There is another configuration aspect, churn. Churn can be defined in the same

file as the rest of the configuration, or in a separate file. Regarding churn, it is possible to specify

the time at which the event should occur; specify if it is a join, leave, fail or recover ; specify the

number of processes (integer) or the percentage of processes (floating point number) affected

by this event. Alternatively, it is possible to specify the identifier of the process, instead of the

quantity of processes, by using leave-id, fail-id or recover-id. The difference between leave and

fail is that leave is a planned leave, and fail is an unplanned leave, i.e. a failure. There is also

an end event, the execution of which results in the orderly termination of the simulation. These

churn events are used to model the life cycle of an application.

Event An event contains:

ts: simulation time at which the event should execute

kind : type of event (Message, Local, Churn, Save)

target : specifies in which process the event should be executed

op: operation to be executed at the application level

An event can be of type Message, when it is a message to be sent; of type Local, when it is

a local method call (periodic or not); or a special kernel event, namely an event of type Churn

or type Save. An event of kind Save enables saving a snapshot of the state of the simulation

in a file. This way, the state can be loaded later on. This makes it possible to run different

simulations over the same state.

Simulation Kernel The Simulation Kernel has a structure that contains events, namely a

heap. The Simulation Kernel has the responsibility of executing the simulation, handling events

in a chronological order. If the next event to execute is a special kernel event, then that event

is treated directly by the kernel. Otherwise, the kernel calls the method receive of the desti-

nation process, which will execute the event’s operation in the corresponding application. The

21

kernel guarantees isolation between processes. Unlike what happens in PeerSim, which allows

an application to call methods of another application directly, Corten guarantees that the com-

munication between applications is necessarily made through messages, preventing programmer

mistakes.

3.2 Random Number Generation

Every simulation tool needs a Random Number Generator (RNG), specifically a pseudo-random

generator. A pseudo-random generator produces random values based on an initial value, called

seed. Given the same seed, a pseudo-random generator generates the same values in the same

order. This is important for simulation because when doing several simulations with the same

initial state or parameters, if we use the same seed, we will obtain the same results. This

means we can have reproducibility, one of the most important features of simulation. A pseudo-

random generator also allows to obtain different results on simulations with the same initial state

or parameters, by using different seeds for each simulation. The Rust programming language,

which was used for the Corten simulator, contains several libraries for generating random values.

From the available RNG, we selected the XorShiftRNG [DD] because it is a pseudo-random

generator that is efficient and that can be serialised. When saving a snapshot of the state of

the simulation, the internal state of the RNG is also saved. It is advantageous to be able to

use, at the application level, the same RNG as the simulator. This way the application not

only ensures reproducibility, but it is easy to test the application with different values without

changing application code. With this in mind, we provide an API that generates random

numbers between 0 and 1 (get random()) and another one (get rng()) that gives access to the

RNG itself so that the user can generate other types of values. The user can access these APIs

in their applications through the corresponding processes.

3.3 Event Queue Structure

According to [Jai91, pp 408-411], some of the data structures that have been proposed for storing

events are: ordered linked list; indexed linear list; tree structures.

In Corten, the chosen structure for the event queue was a min-heap. This was due to its

efficiency and scalability. A min-heap is always sorted, and has the element with the smallest

key at its root. Access to the smallest element can be done in time O(1). Insertion and

deletion operations can be done in time O(lg(n)). The min-heap used in Corten is from a

library called binary-heap-plus [Sek]. During the course of the work, we contributed to this

22

library, implementing its serialisation capabilities, which it previously lacked. This is important

because it is necessary that the event structure, in this case the heap, is serialisable so that the

simulation state can be serialisable too.

3.4 Interactivity and Extensions

Besides Corten’s functionality of creating a snapshot at a moment in the simulation time specified

in the configuration, the user can also create a snapshot at any point in time, through a signal.

By pressing ctrl-c on the console, a Corten user triggers the checkpointing feature and the current

state of the simulation is serialised to a file. If ctrl-c is pressed a second time before serialisation

finishes, serialisation is cancelled and the program is terminated.

The user can create customised versions of network, jitter and asynchrony by implementing

the corresponding trait. A trait in Rust is similar to an interface in Java.

3.5 Discussion

With Corten we wanted to have useful functionalities and we wanted Corten to be memory

efficient and scale well.

To achieve memory efficiency and scalability, we used Rust as the programming language

for Corten. Rust is a system programming language with efficiency concerns and correction

guarantees. Rust, by design, has no memory management problems.

