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Resumo

As blockchains e as criptomoedas estão a ganhar cada vez mais mercado no mundo tecnológico.

Devido ao seu potencial, novas criptomoedas foram criadas como o caso do Ethereum intro-

duzindo novos casos de uso no mundo tecnológico. O Ethereum permite o desenvolvimento de

aplicações descentralizadas na sua rede. Mas apesar de esta tecnologia ter um enorme potencial,

existe algumas lacunas que precisam de ser combatidas. No caso particular da disseminação, o

Ethereum apresenta um grande número de duplicados na disseminação de blocos e de transações

que afetam o processamento de cada nó e congestionam a rede com informação redundante.

Para além disso, é posśıvel tornar o algoritmo de disseminação mais rápido permitindo diminuir

o trabalho desperdiçado na rede. Neste artigo apresentamos várias soluções para mitigar estes

problemas para os blocos. Onde dependendo do objetivo podem ser aplicadas diferentes aborda-

gens. Também desenvolvemos uma abordagem para as transações, onde o número de transações

duplicadas é bastante reduzido, mas em contrapartida o tempo que cada transação demora a

chegar a todos os nós é um bocado maior.

Palavras-chave: Blockchains, Ethereum, Disseminação, Duplicados, Latência
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Abstract

Blockchains and cryptocurrencies are increasingly gaining market share in the technological

world. Due to their potential, new cryptocurrencies were created like the Ethereum, introducing

new use cases in the technological world. Ethereum enables the development of decentralized

applications in the network. But while this technology has huge potential, there are some

gaps that need to be addressed. In the dissemination case, Ethereum has a large number

of duplicates in block and transaction dissemination that affect the processing of each node

and congest the network with redundant information. In addition, it is possible to make the

dissemination algorithm faster where the wasted work in the network is reduced. In this article,

we present several solutions to mitigate these problems for blocks. Depending on the goal,

different approaches can be applied. We have also developed an approach to transactions where

the number of duplicate transactions is greatly reduced, but consequently the time that each

transaction takes to reach all nodes is slightly longer.

Keywords: Blockchains, Ethereum, Dissemination, Duplicates, Latency
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Chapter 1

Introduction

Blockchains are hugely important nowadays. They are used to store data. Cryptocurrencies use

them as a public ledger to store transactional information. Also, banks, enterprises, startups

are building their product using blockchain solutions [WGP+17]. Leading tech giants realized

the importance of blockchains, and they provide services where they create, run, and manage a

blockchain, and in return, the enterprises have to pay a rent; the enterprises only have to focus

on its core business activities. This is called Blockchain as a Service (BaaS). 1 2

1.1 Motivation

The blockchain is a growing list of blocks that contain data where each block has the hash of the

previous one. What makes it appealing is its difficulty in modifying the information: since each

block has the hash of the previous one, if a block is modified, the following blocks will also have

to be changed to have a consistent record of the information; as it takes some work for a block

to be valid, then its very expensive modifying the data. As the information is stored across

multiple nodes, it does not have a centralized point of vulnerability, making it more difficult

for the attackers to exploit the system. Likewise, it does not exist any central point of failure

[CV17].

But blockchain also has some limitations like:

• Absence of Privacy because the information must be public if any device can join the

system and participate in the protocol. Bitcoin does not offer a strong privacy guarantee

because when analyzing the blockchain, it is easy to link different accounts to the same

person. However, in the literature, there are some methods to make payments with strong

privacy guarantees that Bitcoin and other blockchains can implement [SCG+14].

1https://aws.amazon.com/pt/partners/spotlights/blockchain-partner-spotlight/
2https://azure.microsoft.com/en-us/solutions/blockchain/
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• Poor performance because all nodes must reach consensus. In Bitcoin, “(Nodes) vote with

their CPU power, expressing their acceptance of valid blocks by working on extending them

and rejecting invalid blocks by refusing to work on them.“ [Nak08]. They must resolve a

cryptographic puzzle using their CPU for a block to be valid, and this process takes a long

time to make. Also must of the work done is wasted because different nodes are trying to

create concurrent blocks that eventually will be discarded by the blockchain.

• Not environment friendly because as said before, for a block to be valid, the nodes

must solve a cryptographic puzzle using their CPU. And this solving process wastes a lot

of energy. Since the majority of electricity comes from fossil energies, if the technology

becomes worldwide used, then the effects on the environment could be catastrophic at a

time when we are doing everything we can to reduce carbon emissions [OM14].

• Inefficient dissemination because the information must reach all nodes faster, to have

a faster consensus in the network. Also, a lousy dissemination algorithm can cause many

duplicates in the system that affects the bandwidth, and the CPU used by the nodes to

process these duplicates.

In this thesis we will focus on the dissemination in the blockchains. If a naive dissemination

algorithm is applied, then the number of duplicates affecting the system will be large, thus

affecting the processing power of each node, slowing down the network. Also, if the dissemination

algorithm is slow, the amount of wasted work will be larger because the time that each node

wastes in concurrent blocks will be longer. We will explain better this case in the next section.

1.2 Topic Overview

Satoshi Nakamoto invented the blockchain to solve the double-spending problem in a peer to

peer network. The blockchain acts as a public ledger where all transactional history is stored

on a sequence of blocks. For a block to be validated some work must be done, so to change its

content it is necessary to redo all the work. This ledger is shared among all the peers that validate

all the information inside it [Nak08]. The ledger contains transactions. These transactions are

collected on a block, and this block is inserted into the blockchain [DW13]. It is necessary that

all peers agree on these sequence of blocks to have data consistency. This implies that all nodes

agree on which transactions are done and in which order. This task of agreement between nodes

is called consensus, and the consensus protocol used on Bitcoin is called Nakamoto Consensus

[NG16].

2



The biggest problem with this type of systems is the poor performance where only a few

transactions are done per second. Visa can handle 24,000 transactions per second (tps), while

Bitcoin can handle only 7 tps and Ethereum can handle 15 tps 3 [SZ15, BMZ18, Nak08]. Re-

cently, CryptoKitties, a game on top of Ethereum blockchain disrupted the Ethereum Network.

This happened because the Ethereum network could not handle all the transactions made by

this game, calling into question the ability of Ethereum to handle an unlimited amount of de-

centralized applications [Kha].

One of the reasons for the poor performance is because it is challenging to reach consensus

and most of the work done is wasted [NG16]. For instance, in a certain period, it is possible to

have two chains as ’truth’, ending up with different nodes working in different chains. After a

while, when a chain has more work than the other, the chain with less work will be discarded,

and the work on it will be lost, making the write availability low [WGP+17].

Dissemination has a fundamental role in this disagreement. If the propagation time is very

high and it is easy to generate a block, it is more likely that a node n1 would mine a block B’

when another node n2 has already mined a concurrent block B, but n1 has not yet received B.

So if n1 had received B before it had completed the mining of B’, it would have given up mining

B’ and thus avoided this disagreement. But even if this disagreement does not occur there is

always wasted work because different nodes try to mine different blocks. The longer the block

takes to reach all nodes, the greater the wasted work will be.

Although it is necessary to send blocks and transactions as fast as possible, it is required to

take into account the amount of duplicate information, which will waste the node’s computation

unnecessarily and contribute to higher network congestion, making it slower [Mat13].

1.3 Challenges

So it is fundamental to improve the efficiency of the dissemination of blocks to reduce the

amount of wasted work and also reduce the number of duplicates that affects the bandwidth

and processor usage of each node. However, it is not trivial to come up with a solution:

• If a node fails or disconnects, the payload must continue to reach all the peers and not only a

fraction. All nodes in the network must have the most recent blockchain to avoid attacks in

the system. If an attacker wants to buy merchandise to a merchant, it issues a transaction,

and then a block with this transaction is created. But since some disconnections occurred,

this block is only received by a fraction of the network, including the merchant . So the

merchant will send the merchandise to the attacker, and the attacker creates a concurrent

3https://ethereum.github.io/yellowpaper/paper.pdf
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transaction sending the same money to himself. The other part of the network will receive

this transaction and create a block with this concurrent transaction. In the future, if this

blockchain has more work than the other, it will become the truth. In the end, the attacker

has the merchandise and also the money. This attack is called double-spending, and it is

easier to perform if the information is split across multiple nodes.

• It is necessary to know if the other neighbors already received the payload to avoid sending

duplicates that it is a challenging task in a Byzantine model where the nodes can lie (e.g,

a byzantine node may not send the block to its neighbors for its own benefit). To reduce

the number of duplicates in the network, a naive approach can be implemented where all

nodes ask their neighbors if they already received that payload. The number of duplicates

will be reduced to 0, but the latency will be increased because there are more messages in

the network.

