
FaultSee: Reproducible fault injection
in distributed systems

Miguel Antão Pereira Amaral

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor(s): Prof. Miguel Ângelo Marques de Matos
Prof. Miguel Filipe Leitão Pardal

ii

Acknowledgments

This work is partially supported by Fundo Europeu de Desenvolvimento Regional (FEDER)

through Programa Operacional Regional de Lisboa and by Fundação para a Ciência e Tecnologia

(FCT) through projects with reference UID/CEC/50021/2013 and LISBOA-01-0145-FEDER-

031456.

iii

iv

Resumo

Os sistemas informáticos distribúıdos são cada vez mais importantes na sociedade moderna

operando, muitas vezes, a uma escala global e com requisitos de disponibilidade muito perto

dos 100%. Para alcançar um ńıvel tão elevado de disponibilidade é necessário ter processos

de desenvolvimento focados na qualidade e com testes rigorosos e exaustivos. Os sistemas dis-

tribúıdos, por serem formados por vários componentes, são bastante dif́ıceis de avaliar e testar

de uma forma sistemática e reproduźıvel. Esta dificuldade pode constatar-se ao analisar artigos

cient́ıficos ou outros estudos sobre um sistema distribúıdo em operação, em que é frequente ver

afirmações sobre a injeção de faltas em nós do sistema, que não são explicadas nem contex-

tualizadas de forma a permitir a reprodução num ambiente de teste alternativo. Dado que o

comportamento do sistema pode variar substancialmente consoante o tipo de “falta” injetada,

torna-se praticamente imposśıvel a um investigador reproduzir o comportamento observado nesse

teste. Se não existir reproducibilidade, então não se consegue fazer a adequada comparação de

alternativas, e o progresso técnico torna-se mais lento e dispendioso.

Neste trabalho propomos a criação da plataforma FaultSee que permite avaliar sistemas reais

de uma forma mais sistemática e reproduźıvel do que o estado da arte. Propomos também uma

linguagem, a FDSL, usada pelo FaultSee, de especificação de sistemas distribúıdos e injeção de

faltas que capturam precisamente variáveis como o ambiente de teste, a carga de trabalho e o

tipo de faltas. Estas funcionalidades são demonstradas em cenários realistas usando a base de

dados Apache Cassandra e o sistema BFT-Smart como casos de estudo.

Palavras-chave: Sistemas distribúıdos, Avaliação de sistemas, Reprodutibilidade,

Tolerância a faltas.

v

vi

Abstract

Distributed systems are getting more important in modern society, often operating on a global

scale with availability requirements close to 100%. Achieving high levels of availability requires

quality-focused development processes with rigorous and thorough testing. Distributed systems,

due to having several components, are quite difficult to evaluate and test in a systematic and

reproducible manner. When analyzing a study or paper of a distributed system in operation,

often there are statements about fault injection in system nodes, which are neither explained nor

contextualized to allow reproduction in an alternate test environment. Since system behavior

can vary substantially depending on the injected fault, it is virtually impossible for a researcher

or engineer to reproduce the behavior observed in a test. Without reproducibility, correct

comparison of alternatives is unobtainable, and technical progress becomes slower and more

expensive. In this thesis, we propose the FaultSee platform that allows to evaluate real systems

in a more systematic and reproducible way than the state of the art. We also propose a language,

used by FaultSee, for distributed system specification and fault injection that accurately capture

variables such as the test environment, workload and fault type. These features are demonstrated

in realistic scenarios using the Apache Cassandra database and the BFT-Smart system as case

studies.

Keywords: Distributed Systems, Fault Injection, Reproducibility, Chaos Engineering.