Corten supports checkpointing, which is useful to save the state of simulations and reuse

them several times in order to perform multiple experiments over the same state. Corten is the

only simulator, to the best of our knowledge, that provides process asynchrony, which makes

application execution more realistic. Corten supports different types of network latency and

jitter, and takes packet loss into consideration.

In the next chapter, we evaluate Corten and showcase its efficiency and performance when

compared with a state-of-the-art approach.

23

24

Chapter 4

Evaluation

In this chapter, we present the evaluation of Corten. The goals of this evaluation are the fol-

lowing: to demonstrate the correction of different functionalities, through micro-benchmarks

described in Section 4.1, and to demonstrate the behaviour in a real application, through the

macro-benchmark described in Section 4.2. Each micro-benchmark evaluates a single function-

ality. The macro-benchmark evaluates the simulator as a whole.

4.1 Micro-benchmarks

In this section, we evaluate Corten’s different functionalities through a set of micro-benchmarks.

For the micro-benchmarks, we created a simple application which sends Echo messages and

upon receiving an Echo replies an EchoReply message. The code for the Echo application is

in Appendix A. For this application, there are configurable parameters: cycles, period, fanout.

The application has an operation Cycle, which repeats cycles times, in time intervals of period.

Each time operation Cycle is executed fanout echos are sent. In all micro-benchmarks defined

next, fanout is set to 2, cycles is set to 2 and period is set to 200, except when other values are

explicitly stated. The number of instances of the application, i.e. the number of nodes, is 10.

We start by observing the impact of churn in the processes’ life cycle. In Figure 4.1, we

can see the churn configuration used for the micro-benchmark concerning churn. The churn

configuration lines are of easy interpretation. For example, on line 2, 100% (1.0) of the processes

will join the network at simulation time 0. On line 3, the process with identifier 9 will leave

the network at simulation time 100. On line 4, 5 processes will leave the network at simulation

time 220. On line 7, 50% (0.5) of the processes will be recovered at simulation time 350. In

Figure 4.2, we can see the configuration used for the micro-benchmark concerning churn. In

this configuration file, the churn configuration file is specified along with seed for the RNG,

25

1 churn :
2 − [0 , j o in , 1 . 0]
3 − [1 00 , leave−id , 9]
4 − [2 20 , leave , 5]
5 − [2 50 , recover−id , 9]
6 − [3 20 , leave , 0 . 4]
7 − [3 50 , recover , 0 . 5]
8 − [5 00 , leave−id , 9]
9 − [6 00 , recover , 0 . 5]

Figure 4.1: Churn configuration used in the churn experiment

1 c h u r n f i l e : c on f i g /churn−t e s t . yaml
2
3 seed : 0
4
5 asynchrony :
6 type : NoAsynchrony
7
8 network :
9 type : ConstantNetwork

10 la t ency : 100
11 j i t t e r :
12 type : NoJ i t t e r
13 l o s s : 0 . 0
14
15 n : 10
16 fanout : 2
17 c y c l e s : 2
18 per iod : 200

Figure 4.2: Configuration used in the churn experiment

asynchrony is not taken into consideration, a network with a constant latency of 100 time units

is used, jitter is not taken into consideration, there is no packet loss. The application specific

configuration is also specified in this configuration file.

In Figure 4.3, it is possible to see the evolution of the number of processes which are active

as the simulation time progresses and, in Figure 4.4, it is possible to see at which points in

simulation time the process with identifier 9 is online or offline. It can be stated that the life

cycle described in the configuration is observed, both from the point of view of the process and

the global point of view of the system.

Next, we study the impact of network latency. In the micro-benchmark concerning network

latency, the application is used with just one cycle (cycles = 1). Two simulations were executed,

one in which the network latency was defined as constant and equal to 100 time units, another

in which the latency was defined based on a latency matrix. Figure 4.5 shows the percentage of

received messages through simulation time, using constant latency and latency matrix. The x

axis represents the simulation time and the y axis represents the percentage of received messages

until time x. At simulation time 0, each process will send 2 Echo messages. When the Constant

26

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

N
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

s
 u

p

Time (time units)

Churn

Figure 4.3: Number of processes alive over time

offline

online

 0 100 200 300 400 500 600

S
ta

te

Time (time units)

Churn

Figure 4.4: Life cycle of process 9

27

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F

o
f
m

e
s
s
a
g
e
s
 r

e
c
e
iv

e
d

Time (time units)