• It is a challenging task to reduce the latency because usually when the latency is decreased,

the number of duplicates increases. A naive approach can be implemented where all nodes

send the block to their neighbors without asking if they have the block or not. Although

the latency is reduced, the number of duplicates in the network will be significantly higher.

1.4 Objectives

The goal of this thesis is to improve the dissemination layer of state-of-the-art blockchains. To

achieve that, we will focus on the Ethereum protocol as a case study. We want to reduce the

number of duplicate blocks and transactions in the blockchain that effects the CPU and the

bandwidth and also try to make the dissemination faster, in order to have less wasted work. In

the block dissemination, depending on the selected approach , we improved the dissemination

speed, the number of duplicates and consequently the CPU used and the network bandwidth

consumption. In the transaction dissemination, we improved the number of duplicates that

affects the CPU and the network bandwidth consumption, but the time that each transaction

takes to reach all nodes is higher.

1.5 Thesis Outline

The rest of the document is organized as follow: In Chapter 2 we introduce some of the state-

of-art concepts where we talk about the key concepts of the overlay network, dissemination in

general, the difference between the Bitcoin and Ethereum, blockchains, the consensus in both

4



coins, how Bitcoin and Ethereum disseminate the blocks and transactions, some dissemination

systems where we tried to inspire to build our approaches, and also some security problems. In

Chapter 3 we explain our approach for the block and transaction dissemination, in Chapter 5

we present the results for our approach comparing to Ethereum Vanilla and in Chapter 6 we

conclude our thesis and also introduce some future work and open challenges.
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Chapter 2

Related Work

In this section, we will introduce some key aspects to understand the dissertation better. From

here on, we consider a node someone that participates in the protocol; a full node someone that

participates in the protocol and also mines blocks; and a user someone that has an Ethereum

account that can issue transactions communicating with a node or a full node but does not

participate in the protocol.

2.1 Bitcoin and Ethereum

Bitcoin and Ethereum are designed for different purposes. While Bitcoin was created as an

alternative to the fiat currencies (i.e., money created by governments such as Euro or Dollar)

which does not rely on a central authority, Ethereum is a platform that allows the creation

of ”smart-contracts” which are executed by each node that enables the creation of distributed

applications (DApps) on top of it1 [Nak08]. Although Bitcoin also has a scripting language

to write contracts these contracts are limited2. In Ethereum, every node runs the Ethereum

Virtual Machine (EVM) which can execute code of arbitrary algorithmic complexity enabling

the creation of more complex contracts1. As each node must run the smart-contract, a fee is

charged for each computation. The amount of computation power required to perform a specific

task is called Gas and each user specifies how much they are willing to pay for a unit of Gas

(i.e., the amount of ether)3.

1https://github.com/ethereum/wiki/wiki/White-Paper
2https://en.bitcoin.it/wiki/Contract
3https://github.com/ethereum/wiki/wiki/White-Paper#code-execution
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2.2 Overlay Network

Each node has a list of nodes with whom it communicates. This list is called the view of the node

and each node on the view is called a neighbor. The set of all the views from all the nodes makes

an overlay network. An overlay network is a computer network that is built on top another

network, and when creating one, it should have the following properties [Mat13, LPR07]:

1. Connectivity. All nodes must be connected (i.e., any node must reach every other node

with a finite number of hops)

2. Average path length. It measures the average amount of hops of all shortest paths

between all pairs of nodes in the overlay. As this value is related to the time a payload

reaches all nodes, the overlay is more efficient if this value is low.

3. Clustering coefficient. It measures the number of links between the neighbors of a

node divided by all possible links across those nodes. The clustering coefficient of an overlay

is the average coefficient across all nodes. This value influences the number of duplicates

in the network directly. If this number is high, then the number of redundant information

is also high. Also, high values of clustering in some areas influences the isolation of these

areas from the rest of the network (leading to partitions) under failures and churns.

4. Degree Distribution. It is the node’s view size and measures the nodes reachability and

their contribution to the network.

5. Accuracy. It measures the number of neighbors of a node that have not failed divided by

its total number of neighbors. The accuracy of an overlay is the average of the accuracy

of all correct nodes. If the overlay accuracy values are low, the number of failed nodes

selected will be higher.

The overlay can be structured or unstructured; In structured overlays, the neighbors are

selected according to some criteria such as latency, while in the unstructured the neighbors

are randomly selected with some redundancy. While the structured approach is more efficient

because the neighbors are selected with some criteria, it is not robust. In the presence of faults

and churns it is necessary to recalculate the overall overlay network. The opposite occurs with

the unstructured; it is more robust but less efficient. There are multiple paths between two

nodes, so failures and churns do not prevent the message from being delivered as it will be

routed to another available path. Figure 2.1 represents an example of an overlay network.

8



Figure 2.1: Represents an overlay network which is built on top of another network. The overlay
links are represented with a dashed line and the links of the underlying network are represented
with a line. The payload is sent over the underlying network where it will reach the destination
overlay node.

2.2.1 Dissemination

There are three main approaches to data dissemination: flooding, tree, and epidemic, also know

as gossip [EGKM04, Mat13].

Flooding is the simplest dissemination algorithm, where all the messages are relayed to all

neighbors. So there will be many duplicates, which is why it is very demanding in bandwidth.

In the tree approach, a dissemination tree without any loop is created. The root of the tree

sends the message to its children and the children of the root to their children and so on. As the

tree does not have any loop, then no duplicate messages are sent. This approach has the same

problem of the structured overlay networks because if a node disconnects or fails it is necessary

to recalculate the tree; it is not resilient to failures and churns.

In the epidemic approach, the message is sent to a random number of nodes selected from its

view. The size of the subset of nodes random selected is usually called fanout. This approach is

more robust because this random selection allows the creation of multiple paths to the nodes and

so the message continues to be delivered with high probability to all nodes under the presence

of a large number of churns and disconnects [EGKM04]. There are two approaches to how the

message is relayed [Mat13]. The sender can make the initiative to relay the message as soon as

it is received (push approach) or the node can ask periodically for a new message to a certain

neighbor, which will then relay the message to the node (pull approach). These approaches can

be combined with a when decision: eager and lazy [Mat13]. In the eager, the payload of the

message is sent to all of its neighbors, while in the lazy an advertisement is sent first, and only

after that the payload if the neighbor does not have the message and asks for it.

Eager and lazy represents a tradeoff between latency and bandwidth. If the payload is

always forwarded to the neighbors without advertising it, the latency will be minimal (the node

9



only sends one message that is the payload), but the bandwidth will be higher because the

number of duplicate information will be more significant (always forward the payload even if the

receiver already has it). On the other hand, if a node sends an advertisement first then more

messages are sent if the receiver does not have the payload (advertisement and the payload) but

the number of duplicates decreases (a node only forwards a payload if the receiver does not have

it and asks for it).

Bimodal multicast [BHO+99] one of the most known gossip algorithms, combines the tech-

niques described above where it guarantees scalability and reliability with some probability.

First the nodes will do a best-effort multicast (IP multicast or multicast spanning trees) to reply

the message (eager approach) and second, each member randomly choose another member and

send a digest. The receiver can solicit any message from the sender if it does not receive the

message earlier (lazy approach). These two phases are done concurrently. But they assume a

global membership where each node must know all the nodes in the system. So some work was

done to provide a uniform view of the system consuming less memory and requiring no dedicated

messages for membership management [EGH+03, LPR07], that are usually called peer sampling

service (PSS) [JGKVS04].

The PSS can be reactive or proactive. Proactive is when the nodes periodically exchange

their view with their neighbors and so their view can be updated even if the global membership

is stable [VGVS05] and reactive is when the view is kept unchanged until some external event

occurs on the overlay (a node fails or joins the overlay) [LPR07].

2.2.2 Blockchain

A blockchain is a list of blocks where a block points to the previous one, creating a chain.

Each block has the cryptographic hash of the previous block, a timestamp, and data. Satoshi

Nakamoto introduced the blockchain in Bitcoin. It is used as a public ledger where blocks

record a set of transactions. Each transaction contains the sender address, the receiver address

and it is signed by the sender’s private key. When a node creates or receives a transaction, it

will check if the transaction is valid and put it on its transaction pool (an unordered collection

of valid transactions that are not in blocks in the main chain4). Then the full node will pick

a set of transactions from its transaction pool and generates a block which will be put on

the blockchain, shared by all the nodes [Nak08]. As each block has the hash of the previous

one, if a middle block is changed, then it is necessary to recalculate the hash of the next ones,

making the blockchain resistant to data modification [CV17]. There are two kinds of blockchain:

4https://en.bitcoin.it/wiki/Protocol rules
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permissionless where anyone can run a node, write on the blockchain, participate on Consensus

(Section 2.2.3) and be a user. Bitcoin and Ethereum are examples of this kind of blockchains.