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

1 Introduction 1

1.1 Requirements . 3

1.2 Contributions . 4

1.3 Thesis Outline . 4

2 Background and Related Work 5

2.1 Definitions . 5

2.2 Fault Injection . 7

2.3 Monitoring/Tracing . 9

2.4 Deployment . 10

2.5 Usability . 11

2.6 Overview . 12

3 FaultSee 13

3.1 Approach . 13

3.1.1 Requirements . 13

3.1.2 Experiment Lifecycle . 15

3.1.3 Experiment Configuration . 16

3.2 Design . 16

3.2.1 FaultSee Architecture . 17

3.2.2 FaultSee Domain System Language . 21

3.3 Implementation . 24

ix

3.4 Overview . 27

4 Evaluation 29

4.1 Features . 29

4.1.1 Test Target Functionality . 29

4.1.2 Test Order . 29

4.1.3 Fail on Docker Pull error . 30

4.1.4 Parse . 30

4.1.5 Start and Stop Containers . 30

4.1.6 CPU Exhaustion . 31

4.1.7 Custom faults . 31

4.2 Macro Benchmarks . 31

4.2.1 Cassandra . 32

4.2.2 BFT-Smart . 35

4.3 Discussion . 39

5 Conclusion 41

5.1 Achievements/Contributions . 41

5.2 Future Work . 42

Bibliography 43

A Apache Cassandra experiments configuration files 47

A.1 Docker-Compose file . 47

A.2 FDSL file for the Kill a node scenario . 50

A.3 FDSL file for the CPU exhaustion scenario . 53

B BFT-Smart experiments configuration files 57

B.1 Docker-Compose file . 57

B.2 FDSL file for the faultless scenario . 61

B.3 FDSL file for the CPU exhaustion scenario . 63

B.4 FDSL file for the Kill a node scenario . 67

x

List of Tables

2.1 Related Work Summary . 12

3.1 FaultSee features . 27

xi

xii

List of Figures

3.1 Overview of the FaultSee experiment lifecycle. 15

3.2 Overview of the FaultSee system. Dotted arrows represent produced logs or met-

rics, while normal arrows represent control messages. 17

3.3 Service instances throughout time plot . 20

3.4 Experiment logs displayed in Dashboard . 20

3.5 Dashboard’s Filter System . 21

3.6 Example of number of outgoing packets during an experiment 21

4.1 Percentage of CPU usage in the test . 31

4.2 Number of containers running throughout the Cassandra experiment, in the sce-

nario of killing a node . 33

4.3 Average number of operations performed by YCSB-Run Clients throughout the

Cassandra experiment, in the scenario of killing a node 34

4.4 Number of containers running throughout the Cassandra experiment, in the CPU

exhaustion scenario . 35

4.5 Average number of operations performed by YCSB-Run Clients throughout the

Cassandra experiment, in the CPU exhaustion scenario 35

4.6 Number of containers running throughout the BFT-Smart experiment, in the

faultless scenario . 36

4.7 Average number of operations per second performed by the YCSB Client through-

out the BFT-Smart experiment, in the faultless scenario 37

4.8 Outgoing network usage for every host, in the faultless scenario 37

4.9 Number of containers running throughout the BFT-Smart experiment, in the

CPU exhaustion scenario . 38

4.10 Average number of operations per second performed by YCSB Clients throughout

the BFT-Smart experiment, in the CPU exhaustion scenario 38

4.11 CPU percentage usage for every host, in the CPU exhaustion scenario 38

xiii

4.12 Number of containers running throughout the BFT-Smart experiment, in the kill

a node scenario . 39

4.13 Average number of operations per second performed by YCSB Clients throughout

the BFT-Smart experiment, in the kill a node scenario 39

xiv

Chapter 1

Introduction

Technology is taking a central role in modern society. In developed countries, everywhere we

look we can see the presence of software. An examples is the software that you are using to

read this document or that was used to print it. Technology is also used to support enterprise

systems, to process transactions, or in even more critical applications, like the software that

helps emergency responders control all active operations and receive new distress calls. Often,

applications are running in a global scale with availability requirements close to 100%, running

in large data centers, usually referred to as the “Cloud”. To handle the global scale, distributed

systems are increasingly having more components. Achieving high levels of availability requires

quality-focused development processes with rigorous and thorough testing. Distributed systems,

due to having several components, are quite difficult to evaluate and test in a systematic and

reproducible manner. Furthermore, software is faulty because it is developed by humans, and

because the environment is unpredictable. Faults can lead to catastrophes, especially when

dealing with critical applications. For example, last July, the cloud provider Cloudflare had

an outage that impacted millions worldwide, due to a bad software deployment that was not

properly tested [1].

To test software, developers must be able to introduce bad inputs to check how the program

will react. In a perfect world, developers will have considered, and tested, all possible inputs, so

that all the logic the programmer has represented into his code can be tested, leading them to

assert, with confidence that their software is bug-free. However, in most cases, the input space

is very large and it is not possible to achieve sufficient test coverage.

Throughout the years we have seen a bigger investment from the community to build tools

with the objective of helping developers create software faster and with fewer bugs, for example

JUnit, a Java framework to automate tests. There are many areas where this has been happen-

ing, such as Integrated Development Environment (IDE), where nowadays multiple IDE exist for

1

the most popular languages. Continuous Integration (CI) and Continuous Development (CD)

allows developers to decrease the time elapsed between writing the code and its deployment to

test and production environments, automating the validation steps in the test phase. However,

as the problems presented to developers grow, so does the complexity of the respective solution,

and the existing tools may no longer be sufficient. Unfortunately, when dealing with multiple

components a new type of errors appears: faults in components, such as a disk failing or power

outage. If not accounted for, a single machine crash can lead to catastrophic results. As the

number of possible faults increases, so does the strain on developers to be able to test all possi-

ble combinations that could lead to an error. To be able to effectively test components failures

developers need better tools, which represents a good opportunity for new contributions, such

as our work.

When the code is properly tested the number of error decreases. Nagappan et al. [2] studied

how Test Driven Development (TDD) improved code quality in four industrial teams. They

showed that the number of errors present in the code decreased between 40% and 90%. George

and Williams [3] show that TDD created code that passed 18% more functional black-box tests.