Constant Latency
Latency Matrix

Figure 4.5: Network Latency

Latency Network is used, each message has latency 100. So the Echo messages will arrive at their

destinations at simulation time 100. Then, when each application receives the Echo messages,

it will send an EchoReply message, which will have latency 100, reaching its destination at

simulation time 200. We can conclude that 50% of the messages, i.e. the Echo messages, will

arrive at their destination at simulation time 100, and the remaining 50% of messages, i.e. the

EchoReply messages, will arrive at their destination at simulation time 200. This is exactly

what we can see in Figure 4.5 for Constant Latency. When using Latency Matrix, the latency

between any pair of nodes varies as determined by a matrix, and so messages arrive at their

destination at different simulation times as seen in Figure 4.5. There are some messages that

arrive at their destination at simulation time 0 because they were messages sent from a sender

to itself which results in zero latency.

Finally, we evaluate the impact of process asynchrony. In the micro-benchmark concerning

asynchrony, the application is used with 10 cycles (cycles = 10). In Figure 4.6, the asynchrony

values of calls to operation Cycle were used, for several asynchrony types (uniform, normal,

Weibull, and no asynchrony). The x axis represents the simulation time and the y axis represents

the percentage of calls that have an asynchrony value up to x. The uniform distribution is used

with a lower bound of −0.1 and an upper bound of 0.1. The normal distribution is used with a

0.0 mean and a 0.1 standard deviation. The Weibull distribution is used with a 1.0 scale and a

1.5 shape. No asynchrony results in an asynchrony value of zero, as can be seen in Figure 4.6.

For uniform, normal, and Weibull asynchrony, the asynchrony values vary according to each

distribution.

28

 0

 0.2

 0.4

 0.6

 0.8

 1

-50 0 50 100 150 200 250 300 350

C
D

F

o
f
a
s
y
n
c
h
ro

n
y

Time (time units)

No asynchrony
Uniform asynchrony
Normal asynchrony
Weibull asynchrony

Figure 4.6: Process Asynchrony

4.2 Macro-benchmarks

We now evaluate Corten with a fully fledged application, Chord [SMLN+03], described in the

next section. We compare Corten with PeerSim, a popular P2P simulator discussed in Section

4.2.2.

4.2.1 Case study: Chord

In this section, the implementation of Chord in Corten is described along with its main func-

tionalities. Chord is a distributed hash table (DHT). The nodes are virtually arranged in a ring,

called the Chord ring, and each node knows its successor, which is the node that immediately

follows it; its predecessor, which is the node immediately before; and a set of other nodes called

finger table. In our implementation of Chord, we include the optimisation in which a node

knows its r successors instead of just one. A ring is said to be stable when all the information of

the successors, predecessores and finger table that each node contains is correct. Chord can be

used when some content, such as a file, needs to be maintained in a distributed fashion. Each

content has an associated key. The content is saved in the node which is the successor of the

content’s key. When a node wants to obtain a certain content, it looks for the corresponding

key in the ring by doing a lookup of the key.

The leave method, which every Corten application must implement, allows a node that

knows it is going to leave the ring to let its predecessor and successor know that it is leaving,

giving them the information of its successor and predecessor, respectively, keeping the ring

29

stable even if a node leaves. Another method that an application implemented in Corten needs

to implement is the on load method. Corten has the functionality of saving and reloading the

state of a simulation. Combining these Corten functionalities, it is possible to create a Chord

ring, stabilise it, save the state and at later point in time reload the state and perform lookups.

4.2.2 Comparison with PeerSim

In this section, we present the obtained results of comparing a Chord’s implementation in Corten

with a Chord’s implementation in PeerSim.

The Chord’s implementation in PeerSim used was based on [Tat], with the adjustments

described below. In the original implementation, at the start of the simulation an already

stable ring with the initial number of nodes was created. This was changed so that there is a

stabilisation period and only after that the lookups are performed. This change was made so

that Corten’s and PeerSim’s Chord implementations could be compared.

For each simulator, we evaluate four scenarios, with 1 000, 10 000, 100 000 and 1 000 000

nodes. In each simulation, 10 lookups per node are performed. For Corten, first the Chord ring

is stabilised in one simulation and a snapshot of the state of that simulation is saved in a file,

then the saved state is loaded in another simulation and the lookups are made. All the discussed

Chord simulations’ results in Corten take into consideration both the stabilisation simulation

and the lookup simulation.