In permissioned blockchains only a specific group of nodes can control, update the blockchain

and issue transactions. HyperLedger is an example of a permissioned blockchain [CV17].

2.2.3 Consensus

It is important that all nodes agree on which order the blocks are appended, this process of

agreement is called Consensus. In Consensus, all correct processes propose a value and they

reach a unanimous and irrevocable decision on some value that was previously proposed [CT96].

It is usually expressed with the following properties: agreement indicating that if two correct

processes decide they decide on the same value, uniform validity where a process must decide

a value that was previously proposed, termination indicating that eventually, every correct

process decides some value, and uniform integrity where a process must decide at most once

[NG16, CT96].

Nakamoto Consensus is a quite different consensus algorithm, that it is implemented on

Bitcoin, where some of these properties are relaxed to allow to reach consensus in a scalable

and efficient manner on a trustless environment. For instance Nakamoto Consensus does not

guarantee agreement deterministically (when a fork occurs), instead the agreement is met with

probability close to 1 [NG16].

Nakamoto Consensus and Ethereum Consensus

Nakamoto consensus consists of three key aspects: Proof-of-Work (PoW), incentives and a chain

selection rule. In Proof-of-Work, it is necessary to resolve a cryptographically puzzle where nodes

vote using their CPU power. For a block to be valid, a node has to find a nonce so that the hash

of the block header is smaller than the difficulty target5 of the block, this process of finding a

nonce is called mining and the node that performs it is called a miner. Bitcoin uses the Hashcash

Proof-of-Work system [B+02] and Ethereum uses Ethash6. Ethereum claims that it will change

to Proof-of-Stake, but no official date is known7. So when a miner finds a nonce that makes the

hash of the block header below to the block’s difficulty target it will propagate the block over the

network. All the other nodes will verify the work and accept it as a valid block, and the miner

gets its reward [B+02, Nak08]. It may occur that when a block is being propagated, another

5The difficulty is a measure of how difficult it is to find a hash below a given target. It is adjusted every 2016
blocks in order to generate a block every 10 minutes. If on average the block generation time takes more than 10
minutes then the difficulty is reduced, and if it takes less, then the difficulty is increased.

6https://github.com/ethereum/wiki/wiki/Ethash
7https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
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miner, who has not seen this block yet, mines a concurrent block and starts disseminating it.

The network will see two chains, resulting in a fork. Forks are not desirable, because different

nodes will believe in different truths, compromising the agreement property. As disagreements

can occur in the network, the blockchain is susceptible to attacks like double-spending and selfish

mining (Section 2.2.8).

Bitcoin resolves these forks by choosing the longest chain. When a chain has more work

than the others, that chain must be considered as truth by the network. The nodes adopt this

strategy because of the incentives. They only receive rewards for mining blocks that are in

the chain with the greatest mining difficulty. So they are incentivized to follow this strategy

[BMC+15].

Ethereum, according to the White Paper, uses a modified GHOST (Greedy Heaviest Ob-

served Subtree) implementation8. But the GHOST protocol replaces the ”longest chain” rule

by the ”heaviest subtree” rule, where the uncles (i.e., blocks that are in the smallest chain, that

will be discarded) contribute to the total difficulty of a chain. Contrary to what the white paper

says, Ethereum does not implement this rule; it uses the ”longest chain” rule [GKW+16]. See

also Appendix A, which demonstrates that Geth, the official Go client and the most used, does

not use the uncles to calculate the total difficulty of the block. Although the uncles do not

contribute to the total difficulty, the miners that generate them, receive a reward, to encourage

small miners to continue mining, avoiding centralization. Ethereum only accepts seven genera-

tions of uncles to avoid many calculations of which uncles are valid to a given block and to force

the miners to work on the main chain. Besides each block can only contain 2 uncles.

2.2.4 Bitcoin

Dissemination

Bitcoin dissemination system uses an advertisement mechanism to propagate blocks and trans-

actions (i.e., it uses a lazy approach). Figure 2.2 shows the protocol flow between two nodes.

When a node receives a block or a transaction it will verify it (step 1) and if the block or

transaction is valid it will send an inv message to its neighbors, that contains the transaction

or block hash (step 2). If the neighbors have never seen this block or transaction before, they

will request it, sending a getdata (step 3). The node will reply with the information that its

neighbors have requested (step 4). The receiver will then verify the information (step 5) and if

it is valid, it will send an inv message to its neighbors (step 6) and so on and so forth [DW13].

As the block size increases the latency, some improvements were made to reduce the block

8https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
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Figure 2.2: Overview of the advertisement dissemination implemented by Bitcoin [DW13] where
node A sends some data to its neighbor node B.

size. A block instead of having all the transactions, it has a compact hash of each transac-

tion. These blocks are called CompactBlocks.9 As nodes have already received the transaction,

they can use these transactions to figure out which of them corresponds to the compact hash,

knowing then what transactions are included in the block. Note that the ”normal” block has

duplicated information because it is probable that the nodes already received the full set of

transactions before. Nonetheless, some nodes might not have received the transaction before.

In such scenarios, the node will request it. Thus CompactBlocks improve the efficiency of the

network by reducing the amount of duplicate information where the same corresponding block

is transmitted faster.

Relay Networks on Bitcoin

Currently, Bitcoin has a client, BitcoinCore, that supports relay networks10. A relay network

is a network where a peer sends or asks a block/transactions to an intermediate node which

then sends to the other nodes on the network with much less latency. This approach has some

advantages: first, the forks will be fewer, because the latency is reduced and second, it makes

smaller miners more competitive because bigger miners (mining pools) have a private network

where the dissemination is faster than the ”normal” peer-to-peer network. As relay networks

reduce significantly the latency then the gain of bigger miners to use a private network is smaller.

But a relay network has some disadvantages as well. Each node has to communicate to a

specific server, the closest to it, where it sends and receives transactions and blocks from other

nodes that also use this relay network. These servers are centrally controlled which violates

the premise of decentralization of the Bitcoin network. FIBRE (Fast Internet Bitcoin Relay

Engine)10 is the relay network supported by BitcoinCore which has 6 nodes distributed across

the world. It uses UDP instead of TCP, allowing it to use the FEC (Forward Error Correction).

9https://bitcoincore.org/en/2016/06/07/compact-blocks-faq/
10http://bitcoinfibre.org/
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FEC lets nodes to reconstruct the data even if some of it gets lost. FIBRE uses CompactBlocks

which was described in the previous section.

2.2.5 Ethereum

Ethereum network communication is comprised of three protocols: Node Discovery Protocol v4

for node discovery11 (Section 2.2.5) , DEVp2p for application session establishment12 (Section

2.2.5) and Ethereum subprotocol to retrieve and store information on the blockchain13 (Section

2.2.5).

Node Discovery Protocol v4

Figure 2.3: Flow of adding a node N to the table of node Y.

Ethereum uses a modified version of Kademlia11 [KMM+18, MHG18] to discover new peers.

The purpose of Kademlia is to store and find in an efficient manner content in a peer-to-peer

network, but Ethereum does not use it to find content (the only content that exists is the

blockchain, and all peers store it), only to find new peers or when it is necessary to resolve an

IP, that the Ethereum client does not know, for a node ID. Ethereum has buckets like Kademlia

(i.e., a datastructure where bucket i stores network information about k peers at distance i

[MHG18]), in the case of Geth, the Go official client and the most used, 17 buckets are used

containing a maximum of 16 peers each.

11https://github.com/ethereum/devp2p/blob/master/discv4.md
12https://github.com/ethereum/devp2p/blob/master/devp2p.md
13https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
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Ethereum uses UDP connections to exchange information about the peer-to-peer network:

• ping message to know if the neighbor is alive, where the neighbor responds with a pong

message;

• findnode to ask a peer the 16 nodes closest to a particular target t (it can be a random

value or its Node ID) that have been seen by the receiver of the request, the peer will

respond with a neighbor message with these 16 nodes11 [MHG18].

All of these messages are timestamped to avoid replay attacks. A peer adds to the message

sent an expiration field (i.e., the node’s local time plus 20 seconds). The receiver will check if

the expiration field is after its local time. If it is then the message is valid. Note that this is not

the best solution to avoid replay attacks because an attacker can replay messages within this

time range and the clocks of all the nodes must be synchronized [MCBG16, MVGV+17]. Also,

an attacker can change the clock of the victim making it only accept connections with its and

therefore perform an eclipse attack.