Components failure can be so severe that they result in long downtime or even lead to data

loss. Therefore, it is important to validate how systems will react in the presence of failures, to

avoid, or at least mitigate, the consequences of components failure. The academic community

is actively working to build more resilient systems and has developed several fault-tolerant

techniques over the years [4]. However, the community has yet to build the necessary tools to

properly test their systems, using these techniques. There are two main challenges to be able

to inject faults into systems: deploy the system into a running configuration, and inject faults

when required. Docker-Swarm and Kubernetes are two tools that automate the deployment of

complex distributed architectures into several physical hosts. Additionally, these tools reduce

the time required to deploy new versions of software, thus they help developers to iterate versions

of their software faster. Nevertheless, they lack the ability to inject faults. In this work, we

introduce FaultSee, a tool that simulates components failures patterns, and helps developers

mimic faults that might affect their systems in production.

Reproducibility of results is important. In the Academia, reproducibility allows researchers

to validate claims made by other researchers. When someone claims they designed a new algo-

rithm that is one order of magnitude faster than the state of the art other researchers will want

to validate said claims. Docker-Swarm and Kubernetes enable researchers to create configura-

tion files that allow other researchers to easily deploy the same system, however, as these tools

lack fault injection capabilities, researchers need to inject faults manually, which hinders repro-

2

ducibility. Additionally, it removes the possibility for the creation of automated benchmarks.

Reproducibility is also very relevant to the industry, whenever there is an error that develop-

ers need to correct, first they must identify what is the cause for the error, and then correct it.

This process is faster if developers are able to reproduce the causes of the error. Furthermore,

when the error is fixed, developers can then reproduce the causes of errors to validate this no

longer affects their systems.

Depending on the environment, an error may or may not lead to a failure. For example,

different implementations of the same software library in different operating systems can have

distinct results. Docker containers precisely describe the environment in which the software will

run, enabling the developer to control the environment. Combined with the ability to inject

faults in specific nodes at precise moments this enables developers to create reproducible results

that are easier to analyse.

As shown in this section, there is a need for a tool that enables fault injection automation, in

order to study the behaviour of systems when a failure occurs. This opens a good opportunity

to combine the deployment flexibility of tools such as Docker Swarm, with the need to have a

judicious evaluation platform that is able to subject distributed application to faults.

1.1 Requirements

We identified the opportunity to create a new tool, that helps developers and researchers and

these are its main requirements:

• Reproducible experiments - The core feature of the tool is its ability to reproduce previous

experiments in the same testing environment, and also in different environments from

different users.;

– Automatically deploy the System Under Test (SUT) – the tool must automate the

deployment phase, otherwise the manual requirements from its users will hinder the

reproducibility;

– Run experiments – given some configuration files the tool must be able to run the

experiment autonomously;

– Inject Faults – we want to test scenarios in which we simulate components failure, as

such the tool must be able to inject faults;

– Gather Metrics – in order to test the SUT performance the system must be able to

collect resource usage metrics;

3

– Produce Plots – plots enable to user to quickly analyse the performance of his system,

without parsing through raw text.

1.2 Contributions

The work described in this document enabled us to contribute to advance the state of the art

in the following ways:

• FaultSee - A tool that is able to create scenarios that test applications limits and ensure it

continues to function correctly under faults or to create benchmark scenarios, to test the

performance of various systems under the same faulty scenario;

• FDSL - A language to describe fault injection scenarios, used by FaultSee;

• Scientific publication - “FaultSee: Avaliação Reproduźıvel de Sistemas Distribúıdos Su-

jeitos a Faltas” in the INFORUM 2019 conference, held in the 5th and 6th of September

in Guimarães, Portugal. The paper authors are Miguel Amaral, Miguel L. Pardal and

Miguel Matos.

1.3 Thesis Outline

There are five chapters in this document. In Chapter 2 we provide some background required

to understand this work and then we describe what is the current state of the art, and what

the community has already developed. In Chapter 3, we describe the FaultSee design. In

Chapter 4, we explain the evaluation conducted, and how we validated the correct behaviour

of FaultSee. Finally, in Chapter 5 we conclude the document, draw conclusions from the work

done, summarize the main contributions and propose future work to further improve the tool.

4

Chapter 2

Background and Related Work

In this chapter we provide some background information to the reader, to enable him to com-

prehend the work described in this document.

In this chapter we provided some background and we present the related work, organised

into four different areas: Fault Injection detailed in Section 2.2, Monitoring/Tracing is described

in Section 2.3, Deployment detailed in Section 2.4 and Interface in Section 2.5.