In Figure 4.7 and Figure 4.8 it is possible to see the memory used and the real time a

simulation lasted, with 1 000, 10 000 and 100 000 nodes, for both Corten and PeerSim. It is

also possible to see the same data with 1 000 000 nodes for Corten. For PeerSim with 1 000 000

nodes and around 16 GB of memory, the simulation stopped before completion due to insufficient

memory. The simulation, with 1 000 000 nodes for PeerSim, was repeated with a larger amount

of memory available (around 50 GB); it did not finish in 7 days, so it was terminated. Due to

the mentioned above, there are no data for 1 000 000 nodes for PeerSim. Note that in Figure

4.7 and Figure 4.8, the x axis and the y axis are in logscale. Each simulation was run 5 times,

and the results presented in the time and memory plots are the average of these 5 runs.

As it is possible to observe, Corten’s simulations need less memory and take less time to

finish than PeerSim’s simulations. Corten is more than twice as fast as PeerSim and Corten’s

speed advantage is even more pronounced with more nodes. For example, with 100 000 nodes,

Corten is 2.7 times faster than PeerSim. Corten uses a lot less memory than PeerSim. For

100 000 nodes, Corten uses 14 times less memory than PeerSim. Also Corten with 100 000

nodes can be executed in a personal computer with 8 GB of memory, but PeerSim with the

30

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1x10
6

M
e
m

o
ry

 u
s
e
d
 (

M
B

)

Number of nodes

PeerSim
Corten

Figure 4.7: Memory (MB) used in Chord simulations, for Corten and for PeerSim. Note the
logarithmic scale in the x and y axis.

same number of nodes cannot.

31

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1x10
6

R
e
a
l
T

im
e
 (

s
e
c
o
n
d
s
)

Number of nodes

PeerSim
Corten

Figure 4.8: Real time (seconds) of the duration of the Chord simulations, for Corten and for
PeerSim. Note the logarithmic scale in the x and y axis.

32

Chapter 5

Conclusions

Distributed algorithms are very important nowadays. It is important to have guarantees that

a distributed algorithm works properly. In order to do that algorithms should be tested using

tools, such as simulators.

With this work, we set out to create Corten, a distributed algorithms simulator, that would

include, in a single tool, all the functionalities that are present in existing simulators and also

have a new feature, process asynchrony. We also wanted Corten to be memory efficient and to

be able to scale well.

Corten supports checkpointing. A snapshot of the simulation state can be saved, therefore

long simulations can be run, it is possible to save a snapshot and to run multiple experiments

by loading the same state several times. Corten’s simulations are reproducible due to the

judicious use of a pseudo-random generator in a controlled way. Corten guarantees isolation

between applications. The only way applications can communicate with one another is through

messages, preventing unwanted programmer mistakes.

Corten provides an efficient means to test distributed algorithms with thousands of processes.

Corten was tested with up to one million nodes. We compared Corten with a state-of-the-art

simulator, PeerSim, and Corten scaled better both in terms of time and memory. Corten is

more than twice as fast as PeerSim. For 100 000 nodes, Corten uses 14 times less memory than

PeerSim.

5.1 Future Work

As future work, Corten can be extended to support parallelisation, in order to take advantage

of multiple cores. As a consequence, the real execution time of a simulation can be reduced,

which allows for multiple simulations to be executed in the real time interval that previously

33

only one simulation would execute. Also under consideration is the creation of a simplified

interface to facilitate even more the development of distributed algorithms in Corten. Presently,

a developer that wants to create a Corten application must write Rust code directly. We aim to

provide a clean high-level language, so that, in a way similar to that of DistAlgo, a developer

can quickly create prototype applications with less code and without having to interact with

Rust directly. Furthermore, a future version of Corten may not be only for simulations but also

for real executions, by replacing the simulation kernel with a system that allows, transparently,

to do the deployment of the algorithms in a real environment.

34

Bibliography

[CDZ97] K. Calvert, M. Doar, and E. W. Zegura. Modeling internet topology. IEEE Com-

munication Magazine, 1997.

[DD] The Rust Project Developers and The Rand Project Developers.

https://docs.rs/crate/rand xorshift/0.1.1.

[DZD+03] F. Dabek, B.Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common

api for structured peer-to-peer overlays. 2nd International Workshop on Peer-to-

Peer Systems, IPTPS’03, Berkeley, CA, 2003.