Ethereum has two data structures to store the nodes:

db Persistent and contains all the nodes that the client has seen so far (a node has been seen if

it responds to a ping message sent by the client with a valid pong response). Every hour

the client runs an eviction process and removes nodes that the last pong received is older

than 24 hours.

table Not persistent, so when a client reboots the table will become empty. The table has 17

buckets with 16 entries each. Nodes will be put on the buckets according to the logdist

function, that corresponds to the similarity of the most significant bits between the client’s

hash node ID and the node ID hash of the node that will be put on the table. If the bucket

is full, then the client will only put in the bucket if the least recently active node in that

bucket does not respond to a ping packet. Figure 2.3 shows the flowchart of this process.

Recently an optimization was made14 where every 5 seconds on average (a random value

is selected between 0 and 10), the last node in a random bucket is checked and if it fails

to respond it will be replaced by other node and if it responds then it will be moved to

the front of the bucket. This prevents dead nodes from being stuck in the table.

The client to discover new nodes uses the lookup(t) where it will populate its table with the

nodes that it receives. The goal of this process is to populate the table with distinct nodes in

14https://github.com/ethereum/go-ethereum/commit/9123eceb0f78f69e88d909a56ad7fadb75570198#diff-
40b2cd29997bbd3f578f9d537789b9bb
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Figure 2.4: Node A performs a lookup(t), where it sends a findnode message to node B and
node C.

order to have a uniform sample of the network. Figure 2.4 illustrate this procedure in a simplified

way with three nodes. This function will look to the 16 nodes closest to the target t in the table

(step 1). Then sends a findnode message to each of these nodes (step 2) and they will respond

with the 16 closest from their table (neighbor message) to the target t (step 3). Only 3 findnodes

will be sent at the same time (concurrency parameter defined by the protocol11). As soon as the

client receives the neighbor message, it will recalculate the 16 nodes closest to t, counting with

the new ones just received (step 4). This process will be done until this list remains unchanged.

When the node reboots, its table is initiated and a seed process will be done. A seed process

is a mechanism where the client will select 30 nodes with no more than 5 days (i.e., where the

last pong is less than 5 days) at random from the db. These nodes together with bootstrap nodes

(nodes that are hardcoded in Geth) are added to the table. After that, doRefresh function is

called which performs the following steps: one more seed process, one lookup(self) (where self

is the hash of the client’s node ID), and three lookup(t) where t is a random target. Note that

when a neighbor message is received all nodes are added to the table.

Only after that, it is possible to add nodes in the table through a ping message sent by the

other nodes. This is a security measure implemented recently by Geth to prevent the table from

being completely filled by just sending ping repeatedly by many nodes belonging to the attacker

as described in [MHG18].

DEVp2p

DEVp2p uses the RLPx transport protocol, a TCP-based transport protocol used for commu-

nication among Ethereum nodes. The maximum number of TCP connections are maxpeers (by

default 25) + static nodes (nodes that are hardcoded by the admin), where 8 of maxpeers are

outgoing connections, that is connections that are initiated by the client itself, and the others

are incoming where the other nodes initiate the connection. Note that these connections are

unidirectional so when a client makes an outgoing connection to a node X, the client will count
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towards the maximum number of connections of the node X.

First, it will try to make a connection with static nodes, after that if it does not have any

peer and 20 seconds have elapsed it will try to connect to a random bootstrap node. Then, it

will select the remainder of outgoing connections divided by two to random nodes in the table,

the rest will be selected from the lookupBuf, which is a queue that has the result of a lookup(t),

that is the 16 nodes closest to a random target t.

DEVp2p negotiates an application session between two peers. Each node sends a hello

message which specifies the sub-protocol and version that it supports. After defining the sub-

protocol and its version, they can begin to transmit application data packets. During periods

of inactivity, they send a DEVp2p ping message to ensure that their connection is still active.

If a DEVp2p pong message is not received within a specific time, then a disconnect message

is sent to end with the connection. This disconnect message specifies the error occurred (e.g.,

TCP sub-system error, Too many peers, Incompatible P2P protocol version, etc.)12 [KMM+18].

Ethereum Dissemination

The Ethereum Sub-protocol runs on top of DEVp2p and is denoted as ‘eth‘ during DEVp2p

hello exchange. The nodes first sent a status message which includes the total difficulty of their

blockchain and the hash of their most recent block. The peer with worst difficulty (i.e., the

blockchain with less work) will ask to the other for the remainder of blocks13.

After the synchronization, they can start participating in the Ethereum network. Figure

2.5 illustrates how a transaction is propagated in the Ethereum Network. First a user issues a

transaction to a node (step 1). The node will then create it (step 2) and propagate it over the

network to its neighbors (step 3). The neighbors will check the transaction (step 4), and if it is

valid, then they will add it to their transaction pool and disseminate it to their neighbors and

so on (they will never send the transaction to the node who send it to them) (step 5). As all

the nodes send the transaction to its neighbors without advertising it, the number of duplicate

transactions received by each neighbor is huge, wasting processing power and congesting the

network.

The miner will pick a set of these transactions and try to mine a block. The dissemination

of the block is represented in Figure 2.6. The miner mines a block (step 1) and propagates it to

the maximum value between 4 and square root of its neighbors (NewBlockMsg) (step 2). Note

that each node only sends to peers that it knows that do not have the block. If the number of

peers that do not have the block is less than 4 then it will send the block to all of them. To the

remaining nodes, if any, it will send the block hash and number (NewBlockHashesMsg)(step 3);
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Figure 2.5: Creation and propagation of a transaction on Ethereum.

each of these peers will perform the following steps:

1. If this hash is unknown on its blockchain, it will request for the block header (GetBlock-

HeadersMsg), waiting at least 400ms (step 4). If the node receives that hash from more

than one peer, it will request the header to a peer at random. It is not possible to request

a bulk of headers to a peer, only a single one.

2. After receiving it (BlockHeadersMsg) (step 5), the node will perform the following verifi-

cations:

(a) Checks if it is expecting that header. If it is not expected the header is ignored.

(b) Checks if it already received the block header, if it is expecting for the body, or if it

already has the body and it is expecting for the block to be included on its chain. If

one of these cases occurs then it will reject the header received.

(c) Checks if the header number corresponds to the number previously announced, if it

does not then rejects it.

(d) Checks if it already has the block in its chain. If it has then rejects it.

After that, it will verify if the body is empty, i.e., if it does not exist any transaction and

any uncle on the block. If this condition is met then the node will create an empty block

and put it on its chain.

3. If the block is not empty then it will request for the body (GetBlockBodiesMsg) (step 6),

waiting at most 100 ms. If meanwhile, it receives the block and puts it on its blockchain,

it does not request the body. It is possible to request a bulk of bodies to a peer.

4. When the body is received (BlockBodiesMsg) (step 7), it checks which header corresponds

to this body received and if it is already on its chain. If not, it will validate the block’s proof
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Figure 2.6: Dissemination of a block in the Ethereum Network.

of work using only the block header, and if it is valid, the node will propagate immediately

to the maximum value between 4 and square root of its neighbors that it knows that do

not have the block. This process can lead to duplicates because the neighbor may have

already received this block.

After that, it verifies the uncles (i.e., if the block has at most 2 and if the uncles have

a valid header) and checks if the transactions are valid and the transaction root of the

block (i.e., if the combined hashes of the transactions sent are the same as the transaction

root). Note that the hashes of the transactions are combined forming a merkle patricia

trie where the transaction root depends on all of them. So if a transaction is modified

then the transaction root will be different15.

Also the node processes the state changes by processing the transactions received, and

then validate the various changes that happen after a state transition (i.e., amount of gas

used in the block and check if the receipt16 and state17 root are the same as the receipt

and state root in the block header). If the block is still valid, it will send the block hash

and number to the remainder of its neighbors.

Step 4 is the only step done by the peers that received the block immediately.

2.2.6 Blockchain layer two protocol

Blockchains do not scale well. They require a global consensus to prevent attacks like double-

spending (Section 2.2.8). It is not possible to perform fast transactions, and the fees are very

high, making it unfeasible to make micropayments. To resolve these problems a blockchain

layer two protocol was created where transactions are made off-chain, avoiding the blockchain

bottlenecks. In Bitcoin there is the Lightning Network18 and in Ethereum the Raiden Network19.

15https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
16The receipt trie has information about each transaction after processing each one like the amount of gas used

to process the transaction
17The state trie contains information about each account such as the balance.
18https://blog.bitmex.com/wp-content/uploads/2018/01/lightning-network-paper.pdf
19https://raiden.network/faq.html
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Figure 2.7: Multihop transfer in Raiden Network where Alice wants to send money to Bob but
does not have a payment channel open with him.