2.1 Definitions

Computers run software on them, in particular the operating system. From early on, there was

a need to create copies of a computer, and its software, for easier management. The copies

are called Virtual Machines, and they allow the creation of an image that can copied and

distributed, always presenting the same behaviour. A computer that runs a virtual machine

is called a host and many virtual machines can run on the same computer. Virtual machines

enable the emulation of the behaviour of a different system, sharing no software with the host,

include a complete operating system and as such provide a great degree of isolation. Due to

the need to emulate everything, when compared to having no virtualisation, the performance of

virtual machines has significant overheads, and, as such, it is not optimal.

Docker [5] is a tool that enables developers to create containers, which are lightweight envi-

ronments. Containers are similar to virtual machines, however, they do not require the creation

of an entire operating system, instead, they share the Linux kernel with the host in which

containers are running, thus reducing its size and increasing performance, at the cost of lower

isolation between containers and the host itself. A container packs an application, however, it

only includes the required components to run the application, such as the libraries and other

dependencies. This allows developers to be confident their application will run independently

5

of the host. Moreover, this enables developers to simulate the production environment in their

local system, independently of the operating system they use. Docker images are the packages

that contain all the information required to create the containers and they can be stored online

in public or private registries.

A Distributed System is a set of computers that are connected among themselves through

a network and work towards a common goal. Every computer on this system is denominated as

a node of the system. A Cluster is a set of computers, generally with the same specifications

and geographically close to each other.

Distributed Systems can be deployed in Docker Containers. However, Docker Contain-

ers technology is only focused on running a single unit on a host. In order to deploy more than

one container in multiple hosts an Orchestrator can be used. An Orchestrator is responsible

for managing running, distributing, scaling, and healing a mesh of Containers across a collec-

tion of nodes. Two examples of orchestrators are Docker-Swarm and Kubernetes. A set of

Docker containers running with the same configurations is a Docker Service.

Verissimo and Rodrigues [6] define failure as the event of delivering an incorrect service.

To deliver an incorrect service at least one of the system’s external state deviates from the

correct service state. An error is the partial state of the system that deviates from the correct

state of the system, and may lead to its subsequent service failure. A fault is the adjudged or

hypothesised cause of an error.

While analysing the performance of Distributed Systems, the resource usage of the system

is a relevant information. Psutils [7] is a cross-platform library that is used to gather resources

usage of the system and details of the running processes.

Reproducibility is a property that characterises the ability to recreate results using the

same methodology described by someone else. Distributed Systems performance claims must

be reproducible, otherwise they pose no value, as no one can validate them.

When developing Distributed Systems, there are two important properties to take into

account: safety and liveness. Safety states that no wrong output will ever come from the

system. Liveness states that eventually the system will output a correct response. However, it

is important to note that no system can simultaneously fulfil both properties to the maximum.

If high safety is required, then the liveness property must be relaxed. On the other hand, if

high liveness is required, then the safety properties must be lowered.

6

2.2 Fault Injection

Fault injection is a technique used to test code paths that are rarely followed because they

correspond to rare occurrences, such as handling component failures. Thus, by using fault

injection, developers can create tests for rare, but often critical, paths of the developed software.

As an example, in distributed systems, it is crucial to be able to test how the system will react

when one node crashes, so that when it happens in a live system, developers can assert that the

system will behave as expected and fulfil its safety and liveness properties.

We start by introducing some key concepts and then we discuss the state of the art in this

area.

Verissimo and Rodrigues [6] define failure as the event of delivering an incorrect service,

and are caused by errors. An error is the partial state of the system that deviates from the

correct state. A fault is the adjudged or hypothesised cause of an error.

Natella et al. [4] identify three fault injection approaches: Injection of Data Errors, through

the corruption of memory or registers, Error Injection Interface, that is, invalid input and or

output, and Injection of code changes, this technique injects code that mimics the most common

bugs.

Gunawi et al. [8] introduce a new fault type, fail-slow, which corresponds to components

running with degraded performance. The author claims that current systems are robust at

logging and recovering from fail-stop faults, i.e. nodes crashing or network partitions, however,

systems are not yet prepared to deal with fail-slow faults, urging the community to built better

systems prepared for this kind of faults.

A fault model represents the faults a distributed system designer needs to take into account

when designing the system. From the model, the designer can predict the consequences each

particular fault and design the system to be resilient to it.

To motivate its engineers to build more fault tolerant tools, Netflix created the SimianArmy

[9] set of tools. These tools can inject faults, with a given probability, into production systems on

a business day. The motivation behind this tool is that systems will eventually fail, developers

just do not know when. By ensuring engineers that components will fail on a daily basis, this tool

provides them with extra motivation to build systems that are more robust to faults. Moreover,

with the iterative lifecycle of software development, some faults might be introduced in a system

by human error, laying undetected until the worse possible moment. SimianArmy ensures the

faults will become failures when engineers are most prepared to deal with any issue that may

arise. SimianArmy comprises a set of tools, built with fault tolerance as its primary focus:

• Chaos Monkey - The original tool, responsible for randomly terminating virtual instances

7

(fail-stop fault);

• Chaos Gorilla - Tests problems related with an availability zone1. It supports two distinct

modes, terminating all instances in an availability zone or creating a network partition, in

which the instances inside that zone are unable to communicate or be reached by services

hosted outside that availability zone (fail-stop fault);

• Chaos Kong - Enables developers with terminating all services in an entire region1 (fail-

stop fault);

• Latency Monkey -Simulates partly healthy instances, which increase latency in requests

(fail-slow fault).