[FV01] K. Fall and K. Varadhan. The ns manual (formerly ns notes and documentation).

The VINT Project, 2001.

[GADK09] Wojciech Galuba, Karl Aberer, Zoran Despotovic, and Wolfgang Kellerer. Pro-

topeer: a p2p toolkit bridging the gap between simulation and live deployment.

International Conference on Simulation Tools and Techniques, 2009.

[GPM+05] Pedro Garćıa, Carles Pairot, Rubén Mondéjar, Jordi Pujol, Helio Tejedor, and

Robert Rallo. Planetsim: A new overlay network simulation framework. Software

Engineering & Middleware, 2005.

[HBH07] D. Hildebrandt, L. Bischofs, and W. Hasselbring. Realpeer – a framework for

simulation-based development of peer-to-peer systems. PDP ’07: Proceedings of the

15th EUROMICRO International Conference on Parallel, Distributed and Network-

Based Processing, 2007.

[Jai91] Raj Jain. The art of computer systems performance analysis - techniques for exper-

imental design, measurement, simulation, and modeling. Wiley professional com-

puting. Wiley, 1991.

[KAB+07] C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace: lan-

guage support for building distributed systems. PLDI ’07 Proceedings of the 28th

35

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, 2007.

[KAJV07] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical

transition: Detecting liveness bugs in systems code. NSDI, 2007.

[KHZ+05] Wu Kun, Dai Han, Yang Zhang, Sanglu Lu, Daoxu Chen, and Li Xie. Ndp2psim: A

ns2-based platform for peer-to-peer network simulations. Parallel and Distributed

Processing and Applications - ISPA 2005 Workshops, 2005.

[LCH+05] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.

Implementing declarative overlays. SIGOPS Oper. Syst. Rev., 39, 2005.

[LMTY02] Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. Specifying and ver-

ifying systems with TLA+. Proceedings of the 10th workshop on ACM SIGOPS

European workshop, 2002.

[LRF09] Lorenzo Leonini, Etienne Rivier, and Pascal Felber. Splay: Distributed systems

evaluation made simple. Symposium on Networked Systems Design and Implemen-

tation, 2009.

[LSL17] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. From clarity to efficiency for dis-

tributed algorithms. TOPLAS, 2017.

[MBR03] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Symphony: Dis-

tributed hashing in a small world. Proceedings of USITS ’03: 4th USENIX Sympo-

sium on Internet Technologies and Systems, 2003.

[MJ09] A. Montresor and M. Jelasity. Peersim: A scalable p2p simulator. International

Conference on Peer-to-Peer, 2009.

[MM00] A. Medina and I. Matta. Brite: A flexible generator of internet topologies. Technical

Report, Boston University, Boston, MA, 2000.

[MM02] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system

based on the xor metric. Druschel P., Kaashoek F., Rowstron A. (eds) Peer-to-Peer

Systems. IPTPS 2002. Lecture Notes in Computer Science, 2002.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. Guerraoui R. (eds) Middleware 2001.

Middleware 2001. Lecture Notes in Computer Science, 2001.

36

[Sek] Hideki Sekine. https://crates.io/crates/binary-heap-plus.

[SGR+11] Dominik Stingl, Christian Gross, Julius Rückert, Leonhard Nobach, Aleksandra

Kovacevic, and Ralf Steinmetz. Peerfactsim.kom: A simulation framework for

peer-to-peer systems. International Conference on High Performance Computing

& Simulation High Performance Computing and Simulation (HPCS), 2011.

[SJG17] Shivangi Surati, Devesh C. Jinwala, and Sanjay Garg. Review: A survey of sim-

ulators for p2p overlay networks with a case study of the p2p tree overlay using

an event-driven simulator. Engineering Science and Technology, an International

Journal, 2017.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer

lookup protocol for internet applications. IEEE/ACM Transactions on Networking,

2003.

[SPS+09] S. Sioutas, G. Papaloukopoulos, E. Sakkopoulos, K. Tsichlas, and Y. Manolopoulos.

A novel distributed p2p simulator architecture: D-p2p-sim. CIKM ’09: Proceedings

of the 18th ACM Conference on Information and Knowledge 10). Management,

ACM, New York, NY, USA, 2009.

[STS08] K. Shudo, Y. Tanaka, and S. Sekiguchi. Overlay weaver: an overlay construction

toolkit. Computer Communnications, 2008.