In general, in Raiden Network [NF18], two entities create a payment channel where they

deposit some tokens on a smart-contract on-chain. The two parties can now make off-chain

payments that are digitally signed, avoiding the blockchain limitations. The two parties can

later withdraw their money providing to the smart-contract the last transaction that each of

one received. Then the contract validates it and sets the claims on the blockchain.

Whenever someone wants to transfer money to a particular party, he/she does not have

to always open a payment channel. Instead he/she can use a network of payment channels

that relay the transaction to the destination. So the transfer is locked by the sender using a

Hashlocked transaction where the transfer cannot be claimed on-chain if the party does not

know the secret.

For example Alice wants to transfer money to Bob. She does not have an open payment

channel with Bob and so decides to relay the transfer to Charlie that has a payment channel

open with him. She creates a Hashlocked transaction and sends to Charlie. Now Charlie does

the same thing and produces the same Hashlocked transaction. Bob then will ask Alice the

secret, and Alice sends it. Now Bob unlocks the transfer and sends it to Charlie that claims the

Alice transfer. This example is illustrated in Figure 2.7.

2.2.7 Dissemination systems

We already discussed how the dissemination of the Ethereum works. The number of duplicate

transactions is huge (the nodes only apply an eager approach) [KMM+18]. In the case of blocks,

Ethereum loses a bit of efficiency to have fewer duplicates. The nodes apply an eager approach
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where they send to at least 4 nodes the block. To the others, the nodes apply a lazy approach

where they advertise the block. In this section, we describe Brisa and Bar Gossip, two systems

that can help to find a better solution. Brisa, that is an efficient and robust system but that

only works on a crash model. And Bar Gossip, that takes into account byzantine and rational

nodes like in Ethereum. Also we talk about Thicket that is an algorithm that generates multiple

trees allowing load distribution where the majority of nodes are interior in one tree and in the

rest are leaf.

Brisa

Brisa [MSF+13] is a hybrid approach which combines the robustness and scalability of an epi-

demic with the efficiency of dissemination structures (trees and directed acyclic graphs (DAGs)).

Brisa is built in such a way that upon failures and churns, these structures are rapidly repaired.

Brisa relies on a peer sampling service (PSS) that ensures that the overlay network formed by all

the views of each node is connected. i.e., every node can reach every other under a high rate of

failures and churns. It uses the HyParView [LPR07] where each node has two views: a smaller

active view which is used by the application and a larger passive view which is periodically

exchanged and shuffled with other randomly selected neighbors. When a neighbor in the active

view disconnects or fails, it will be replaced for another in its passive view.

Initially, all nodes send the message to their view (flooding approach), and after that, each

node autonomously selects one as its parent and sends a deactivation message to the others.

Future messages will then only be received from the parent node. The parent can be chosen

using a First-come first-picked strategy where the node sending the first message is selected as

the parent. When a parent fails or disconnects, the node will reactivate all its inbound links and

proceed with a normal parent selection.

It may be useful to have many dissemination structures for example if there are many sources

in the system. So the authors propose a solution where each structure is uniquely identified,

flowID and the source tags the message with its flowID, and the other nodes follow this structure.

The state that each node must have to maintain grows linearly with the number of trees (i.e.,

if a system has N nodes and all the nodes can be the source then each node must maintain the

state of N trees). To mitigate this, they propose a tree reusing strategy where if the source is

very close to the root of the structure, the node will use it to disseminate the message.
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Bar Gossip

Bar Gossip [LCW+06] is a p2p data streaming application that provides low latency and pre-

dictable throughput in a Byzantine/Altruistic/Rational (BAR) model. On this model, the node

can be altruistic, if it follows the protocol, can be byzantine if it behaves maliciously in order

to undermine the system and rational if it does not follow the protocol in order to have more

benefit.

First, each client generates a session pair consisting of a public and private key. Clients sign

up for the service providing both keys to the broadcaster. During the stream, the broadcaster

divides the stream into chunks, and in each round, the broadcaster sends this chunks to the

subscribers and also they are exchanged among clients. After a while, these chunks expire and

are retrieved to their media players.

Because a client is unlikely to receive all updates from the broadcaster, they use two protocols

to exchange the chunks across clients: Balanced Exchange Protocol and Optimistic Push Protocol.

In Balaced Exchange Protocol the clients trade the chunks one for one. So a rational client is

motivated to follow the protocol and in Optimistic Push Protocol the initiator forwards chunks,

in the hope that its partner retributes the favor.

There are Proofs of misbehavior (POM) which ensure that if a client deviates from the

protocol specifications, then this client can be evicted from the system. The auditor is responsible

for policing the system by ordering to random clients for POMs against others. If a client does

not have a POM, it must send a dummy message. If the client does not respond then, the

auditor interprets as if it has misbehaved. Although the auditor waits sufficient time for a client

to respond, an attacker can drop POMs sent by the client, and these POMs never reach the

auditor. The auditor will then evict the client without it misbehaved.

Thicket

There are two types of nodes in a spanning tree: the leaf nodes and the interior nodes. The

interior nodes are the nodes that are inside the tree, and they relay the message to their children.

The leaf nodes are the nodes that are at the end of the tree, and because of that, they do not

relay messages. The load in the interior nodes is much higher than the leaf nodes. One way

to overcome this issue is to create multiple trees where each node is interior only in a few of

them and leaf in the remaining. This way to construct numerous trees allow load distribution

and introduce redundancy for fault-tolerance. The Thicket is an algorithm that creates multiple

trees, where the majority of nodes is interior only in one tree and leaf in the other trees. The

algorithm is specified in [MF10] where it only works in a crash model. For a particular tree, if
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an interior node decides not to send the message, the other nodes will not receive that message.

2.2.8 Security

In this section we will present some attacks that can be made in the Ethereum Network that

must be taken into account when performing a solution.

Double Spending

This attack occurs at the consensus level. Double Spending is when an attacker sends some

money to a merchant on transaction t1 and then creates another transaction where it transfers

this money to himself, transaction t1’. While t1 is added to the blockchain, the attacker starts

doing its own chain where it includes t1’. After receiving its merchandise, it will broadcast

its chain. As the attacker’s chain is the longest, it will be considered as the main chain, and

transaction t1’ will be considered valid and t1 invalid because the funds are already spent in t1’.

The attacker then receives its merchandise without paying anything. To perform this attack it

is necessary to control 51% of the network which is not feasible. Note that it does not always

compensate to make this attack because mining blocks also has its cost [GKW+16, NG16].

Selfish Mining

This attack occurs at the consensus level. Selfish mining is an attack that affects the integrity of

the blockchain. It happens when a selfish miner (one miner or mining pool) does not propagate

its blocks as soon as they are created. Instead it will keep them, creating its own chain, where

its chain is longer than the public one. When the public chain is catching up its own chain,

the selfish miner will release the blocks to the network. In the end, the selfish miner receives

the block rewards to which it is entitled. It assumes that not playing fair increases its returns

[GKW+16].

Eclipse attack

This attack occurs at the membership level, which consists of isolating a peer from the net-

work; the attacker establishes all incoming and outgoing connections with the victim [GKW+16,

MHG18, HKZG15]. Thus controlling all messages from the victim to the network and vice-versa.

So the attacker can take advantage of this to attack the blockchain’s consensus algorithm where

it leverages the victim’s CPU power to perform double spending and selfish mining.

Also, the attacker can perform attacks on the blockchain layer two protocols because the

security of these protocols depend on that no off-chain transaction is made when the payment
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channel is closed. So the attacker can trick the victim to think that the payment channel is

still open, and it accepts the attacker off-chain transaction. For example, a seller can release

merchandise in exchange for an off-chain payment, and the attacker can eclipse the seller to

obtain the commodity without paying.

Either, the attacker can show to the victim an inconsistent state of a smart contract that it

has an interest. For instance, an Ethereum smart-contract can be used to auction a digital cat

(e.g., a CryptoKitties cat) where Alice only wants to buy if the number of bids, x, is less than

3. The attacker can trick Alice showing a previous version of the smart-contract where x < 3

and she makes a proposal, even though x > 3 for the rest of the network.

2.2.9 Discussion

It is essential to have an efficient propagation to make forks less likely to occur. Furthermore,

the number of duplicates must be taken into account because they waste processing power of

each node unnecessarily and congest the network. Also, the view of each node must be a uniform

sample of the system to avoid partitions in the network and to be difficult for an attacker to

eclipse a particular node. But the membership part will not be addressed in this thesis. We

only will focus on the dissemination and we assume that each node has a uniform sample of

the system. In Ethereum the number of duplicates is very high on transactions where each

node applies an eager approach. To disseminate blocks the nodes utilize a combination of eager

and lazy where the number of duplicates is reduced in exchange for poorer efficiency, but the

network also receives some duplicate blocks. In this dissertation, we will focus on improving

these dissemination issues.