The SimianArmy represents a step towards fault tolerance testing, however, it is intended

to ensure that a production system is resilient against faults, rather than helping developers at

a debugging phase.

Pumba [10] is another tool developed to inject faults into running systems. After a system is

deployed, the user is able to inject faults into Docker containers by running the desired command

in the console line. This tool supports both Docker-Swarm and Kubernetes, however it does not

support running scripted experiments, the user has to manually run its experiences.

Cords [11] is a framework developed with the purpose of injecting faults in file systems in

order to test distributed applications. Ganesan et al. [11] show that redundancy, in fact, does

not imply fault tolerance by uncovering a series of bugs in eight popular distributed file system.

This shows the need for incorporating better mechanisms into the development lifecycle to test

distributed applications, as even applications with large communities have dormant bugs. The

team identifies two problems related with file systems, blocks being inaccessible and corrupted

data.

LSDSuite [12] is another framework built to help developers test distributed systems. It

focuses on automating the deployment of Docker containers on several hosts. LSDSuite allows

developers to schedule fault injection into the SUT. However, LSDSuite only allows developers

to kill or gracefully shutdown nodes in the system, instead of supporting a wide range of dif-

ferent faults. Moreover, a central node requests faults to be injected as the experiment ”goes

down” Moreover, the central node sends a network request instructing to inject a fault, which

introduces network latency, as such some faults may be injected with significant delay. Both

1Geographically AWS has its infrastructure divided into separated locations. These locations are composed of
regions and availability zones. Regions are geographically wide distant locations. In every given region AWS has
several, isolated, availability zones.

8

these issues present an opportunity to improve this framework. FaultSee extends this framework

to implement new functionalities.

2.3 Monitoring/Tracing

A tracer [13] is a component that intercepts application code to record timestamped events.

This analysis can lead to the identification of causal paths, that is, which request triggered other

requests. Patterns emerge by studying the relation between requests, as the same functions are

executed more than once.

Dapper [14] is a system used by Google to monitor its production systems. It was developed

with scalability, low overhead and application-level transparency as requirements. The Dapper

team showed that through sampling of requests, it is still possible to find patterns in the ap-

plication, even uncommon ones. One possible improvement the author refers is the ability to

sample with fine-grain control over the percentage of logs collected over time. This does not

pose a problem with services that have a steady usage. However, when services experience low

traffic, if Dapper keeps processing the same volume of data, it is possible to gather a higher

percentage of produced logs without impacting performance. A solution would be to provide

users with the ability to choose the amount of data to be gathered over a time window, such

as ten seconds or one minute, instead of a static percentage. The system enables developers

to access information in a small window of time, however, the tool still requires 10 minutes for

data to be ready to be processed.

Sherlock [15] is a system that assists IT administrators in detecting systems that are perform-

ing poorly. When a system is having issues, it identifies the set of components most probable

to be failing. The system analyses packets sent by hosts, routers and links to gather informa-

tion. Using a multi-level probabilistic model it then automatically infers dependencies between

services. Sherlock is able to infer dependencies in a few hours on a business day. Software often

has many redundancies, as such, it is common to have multiple instances running the same

code. Sherlock leverages this fact to infer dependencies even when information is missing. By

aggregating network packets from multiple instances and analysing them as a whole, the system

is then able to eliminate false positives, i.e., cases when Sherlock reports a faulty server when it

is not.

Aguilera et al. [16] also identify causal paths, to identify the source of latency in distributed

systems. However, the developed tool is not intended for real-time debugging, as the tool still

needs to process data before presenting it to its users. The authors used two techniques to

gather the traces, packet sniffing and port mirroring, i.e., copy all traffic to another host.

9

WAP5 [17] also gathers network traces, to infer causal paths. The system uses checksums to

detect duplicate messages. The system identifies patterns even when different hosts are executing

different roles in a request, as they have the same code. Additionally, an interpolation library

was used, but it requires applying a wrapper around some functions. It does, however, have

better efficiency than packet sniffing, messages are logged in the same order applications see

them and messages are attributed to processes rather than hosts.

Nagios[18] is an open-source tool that monitors infrastructure, networks and systems. Nagios

ensures the infrastructure is in a correct, pre-determined, state, executing corrective actions if

configured. Nagios can also alert the system maintainers as the system deviates from its intended

state.

These tools were built so that their could monitor their applications, either to detect mal-

functions or detect the origin of problems. FaultSee is a tool that is built to help users ensure

theirs systems are resilient, therefore it monitors the systems state so the user can analyse them.