[Tat] Genc Tato. https://github.com/gtato/chordsim.

[UDS01] P. Urban, X. Defago, and A. Schiper. Neko: a single environment to simulate and

prototype distributed algorithms. In Information Networking, 2001. Proceedings.

15th International Conference on, 2001.

[WI05] H. Wan and N. Ishikawa. Design and implementation of a simulator for peer-to-peer

networks: Optimal-sim. PACRIM’05: Proceedings of IEEE Pacific Rim Conference

on Communications, Computers and signal Processing, 2005.

[ZHS+04] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz.

Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on

Selected Areas in Communications IEEE J. Select. Areas Commun. Selected Areas

in Communications, IEEE Journal, 2004.

37

38

Appendix A

Echo Application

1 extern c ra t e se rde ;

2 #[macro use] extern c ra t e s e r d e d e r i v e ;

3

4 use cor ten : : s imu la t i on : : { Process , S imulat ionKernel , Appl icat ionBase , Operation ,

ProcessId , Time , u t i l s } ;

5

6 use std : : any : : Any ;

7 use std : : r c : : Rc ;

8 use std : : c e l l : : Re fCe l l ;

9

10 // ho lds the app l i c a t i on c on f i gu r a t i on

11 // each s t r u c t has the de r i v e below to automate debuging/ p r i n t i n g and s e r i a l i z i n g

the sim .

12 #[de r i v e (Debug , S e r i a l i z e , D e s e r i a l i z e)]

13 pub s t r u c t AppConf {

14 pub n : ProcessId , //number o f p r o c e s s e s

15 fanout : i8 , //number o f echos to send

16 c y c l e s : u16 , //number o f echo c y c l e s to run

17 per iod : Time // time between c y c l e s

18 }

19

20 // ho lds the app l i c a t i on con f i gu ra t i on , read from the yaml f i l e

21 impl AppConf {

22 pub fn new(n : ProcessId , fanout : i8 , c y c l e s : u16 , per iod : Time) −> AppConf {

23 AppConf { n , fanout , cyc l e s , per iod }

24 }

25 }

26

27 // s t r u c t that ho lds the app l i c a t i on s t a t e

28 #[de r i v e (Debug , S e r i a l i z e , D e s e r i a l i z e)]

39

29 pub s t r u c t EchoAppl icat ion {

30 id : ProcessId ,

31 cy c l e : u16 , //number o f c y c l e s executed

32 nb echos s ent : i32 ,

33 nb echo s r e c e i v ed : i32 ,

34 conf : Rc<AppConf>,

35 }

36

37 // cons t ruc to r f o r the Echo Appl i cat ion

38 impl EchoAppl icat ion {

39 pub fn new(id : ProcessId , c y c l e : u16 , nb echos s ent : i32 , nb e cho s r e c e i v ed :

i32 , conf : Rc<AppConf>) −> S e l f {

40 EchoAppl icat ion { id , cyc l e , nb echos sent , nb echos r ece ived , conf }

41 }

42 }

43

44 //Appl icat ionBase needs to be implemented f o r every app l i c a t i on

45 // i n i t i s c a l l e d to i n i t i a l i z e the app l i c a t i on

46 // recove r i s c a l l e d when the app l i c a t i on ’ s p roce s s r e c ove r s from a f a i l u r e

47 // de r i v e s e r i a l i z a t i o n

48 #[typetag : : s e rde]

49 impl Appl icat ionBase f o r EchoAppl icat ion {

50 fn i n i t (&mut s e l f , p roc e s s : Rc<RefCel l<Process>>) {

51 //we i n i t i a l i z e the app l i c a t i on by s ch edu l l i n g a new Cycle

52 proce s s . borrow () . p e r i o d i c (Box : : new(Cycle {}) , s e l f . conf . per iod , s e l f . conf .

c y c l e s) ;

53 }

54 fn l eave (&mut s e l f , p r o c e s s : Rc<RefCel l<Process>>) {}

55 fn r ecove r (&mut s e l f , p ro c e s s : Rc<RefCel l<Process>>) {

56 i f s e l f . c y c l e < s e l f . conf . c y c l e s {

57 l e t r ema in ing cyc l e s = s e l f . conf . c y c l e s − s e l f . c y c l e ;

58 proce s s . borrow () . p e r i o d i c (Box : : new(Cycle {}) , s e l f . conf . per iod ,

r ema in ing cyc l e s) ;