In the literature, there are several approaches to enhance dissemination in a p2p system.

However, due to the specificities of blockchains and the strong incentives for a rational approach,

a novel approach is needed. Brisa is a system robust and scalable as the epidemic and efficient

because uses dissemination structures (trees, DAGs). But it only works on a crash model. In

a Byzantine model, a node can decide not to forward the message to its children, can lie about

its position to the source, so it is challenging to know the real path to the source. In BAR

Gossip, although it already takes into account Rational and Byzantine nodes, the system is kind

of centralized where there is a broadcaster that has the private and public keys of the peers.

If this broadcaster is malicious, it can impersonate every node. Also, there is an auditor that

evicts peers. It can also evict anyone that it wants even if they followed the protocol. So the

system relies on two trusted parties: the broadcaster and the auditor. But, we want to continue

to have a completely trustless environment. Also, it is necessary to take into account the attacks
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possible on the blockchain when developing the solution.

In the next section, we present our proposal.
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Chapter 3

Block dissemination

In this chapter, we will describe our approach, which aims to reduce the number of dupli-

cate blocks and consequently reduce the CPU usage and bandwidth consumption. Although

Ethereum applies a combination of eager and lazy, the number of block duplicates remains rel-

atively high. When a node receives a new block, it will propagate it to the maximum between

4 and the square root of its neighbors, without asking them if they already know the block or

not.

In order to reduce the number of duplicates and consequently reduce the CPU usage, we

build a dissemination tree similar to Brisa but adapted to a Byzantine environment.

Analyzing the Ethereum network, we notice that only a few mining pools were responsible

for generating blocks: ”Ethermine”, ”SparkPool”, ”Nanopool”,” F2 Pool2” and ”MiningPool-

Hub 1” 1, opening the opportunity to explore an approach based on trees. Each node only have

to store a few trees occupying a few space in disk. If all nodes generate a block then each node

will have to save a huge amount of trees, equal to the number of nodes in the network which

will occupy a lot of space. The nodes will use the miner’s address to identify each tree, which

is in the block, in coinbase address. When a node receives a block, it will look to the coinbase

address and use it to identify the tree that it must apply in the dissemination.

3.1 Construction of the dissemination tree

The tree is constructed in the same way as in Brisa: initially, all nodes will send the block to

all of their neighbors and choose as parent the node that sent to him the block first, sending

a deactivation message to all the others. A possible execution is depicted in Figure 3.1 where

are represented 5 nodes: A, B, C, D and E. Node B will send the new block first (red arrow in

1https://etherscan.io/
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step 2), to a certain coinbase address. The other nodes will still send the same block, because

they do not know that Node A already has the block (blue arrows in step 2). As Node B

sent the block first, Node A will send deactivation messages to all the other neighbors (step 3).

These deactivation messages will inform the others to announce the block, instead of sending

it directly. Hence, they will start to apply a lazy approach. The nodes have to continue to

advertise the block, because the parent can be malicious and decide not to send the message as

the environment is Byzantine. The tree is then constructed, where all links to where the block

is sent directly constitute the tree. In Figure 3.1, in step 4, the dashed line corresponds to an

indirect link and the continuous line to a direct link.

After the tree is built, when a given node generates a second block, nodes will use the coinbase

address to identify the tree to be used in the dissemination. The block will be sent directly to

all neighbors who did not send any deactivation message for this coinbase address. For the rest,

it announces the block.

Without any Byzantine node, failure or disconnections or no network failures, the number

of duplicates will be 0, since everyone is following the protocol and the tree does not need to be

rebuilt.

Figure 3.1: The multiple steps in the construction of the tree for a given coinbase address where
the double continuous line corresponds to a direct link between two nodes and the double dashed
line corresponds to an indirect link.
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3.2 Repair the dissemination tree

If some problem occurs in the parent node (e.g., it is byzantine or it disconnects) and the node

receives the block first by a non parent node, the tree must be repaired. Figure 3.2 shows

the steps of choosing the new parent when the old one behaves incorrectly. In step 1, Node

C announces and then sends the block first for a given coinbase address because Node B is

Byzantine and it decided to not send the block to node A. Node A will then send an activation

message to the new parent, Node C (i.e., notifies the node to send the next block directly) and

a deactivation message to the old one, Node B. The new tree is then constructed (step 3).

If the parent fails or disconnects, the new parent can be chosen in two ways:

1. The node chooses as parent the neighbor who announces the block first more times to him

to that coinbase address, leading to 0 duplicates. The process is similar to Figure 3.2.

2. If there are not any announced block for that coinbase address the node sends an activation

message to all its neighbors i.e., it informs all its neighbors to send them future blocks.

Then it chooses as parent the node that sends to it the block first, leading to many

duplicates. Figure 3.3 shows this process where node A sends an activation message to

all of its neighbors (green arrow in step 2). The neighbors will then send the next block

directly to node A (step 3). Node A will then select as parent the node who sends to him

the block first, following the same steps in Figure 3.1.

3.3 How a Byzantine node can attack the system

In the presence of Byzantine nodes, these can attack the system in four ways:

1. By not sending the received block to its neighbors, affecting only the time of receiving the

block, if it is a parent. Its neighbors continue to receive the block by other nodes, and the

one that sends the block first to him becomes the parent and the Byzantine node ceases

to be (the node sends an activation message to the new parent and a deactivation message

to the old one).

2. Not following the protocol and sending the blocks to all its neighbors, affecting the number

of duplicates in the system. The same problem can happen in Ethereum Vanilla, so it will

not be addressed in the rest of the thesis.

3. Sending a block with header and body invalid. An attack that is also not addressed in the

evaluation, because the effects caused in Ethereum Vannila would be the same as in our

solution (network congestion).
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Figure 3.2: Repair a tree when the parent is byzantine. The double continuous line corresponds
to a direct link between two nodes and the double dashed line corresponds to an indirect link.

4. Sending blocks with valid headers and invalid body. This situation will be addressed in

the evaluation because correct nodes in Ethereum Vanilla disseminate these type of blocks,

causing congestion on the network and affecting the CPU usage of each node.

3.4 Implementation

To apply our approach, we had to understand all Geth’s code and adapt it to work on our local

network. Additionally, we have to understand all the dissemination problems that Ethereum

has and try to come up with a better solution.

So Geth has different modules where we have changed the eth module, more precisely the

handler.go and fetcher.go. The handler.go is responsible for handling the messages received in

the network. And the fetcher.go is responsible for checking if the header and the body are valid.

In the handler.go, we add two more messages in the network:

1. DeactivationMessage to inform the neighbor, for in the future, to send the hash of the

block for a given coinbase address and to only send the full block when the neighbor asks

him for it (the node must send a BlockBodiesMsg).

2. ActivationMessage to inform the node, for in the future, to send the full block for that
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Figure 3.3: The different steps that a node does when its parent disconnects or fails and does
not exist any announce for that tree. The double continuous line corresponds to a direct link
between two nodes and the double dashed line corresponds to an indirect link.

given coinbase address to him.

We also add a hashMap in each node to store the neighbors where it must send the announce

of the block for a given coinbase address (peer.announce[coinbase.String()]). When a node

receives a DeactivationMessage from a neighbor, it will add it to the hashMap and if it gets an

ActivationMessage it will remove the neighbor from the hashMap.

We also changed the BroadcastBlock function where the node will check if it must send the

full block, or it must announce it for each neighbor.

If a peer fails or disconnects, the node will check if it is a parent node. If it is, the node will

send an ActivationMessage to the node that sends the announces first more times because the

link between them is faster than the others. If the node did not receive any announce for that

coinbase address yet, it will send an ActivationMessage to all his neighbors.

We also implemented Byzantine nodes which can attack our system in two ways:

1. By not always send the block where they will in a probabilistic way, send the block or not.

A random value is generated between 0 and 1, and if that value is below 0.5, then it will

send the block. Otherwise, it will not send it.
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2. By sending the block with a valid header and with an invalid body where it will change the

coinbase address with a random one. Also, it will change the body with all transactions

in his transaction pool, to make the body invalid.

In the fetcher.go, when the block is fully received and fully verified, the node will check if

it was the parent who sent that block to him. If it was, nothing happens. Otherwise, if that

node is not in the blacklist HashMap for that given coinbase address, it will change the parent.

Also, it triggers an ActivationMessage to that neighbor and a DeactivationMessage to the other.

Furthermore, it will add a count to the old parent and check if the count is equal to 3 (maximum

number of times that the parent can be changed). If it is equal, then the neighbor for that given

coinbase address is inserted into the blacklist HashMap and cannot be used as a future parent.