2.4 Deployment

When debugging distributed systems, the creation and destruction of hosts in mass quickly poses

a challenge, if not automated efficiently, as it is a cumbersome repetitive task.

FEX [19] is a framework that aims at running benchmarks, taking care of the whole life-

cycle: deploy, run and plot results. The system leverages Docker to deploy similar nodes of a

system in a host. Additionally, Docker ensures better reproducibility of statements made by

users. This is achieved because other researchers can replicate original docker images, therefore

they can repeat the experiment in the same conditions.

The core objective of the SPLAY [20] system is to enable users to deploy a distributed system

in a testbed with the same ease as in a personal computer. It enables the user to deploy in a

mixed type of hosts, personal computer, workstations and testbeds, providing resource isolation.

Apart from the database, which is a single node, the framework is scalable as its controller can

run in one or more nodes. However all code must be written in Lua2, and all logs must be

written directly in the code.

Dfuntest [21] is a framework developed with the intent to automate experiments with dis-

tributed systems. It allows the execution to be done in a single host or in a testbed. It makes

use of a centralised host to orchestrate tests, therefore cannot scale indefinitely. Nevertheless, it

allows a user to interact with the system while it is being tested.

As stated before, 2.2 LSDSuite [12] focuses on automating the deployment of Docker con-

2lightweight, multi-paradigm programming language designed primarily for embedded use in applications

10

tainers on several hosts. Docker containers enable developers to use any programming language,

thus it is flexible. This framework allows developers to add nodes to the SUT according to

a scripted schedule. Combined with fault injection capabilities this enables developers to cre-

ate experiments in order to test how their system reacts when a node crashes. However, this

framework can still be improved. Monitoring is only available to the developer at the end of

the experiment, and the only logs available to the users is the standard output created by all

the nodes during the experience. Moreover, this framework does not support any visualization

tool, which allows the user to create a better mental image of what is happening in the SUT

throughout the experiment.

FaultSee runs experiments to simulate faults in the system. In order to be able to inject the

faults into a running system, first the system must be deployed, FaultSee extends LSDSuite and

leverages Docker-Swarm and Docker containers to deploy the SUT.

2.5 Usability

One factor that increases any tool adoption is how easy users can use the tool to produce

results. Therefore it is crucial for any system that aims to test software to have a good, intuitive

user-interface.

Dashboards enable IT teams to detect errors when a plot depicting the throughput of an

application is made available. Additionally, a plot showing outbound packets of a virtual machine

can alert IT teams to errors in the system when a sudden spike in traffic occurs. On the other

hand, when IT teams only have access to text logs they lose the ability to detect anomalies with

a simple glimpse of the dashboard, or the ability to easily compare the variance of a given metric

over time, such as outbound packets.

Perfume [22] is a tool that transforms raw text logs into graphs. The graphs represent all

possible paths users experience in the application. In a study led by the authors, they show that

when using Perfume, instead of parsing raw logs, developers answered questions 15 % quicker

and 8.3 % more correctly. This result supports the claim that when using a graphical user

interface developers can achieve better results.

Tseitlin [9] also shows that monitoring what is happening is important for testing. Faults in

a production system impact customers, therefore the team responsible for the system must be

able to know when a system is having technical difficulties in order to avoid further weakening

an already unhealthy system with automated fault injection.

The Sherlock system presented in Section 2.3, is able to only alert IT managers when a failure

that affects end-user exists, rather than a simple fault. The authors refer that other tools, such

11

Fault Injection Monitoring/Tracing Deployment Usability
SimianArmy X

Pumba X
Cords X

Dapper X
Sherlock X X
WAP5 X
Nagios X
FEX X X

SPLAY X
Dfuntest X
Perfume X
LSDSuite X X
FaultSee X X X X

Table 2.1: Related Work Summary

as NAGIOS [18], send too many false alerts to the IT team, thus creating an unnecessary burden

on the team responsible for the system.

In order to increase the value of the produced results, FaultSee includes a dashboard, so the

user can automatically have plots with its system performance. Additionally, FaultSee leverages

Docker-Swarm, a tool widely used by the community, which decreases the users learning curve.

2.6 Overview

In Table 2.1 we can see a summary of the tools discussed in this chapter. Each line represents a

tool and each column an issue. No tool exists that combines all features discussed in this section,

therefore in Chapter 3 we demonstrate the key features of FaultSee, a system that addresses all

these issues.

The research community has been actively working in providing tools that help programmers

build better and more dependable software, however, there is still room for improvement. Docker

Swarm and Kubernetes are tools that enable developers to easily deploy complex architectures.

Dapper, Sherlock and WAP5 focus on monitoring a system. Perfume provides a graphical user

interface to help developers understand the root cause of any issue that may be the bottleneck

of the system. The SimianArmy and Pumba are two tools designed with fault injection at its

core, they enable developers to test their software against components failure.