59 }

60 }

61 fn on load(&mut s e l f , p r o c e s s : Rc<RefCel l<Process>>, apps : &Vec<Rc<RefCel l<

Box<dyn Appl icat ionBase>>>>) {}

62

63 // b o i l e r p l a t e

64 fn as any(& s e l f) −> &dyn Any {

65 s e l f

66 }

40

67 // b o i l e r p l a t e

68 fn as any mut(&mut s e l f) −> &mut dyn Any {

69 s e l f

70 }

71 }

72

73 //Cycle event , the EchoAppl icat ion w i l l execute t h i s p e r i o d i c a l l y

74 // t h i s can a l s o have parameters , s e e Echo and EchoReply below

75 #[de r i v e (Debug , S e r i a l i z e , D e s e r i a l i z e)]

76 s t r u c t Cycle {}

77

78 // implement the l o g i c f o r the Cycle event i n s i d e the invoke method

79 #[typetag : : s e rde]

80 impl Operation f o r Cycle {

81 fn invoke(& s e l f , app b : Rc<RefCel l<Box<dyn Appl icat ionBase>>>, p roc e s s : Rc<

RefCel l<Process>>) {

82 // bo i l e r p l a t e , a c c e s s the EchoAppl icat ion s t a t e (s t r u c t)

83 l e t mut app borrow = app b . borrow mut () ;

84 l e t app : &mut EchoAppl icat ion = app borrow . as any mut () . downcast mut ::<

EchoApplication >() . unwrap () ;

85

86 // i f we s t i l l have cy c l e to go , run again

87 i f app . c y c l e < app . conf . c y c l e s {

88 // s e l e c t fanout t a r g e t s to send Echo to

89 f o r in 0 . . app . conf . fanout {

90 // get random return a random proce s s in the system

91 l e t t a r g e t = (proce s s . borrow () . get random () ∗ app . conf . n as f64)

as Proces s Id ;

92

93

94 // in every Cycle , send an Echo message to other nodes

95 proce s s . borrow () . send (Box : : new(// t h i s l i n e i s b o i l e r p l a t e ,

96 // send Echo message with s e v e r a l parameters (encoded in Echo

s t r u c t)

97 Echo { sender : app . id , target , msg : app . id as i 32 ∗ 100 , }) ,

t a r g e t) ;

98

99 app . nb echos s ent += 1 ;

100 }

101 app . cy c l e += 1 ;

102 }

103 }

41

104 }

105

106 //Echo event /message

107 #[de r i v e (Debug , S e r i a l i z e , D e s e r i a l i z e)]

108 s t r u c t Echo {

109 sender : ProcessId ,

110 ta r g e t : ProcessId ,

111 msg : i32 ,

112 }

113

114 // implement handl ing o f Echo message in the invoke

115 #[typetag : : s e rde]

116 impl Operation f o r Echo {

117 fn invoke(& s e l f , app b : Rc<RefCel l<Box<dyn Appl icat ionBase>>>, p roc e s s : Rc<

RefCel l<Process>>) {

118 l e t mut app borrow = app b . borrow mut () ;

119 l e t app : &mut EchoAppl icat ion = app borrow . as any mut () . downcast mut ::<

EchoApplication >() . unwrap () ;

120

121 app . nb e cho s r e c e i v ed += 1 ;

122 // rep ly to the sender with an EchoReply

123 proce s s . borrow () . send (Box : : new(// b o i l e r p l a t e

124 EchoReply { sender : app . id , t a r g e t : s e l f . sender , nb echoes : app .

nb e cho s r e c e i v ed }) , s e l f . sender) ;

125 }

126 }

127

128 //EchoReply event /message

129 #[de r i v e (Debug , S e r i a l i z e , D e s e r i a l i z e)]

130 s t r u c t EchoReply {

131 sender : ProcessId ,

132 ta r g e t : ProcessId ,

133 nb echoes : i32 ,

134 }

135

136 #[typetag : : s e rde]

137 impl Operation f o r EchoReply {

138 fn invoke(& s e l f , app b : Rc<RefCel l<Box<dyn Appl icat ionBase>>>, p r o c e s s : Rc<

RefCel l<Process>>) {

139 // nothing to do

140 }

141 }

42

142

143

144 // s imu la t i on f i n i s h ed , compute s t a t s

145 pub fn s t a t s (apps : &Vec<Rc<RefCel l<Box<dyn Appl icat ionBase>>>>) {

146 p r i n t l n ! (” Gathering s t a t s . . . ”) ;