If the tree is not constructed, then the node that sends the block first is selected as a parent,

and it will send a DeactivationMessage to the other neighbors using handler.go.

Also, we have inserted our logs to check if our protocol is running correctly, where each node

will write to a specific log file. And we created different Geth clients depending on the approach

used regarding at what stage the block is sent (TreeBefore, TreeSquareRoot, TreeAfter), see

Section 5.1.4 and also depending on if the client is byzantine or not.

3.4.1 Multiple solutions

We implemented multiple solutions in our approach:

• Without any Bizantine node in the network, the nodes will send the block as soon as they

verify the block’s header. As there are no invalid blocks, the block will be propagated

faster in the tree.

• With Byzantine nodes we applied different approaches because the nodes can create a block

with a valid header and an invalid body, resulting in a large number of invalid blocks. So

in this environment, we evaluate three different solutions which are explained better later

on, in Section 5.1.4.
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Chapter 4

Transaction Dissemination

In Ethereum Vanilla, the nodes in the network send transactions to all of their neighbors.

Consequently, as the nodes do not check if their neighbors already have the transactions, the

number of duplicate transactions is significant. Therefore we need to find a solution that reduces

the number of duplicates in the network without affecting too much the latency. The time that

each transaction takes to reach all nodes must be shorter than the insertion block time into the

blockchain because if this happens, the next block can include this transaction.

4.1 Difficulties

In contrast to block dissemination, we cannot apply a tree approach because all the nodes in

the network can issue transactions and so the nodes will have to know a considerable amount

of trees. Note that in the blocks’ case, only a few nodes generate blocks. If the system has N

nodes, each node will have to save N trees. So we have to apply a different approach to the

transactions.

In Ethereum Vanilla, a node can receive the same transaction from various neighbors. There-

fore when it sends the transaction, it only sends it to the other neighbors. During the sending

process, if a node is simultaneously receiving the same transaction from another neighbor, the

node will send the transaction anyway to that neighbor. This happens because the node only

learns that neighbor has the transaction when the node has completely received the transaction

from him. A possible solution but very difficult to implement is for the node to check if it is re-

ceiving something from its neighbors at the TCP level and wait until all information is received.

This approach would reduce the number of duplicates, but the node would be blocked for a long

time if the neighbor is sending a full block instead of that transaction, which would penalize the

latency (time that each transaction takes to reach all nodes in the network) too much.
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Figure 4.1: The messages exchanged when a node A is sending a transaction.

4.2 Implementation

As the previous approach is very complicated to implement and we think that can affect the

latency too much, we will implement the solution that Ethereum uses in the blocks’ dissemination

for transactions. As said before, in Ethereum, nodes can send the transaction to the neighbors

who already know it, because the nodes never ask their neighbors if they have it or not. So

the best solution we found was when a node receives a transaction, it sends the transaction

directly to the maximum between 4 and square root of its neighbors and for the rest announces

the transaction, i.e., ask the neighbors whether or not they have the transaction. See Figure

4.1. We use these values because Ethereum Vanilla uses them in the block dissemination, so we

assumed that they must be the optimal values. For future work, we want to use different values

and check if they are the best. As nodes only send the full transaction to a small number of

neighbors and announce it to the others, the number of duplicate transactions will be reduced.

In blocks ’ case, Ethereum Vanilla applies the same approach. They send the block directly to

the maximum between 4 and square root of its neighbors, and if the body of the block is valid,

they will announce it to the remaining.

With this approach it is expected that the number of duplicates is greatly reduced, and

latency is not significantly affected.
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Chapter 5

Results

5.1 Dissemination of blocks

In this section, we evaluate our approach to improve the blocks’ dissemination in a realistic

environment, using the following metrics:

1. Number of duplicate blocks in the network, by block and then by the number of duplicates

that each node receives.

2. Latency that each block takes to reach all nodes.

3. The percentage of CPU used during our experiments in each approach.

4. The number of bytes that each node received in the network. Metric that measures the

bandwidth used.

We develop a private blockchain in our local network where we use the Geth client in 1.8.17-

stable version. We run 45 nodes in the same machine with the following specifications: an Intel

(R) Xeon (R) Gold 6138 CPU with 2 cores of 2.00 GHz, each with 2 threads and two 32GiB

DDR4 synchronous DDR4 2666 MHz RAM. Only three of these nodes will generate blocks,

simulating the real environment: only a few percentage of nodes are responsible to generate

blocks.

We ran one-hour tests, where we skipped the initial and final 10 minutes for the Ethereum

Vanilla and for our implementation, where we had to introduce new messages into the network

in order to build the dissemination tree, as explained before.

5.1.1 Ethereum Modifications

In order to generate blocks in our private blockchain, we changed the POW of Ethereum, where

each block is generated approximately every 20 seconds (average block generation time in the
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Ethereum network). Otherwise, it would take a lot more time for a block to be generated. In

this modified version a timer is used, where the generation time of each block follows a Poisson

distribution.

In the transactions’ case, they are injected 4 per second, yet much less compared to those that

Ethereum receives (about 12 to 15 transactions per second1). These transactions are propagated

in the network following the Ethereum protocol. We inject only 4 per second to not overload

our machine too much and thus have more nodes running in our machine. Even injecting more

transactions per second, the results would be pretty much the same.

5.1.2 NEED tool

We used the NEED tool [Nev18] to introduce latency into the network and set the bandwidth

to simulate the Ethereum environment as realistically as possible. We separated the nodes into

several groups (4 groups for the experience without any Byzantine node and 6 groups for the

experience with Byzantine nodes) and define the latency between them and the bandwidth:

1. Between group1 and group2 the latency is 50ms and the uploading and downloading of

100Mbps

2. Between group1 and group3 the latency is 100ms and the upload and download of 50MBs

3. Between group1 and group4 the latency is 1000ms and the upload and download of 20Mbps

4. Between group1 and the group5 the latency is 60 ms and the upload and download 30Mbps

5. Between group1 and group6 the latency is 80ms and the upload and download 10Mbps

In the experiment without Byzantine nodes, group1, group2 and group3 have 10 nodes each

and group4 15 nodes, whereas in the experience with Byzantine nodes the group1, group2, group3

and group4 have 10 nodes, group5 has 1 and group6 has 4. These last two groups correspond

to Byzantine nodes, where group5 corresponds to nodes that send a valid header but an invalid

body and group6 corresponds to nodes that sometimes do not send the block.

5.1.3 Experiments without any Bizantine node

Figure 5.1 and 5.2 represent the number of duplicates without any byzantine node. As the

reader can verify the number of duplicates is reduced to approximately 0. In Figure 5.1, is

represented a Cumulative Distribution Function (CDF) of the number of duplicates in the net-

work per block, and approximately 100 % of blocks has 0 duplicates. In Vanilla, this number

1https://etherscan.io/
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Figure 5.1: CDF of the number of duplicate blocks in the network.

Figure 5.2: CDF of the number of duplicates that each node receives.

is significantly higher where the network received 130 duplicates in 50% of blocks. Figure 5.2

shows the number of duplicates that each node receives, and it is also reduced to approximately

0. The number of duplicates is not exactly 0, because it occurred some disconnections and the

tree was reconstructed. The blocks propagated during the reconstruction process had some du-

plicates in the network. The nodes that do not have any parent because it disconnected, ended

up to send activation messages to the other neighbors and these neighbors will send the next

block to this node directly, ending up to receive duplicates. In Vanilla, some nodes received over

400 duplicates, about 4 per block because in Vanilla the nodes send the block directly to the

maximum between four and square root of its neighbors.

Also, we measure the CPU used in each approach. For that, we used the dstat tool in our
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Figure 5.3: CPU used in each approach.

Figure 5.4: KBytes received in each approach

machine that measures the average CPU usage during the experiment. As the reader can verify,

in Figure 5.3, Ethereum Vanilla uses a bit more CPU than our approach a difference of about

3%.

Also, we measure the number of bytes that the network receives. When a node receives a

message, it will write the number of bytes to a file. Then we sum all the bytes that all the

nodes received and divide by the number of blocks created. We divide by the number of blocks

because, in different runs, it may happen that the number of blocks created is slightly different

(remember that the function of creating a block is probabilistic), affecting the overall bytes in

the network. Figure 5.4 represent the number of bytes received in each approach per block. This

number is almost reduced by 400 Kbytes (from 1013 to 594 KBytes), because in our solution
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Figure 5.5: CDF of the time that each block takes to reach all nodes in the network.

the number of duplicate blocks is reduced to approximately 0, using less bandwidth.

Figure 5.5 shows the latency that each block takes to reach all nodes in the network. With

our approach the latency is improved significantly. In Vanilla, some blocks took more than 40

seconds to reach all nodes while in our approach, all blocks took less than 10 seconds. Our

method is much faster because the tree is built based on the speed of reception of the first block,

where the parent if not Byzantine, sends the block to his child.