This should be synthesised in a table that highlights the several dimensions that are impor-

tant to you work: what are the important properties/functionality/ideas.

12

Chapter 3

FaultSee

In this chapter we describe the design and implementation of FaultSee. In Section 3.1 we present

an overview of the requirements, and explain experiments lifecycle. In Section 3.2, we describe

the FaultSee architecture and specify the FDSL language. In Section 3.3, we present the reasons

behind the decisions taken, and then, in Section 3.4, we discuss the main features of FaultSee

and how they address the requirements of this work.

3.1 Approach

One of the goals of our work is to improve the development and evolution of distributed systems.

With this in mind, the goal of FaultSee is to enable the user to test the System under Test (SUT)

under workloads with faults, described in configuration files. A FaultSee’s user is able to launch

a complex distributed system automatically, inject faults, and analyse the experimental results.

FaultSee takes care of deployment, injecting faults, monitoring and producing plots with the

results.

The other goal is to facilitate the creation of reproducible experiments. As we want to

achieve reproducibility, we decided that the SUT nodes have to use Docker containers. Docker

containers allow software to be packaged together with all its dependencies, and also to create

different versions of the same application. All versions of an image can be published to public

repositories, as such two users can easily run the same version of a software and replicate results.

3.1.1 Requirements

FaultSee has the following requirements: deployment, injecting faults, monitor and plot results.

There is a central component of the system that is responsible for deploying the whole SUT.

To inject faults we decided it is crucial to have a local component running on each host of

13

the cluster, so that FaultSee can inject faults without any network latency. Network latency

introduces delay between the user specification and FaultSee execution. Furthermore, when

injecting a fault in multiple nodes, the delay is different for every node in the cluster, which

increases the error.

Additionally, to inject faults simultaneously in several nodes, clock synchronisation is re-

quired, which is simpler to achieve with a local component in each host. Experiments can be

long, which can cause the clock to skew. As such, clocks are synchronised before every experi-

ment, in order to mitigate clock desynchronisation errors.

During the experiment, the component running in each host will monitor the hosts’ resource

usage. The information monitored by FaultSee could either be transfered throughout the ex-

periment or at the end. Having the resource usage in real time is interesting, as it enables the

user to interact with an experiment in real time. However, it also introduces overhead in the

network, therefore tainting the results. As such, we decided this information is gathered and

saved locally during the experiment, and only assembled together in the end of the experiment.

We decided to enable the user to have some random options in the experiments, for example:

kill a random node of the SUT. In order to be able to always kill the same node, so that

experiments are reproducible, every experiment has a numeric seed that is fed to the random

number generator used to decide the random values in the experiment, and we provide the user

with the ability to control this seed.

Another FaultSee key feature is the ability to inject any custom fault into the system, that

way the user can use FaultSee to inject any faults beyond the ones supported by default, enriching

the experiments possible with this system.

In the end of the experiments the results are merged from all the hosts, processed and then

they can be displayed in a dashboard.

The most important requirements for FaultSee are:

• Synchronise clocks of all components of the system;

• Be able to parse configuration files (architecture and experiment events);

• Deploy the SUT;

• Inject faults into the SUT’s Docker containers;

• produce telemetry regarding all Docker containers;

• Track the experiment progress;

• Send all logs at the end of an experiment to the Master Controller;

14

Design Experiment
(i)

Experiment
 Execution

(iii)

Gather Results
(iv)

Cluster Setup
(ii)

Analyse Results
(v)

Software Updates
(vi)

Figure 3.1: Overview of the FaultSee experiment lifecycle.

• Process logs at the end of the experiment;

• Display experiment logs in Dashboard;

• Plot resource usage in Dashboard.

3.1.2 Experiment Lifecycle

In this section, we detail an example of how FaultSee is used and the several stages that comprise

an experiment.

Prior to executing any experiment, the user realises that he has the need to understand how

the system he is developing behaves when a failure occurs. To study his system behaviour, he

decides to use FaultSee. In Figure 3.1, we can see an experiment lifecycle, that has the following

stages:

(i) Design Experiment - Then, the user needs to design an experiment, and create the

FDSL files that describe the experiment he has in mind.

Additionally, the user can also share his configuration files with another user, and the

second one is able to reproduce the same experience.

(ii) Cluster Setup - Before starting the experiment, the users needs to setup the cluster that

FaultSee will use to run the experiment, by detailing in a configuration file the nodes IP

and authentication configurations.

(iii) Experiment Execution - As soon as FaultSee has access to the cluster and the experi-

ment configuration files, the user can start the experiment. FaultSee runs the experiment

autonomously, while outputting its progress for the user to see.

15

(iv) Gather Results - After the experiment is complete, FaultSee gathers the logs from all

the nodes in the system and merges them into a single file, so that the user can analyse

them raw. FaultSee also informs the user if the experiment ran with success or if there

was an error.