147 l e t mut e cho s s en t = Vec : : w i th capac i ty (apps . l en ()) ;

148 l e t mut e cho s r e c e i v ed = Vec : : w i th capac i ty (apps . l en ()) ;

149 l e t mut max echos rece ived = 0 ;

150 l e t mut min echos r e c e i v ed = i32 : : max value () ;

151 l e t mut t o t a l e c h o s r e c e i v e d = 0 ;

152

153 // t r av e r s e a l l the app l i c a t i on i n s t an c e s and gather s t a t s

154 f o r app in apps {

155 l e t app borrow = app . borrow () ;

156 l e t a = match app borrow . as any () . downcast re f : :<EchoApplication >() {

157 Some(b) => b ,

158 None => panic ! (” not an Appl i ca t ion ”) ,

159 } ;

160 e cho s s en t . push (a . nb echos s ent) ;

161 e cho s r e c e i v ed . push (a . nb e cho s r e c e i v ed) ;

162 i f max echos rece ived < a . nb e cho s r e c e i v ed {

163 max echos rece ived = a . nb echo s r e c e i v ed ;

164 }

165

166 i f m in echos r e c e i v ed > a . nb e cho s r e c e i v ed {

167 min echos r e c e i v ed = a . nb echo s r e c e i v ed ;

168 }

169

170 t o t a l e c h o s r e c e i v e d = t o t a l e c h o s r e c e i v e d + a . nb echo s r e c e i v ed ;

171 }

172 p r i n t l n ! (” Echos sent : { : ?}” , e cho s s en t) ;

173 p r i n t l n ! (” Echos r e c e i v ed : { : ?}” , e cho s r e c e i v ed) ;

174 p r i n t l n ! (” Echos r e c e i v ed : min {} max {} t o t a l {}” , min echos rece ived ,

max echos rece ived , t o t a l e c h o s r e c e i v e d) ;

175 p r i n t l n ! (”DONE”) ;

176 }

177

178

179 //Reads the c on f i g u r a t i on f i l e and s t a r t s the s imu la t i on

180 fn main () {

181 // s imu la t i on c on f i gu r a t i on

182 l e t c on f f i l e name = ” con f i g / conf−echo . yaml ” ;

43

183 // i n i t i a l i z e app con f i g u r a t i on

184 l e t app conf : Rc<AppConf> = Rc : : new(u t i l s : : y am l f r om f i l e t o o b j e c t (&

con f f i l e name)) ;

185

186 // i n i t i a l i z e a l l nodes

187 l e t mut apps = Vec : : new () ;

188 f o r i in 0 . . app conf . n {

189 apps . push (Rc : : new(RefCe l l : : new(Box : : new(

190 EchoAppl icat ion : : new(i , 0 , 0 , 0 ,

191 app conf . c l one ())) as Box<dyn Appl icat ionBase>)))

;

192 }

193 // run the s imu la t i on

194 l e t ke rne l = Simulat ionKerne l : : i n i t (&apps , c on f f i l e name) ;

195

196 // s imu la t i on f i n i s h ed , compute s t a t s

197 s t a t s (&ke rne l . g e t a pp l i c a t i o n s ()) ;

198 }

44

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Glossary
	1 Introduction
	2 Related Work
	2.1 Concepts
	2.2 Simulation only
	2.2.1 PeerSim
	2.2.2 Optimal-sim
	2.2.3 PlanetSim
	2.2.4 NDP2PSim
	2.2.5 D-P2P-Sim
	2.2.6 PeerfactSim.KOM
	2.2.7 DistAlgo

	2.3 Simulation and real execution
	2.3.1 ProtoPeer
	2.3.2 Neko
	2.3.3 RealPeer

	2.4 Emulation and real execution
	2.4.1 OverlayWeaver

	2.5 Real execution
	2.5.1 SPLAY
	2.5.2 P2
	2.5.3 Mace

	2.6 Summary

	3 Corten
	3.1 Architecture
	3.2 Random Number Generation
	3.3 Event Queue Structure
	3.4 Interactivity and Extensions
	3.5 Discussion

	4 Evaluation
	4.1 Micro-benchmarks
	4.2 Macro-benchmarks
	4.2.1 Case study: Chord
	4.2.2 Comparison with PeerSim

	5 Conclusions
	5.1 Future Work

	Bibliography
	A Echo Application