5.1.4 Experiments with Bizantine nodes

We also evaluated the system with byzantine nodes. In the network with 45 nodes, 5 of them

are byzantine ( which four of them not always send the blocks and one of them sends a block

with a valid header but with an invalid body). To generate an invalid block, a byzantine node

changes the coinbase address to a random one, when it receives a block. So when it propagates

the block to their neighbors, they do not choose any tree because they did not see that coinbase

address previously. Then, if the neighbors decide to send the block they will send it to all of

their neighbors and so on. In the end, there will be many duplicates and many invalid blocks.

So we have fundamentally three possible solutions to try to reduce the duplicates and invalid

blocks without affecting too much the latency:

1. The node sends the block as soon as it verifies the header. The latency will be decreased,

but the number of invalid blocks in the network will be huge (TreeBefore approach).

2. The node only sends the block when it verifies the block completely. This will affect

the latency, but the number of invalid blocks will be significantly decreased (TreeAfter
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approach).

3. The node applies an approach equal to the Ethereum Vanilla. When it verifies that the

header is valid, it will send the block to the maximum between 4 and the square root of

neighbors that it thinks that they do not have the block. The node privileges the neighbors

that are children, i.e., the neighbors that it will send the block directly. After checking

the full block, if the body continues to be valid, it will send the block to the other nodes.

Otherwise, the node will not send it (TreeSquareRoot approach).

It is expected that the latency is affected, but the number of invalid blocks is reduced, in

comparison with the TreeBefore approach.

Figure 5.6 and 5.7 show the number of duplicate blocks counting with invalid blocks per block

and per node, respectively. The number of duplicate blocks is practically 0 in the TreeAfter ap-

proach because the nodes only send the block if it is entirely valid. In the TreeBefore the number

of duplicates is significantly high surpassing the Etherum Vanilla because correct nodes will send

the invalid block to all of their neighbors. Note that the invalid block have a completely different

coinbase address and so the block will not follow any tree. TreeSquareRoot is slightly better

than Ethereum Vanilla, but 20 % of the blocks have precisely the same number of duplicates.

Figure 5.6: CDF of the duplicates that the network received per block.

Figure 5.8 shows a CDF of the latency that each block takes to reach all nodes in the

different approaches. As the reader can see, the overall blocks take less time to reach all nodes

in TreeBefore in comparison to the other methods. The TreeSquareRoot also has low latency,

but about 15 % of blocks have a high latency surpassing TreeAfter. TreeAfter has a bit worse

latency than Ethereum Vanilla and 30 % of blocks take less time to reach all nodes in comparison
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Figure 5.7: CDF of the duplicates that each node received.

with the Ethereum Vanilla.

Figure 5.8: CDF of the time that each block takes to reach all nodes.

Figure 5.9 shows the number of blocks with a valid header but an invalid body that the

network has received on average. As in TreeBefore, the nodes send the block to all of their

neighbors as soon as they check the block’s header, the number of invalid blocks in this approach

will be huge. Consequently, the number of bytes that the network received is also much higher

than the other approaches (see Figure 5.10). Conversely, in TreeAfter the number of invalid

blocks will be minimal (the number of invalid blocks will be equal to the number of nodes that

the byzantine node sent the block). This approach uses less bandwidth because the number of

bytes that the network receives is fewer, as the reader can see in Figure 5.10. This happens
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because in this approach, correct nodes will not send invalid blocks, so there are fewer invalid

blocks, and the blocks are disseminated following the tree structure. The TreeSquareRoot as it

applies the same approach as Vanilla the network has received approximately the same number

of invalid blocks. The number of bytes that the network received is less than Ethereum Vanilla

because valid blocks in TreeSquareRoot are propagated without any duplicate if no parent has

disconnected or failed (see Figure 5.10).

To measure the CPU utilized in each approach, we have done multiple runs. The CPU varied

slightly in those runs, so we have done ten for each approach. Then we utilized the CPU used

in each run and calculate the average CPU utilized for each approach. The results are presented

in Figure 5.11, where the CPU used in TreeBefore is a bit bigger than the Ethereum Vanilla

because, in TreeBefore, there are many invalid blocks. TreeAfter is the approach that used less

CPU because there are less duplicates in the network.

Figure 5.9: Number of invalid blocks in the network in each approach.

5.1.5 Summary

In the blocks’ dissemination, if we privilege the speed of the propagation, the best solution

is the TreeBefore approach. If we privilege the CPU usage, the number of duplicates in the

network, and the bandwidth, the best solution is the TreeAfter approach. If the speed of the

dissemination, the CPU used, the number of duplicates and the bandwidth are all important,

and we want a solution better than the Ethereum Vanilla, the TreeSquareRoot approach is the

better choice.
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Figure 5.10: Bytes received in the network in each approach.

Figure 5.11: CPU used in each approach.

5.2 Dissemination of transactions

In this section, we evaluate our transaction approach, where we use the following metrics:

1. The number of duplicates in the network.

2. The latency that each transaction takes to reach all nodes.

3. The CPU utilized in each approach.

The same conditions in 5.1.1, and in 5.1.2 were applied in this approach.
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Figure 5.12: CDF of the number of duplicates that the network receives per transaction

Figure 5.13: CPU used in each approach.

5.2.1 Experiments

Figure 5.12 shows a CDF of the number of duplicates that the network receives by transaction

in the Ethereum Vanilla and in our approach. Analyzing the figure, the number of duplicates

was reduced significantly. In our approach, the number of duplicates in the network for all

transactions is under 300. In Ethereum Vanilla, there are transactions that the network received

more than 1200. The CPU used in our approach is also reduced to approximately 3% (see Figure

5.13).

But although the number of duplicates was reduced the time that each transaction takes to

reach all nodes is slightly bigger. Figure 5.14 shows a CDF of the time that each transaction
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Figure 5.14: CDF of the time that each transaction takes to reach all nodes in the network

takes to reach all nodes. As the reader can see, the transactions in our approach take much time

to reach all nodes where 80 % of transactions take about 4 seconds to reach all nodes. While in

the Ethereum Vanilla for the same percentage of transactions, this number is less than 1 second.

5.2.2 Summary

In the transactions’ dissemination, our solution improves the number of duplicates significantly,

ending up to use less CPU than Ethereum Vanilla and also reduce the bandwidth consumption.

Although the latency was worsened, the new transaction can always be introduced in the next

block because the time that it takes to reach all nodes is at most 4 seconds, and the block

insertion time into the blockchain is 10 seconds.
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Chapter 6

Conclusions

Ethereum has some problems with the dissemination. Nodes receive a large number of dupli-

cate blocks and transactions that affect the processing of each node, congest the network with

redundant information because the bandwidth consumption is unnecessarily higher. Also, the

blocks’ dissemination can be improved. If the time that each block takes to reach all nodes

in the network is shorter than the time that each node wastes in generating concurrent blocks

that will not be included in the blockchain will be longer. With our approaches to the block

dissemination, we improved the latency (time that each block takes to reach all nodes), and

also the number of block duplicates in the network that affects the CPU used of each node and

the bandwidth consumption. The results of our approach to disseminate blocks were partially

presented in the Inforum conference [LAM19].

In the transaction dissemination, our approach reduced the number of duplicates, and con-

sequently, the CPU used, and the bandwidth consumption in the network has improved. Nev-

ertheless, the time that each transaction takes to reach all nodes was longer, but not too much.

Since the block insertion time into the blockchain is about 10 seconds, and the latency in our

approach is at most 4 seconds, the transaction can always be introduced in the next block.

6.1 Future Work

These tests were only made on the same machine, and we use the NEED tool to introduce

latency in the network. Consequently, we have only run 45 nodes in the machine. So for future

work, we desire to run these experiments in the cloud where we want to execute the Geth client

in a considerable amount of nodes distributed across the globe. These will simulate the real

environment more truly.

Additionally, we want to develop more solutions to the transaction dissemination and check
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the results. First, we want to try a different number of nodes to send the transaction directly

and check the number where we obtain better results. Second, we want to implement the

other possible transaction solution that we discussed previously, where each node checks if it is

receiving something at the TCP level and verify if this solution has better results in comparison

to our approach.

Furthermore, we want to propose these solutions to the Ethereum Community and try to

them to be applied in the Geth’s code.
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Appendix A

Ethereum code

Figure A.1: A slice of Geth’s code (version 1.8.17-stable) showing that uncles do not count to
the total difficulty. When a node verifies if the difficulty of the header is correct it only uses the
chain, the timestamp of the header and the parent
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