(v) Analyse Results - Once FaultSee has completed the previous stage, the user can check

the dashboard to study the experimental results, that is, observe the resource usage plots

and the experiment logs, filtered by service or container.

As reproducibility is one of FaultSee’s core requirements, the user is able to replay all the

information at the dashboard on a later date, to study the experimental results in detail.

If the user detects any problem with the experiment, he can always iterate the experiment

or design a new one.

(vi) Software Updates - Let us suppose that, during the analysis, the user finds some relevant

information that leads to the discovery of a module with performance issues. After applying

a patch to the software, the user can now run the same experience, with the new patch.

Then the user can compare the experimental results before and after the software patch,

and calculate performance gains.

3.1.3 Experiment Configuration

We can divide the information required to run an experiment in two main categories: the

experiment information (that is, the events in the experiment and experiment properties) and

the characteristics of the SUT (that is, the nodes information, how to deploy them, any network

restrictions, network topology and resources constraints).

The experiment language is denominated FDSL and is described in detail in Section 3.2.2. Its

key concepts is that it describes the experiment properties and the experiment events throughout

time.

The SUT characteristics are described in a Docker Compose language. Its key concepts is

that it describes Docker services, that is a set of containers running the same configuration,

configurations, that describe the containers environment.

3.2 Design

In this section, we describe the two components designed, the platform: FaultSee, which ar-

chitecture is described in Section 3.2.1, and the experiment language: FDSL, described in Sec-

tion 3.2.2.

16

Local Controller

Local Orchestrator

Logs Monitoring

Server #N

Operating System

Local Controller

Local Orchestrator

Logs Monitoring

Server #2

Master
Controller

Server #1

Operating System

Docker Container #N
Docker Container #2Local

Orchestrator

Logs
Monitoring

Local Controller

Docker
Containers

Infrastructure

Dashboard

Figure 3.2: Overview of the FaultSee system. Dotted arrows represent produced logs or metrics,
while normal arrows represent control messages.

3.2.1 FaultSee Architecture

FaultSee has four main components. These are the Master Controller, Dashboard, Infrastructure

and Local Controller.

The LSDSuite framework, described in Chapter 2, already tackles the deployment of an

experiment and enables a user to schedule churn models. As such we decided to extend this

framework and create FaultSee.

In Figure 3.2 we can see the whole system and the interactions each component will have

when an experiment is being executed.

Infrastructure

To run an experiment there must exist an infrastructure. The user must have access to a

cluster. The cluster access is described in a configuration file, where the user details the hosts

authentication information for remote access. FaultSee supports two authentication mechanisms:

password authentication and public key authentication.

Master Controller

This is the main component of the system and it is responsible to orchestrate the whole experi-

ment. To run experiments, the user only needs to interact with this component.

17

While preparing an experiment, this module will transmit the scripts to all the hosts in the

cluster, in order to be possible to trigger faults in the same moment throughout the components

of the SUT without compromising scalability. Due to Docker-Swarm constraints, this is the

only node with the ability to launch new nodes of the SUT. Therefore, the Master Controller

is responsible for deploying the SUT nodes in the available infrastructure and preparing the

network. Before the experiment starts, the initial nodes of the SUT are deployed.

However, to avoid injecting the same fault in two distinct moments, clocks need to be syn-

chronised. As such, before starting any experiment, this module synchronises all clocks using

NTP. Finally, it coordinates the starting moment with all Local Controllers, described in detail

in Section 3.2.1, so that all hosts start the experiment at the same time.

As the Master Controller is the component which the user uses to interact with the system,

this component also gives a visual progress of the current status of the experiment.

During the experiment, log messages are created with a timestamp, which is fetched from

each host clock. At the end of the experiment, FaultSee merges and sorts chronologically all log

messages.

Local Controller

As depicted in Figure 3.2, the Local Controller runs in every host of the cluster.

The Local Controller has many responsibilities. At the beginning of the experiment, it

receives the experiment script, parses it thoroughly, and sets all the internal control variables so

that it can inject the faults in the correct moments.

During the experiment, the Local Controller is responsible to inject any faults described in

the fault configurations. Additionally, this module is also responsible for collecting logs. During

the experiment, FaultSee produces generic metrics, not only per user container but also per

infrastructure host. These will include CPU usage, Memory usage, disk usage and Network

usage.

At the end of the experiment, the Local Controller will then send all SUT logs to the Master

Controller, so they can be consulted by the user. This is not performed during the experiment

due to performance reasons, as it would clog the network and negatively impact the results of

the experiment.

Below are the faults supported by the Local Controller:

• CPU-intensive tasks - Exhaust CPU of the container;

• Kill nodes - Kill a container;

18

• Send Signals - Send a signal to the container;

• Custom Faults - Run any script inside the container.

These faults were chosen as a proof of concept, by supporting custom faults FaultSee can be

used to inject any fault the user may require, as it can run any script the user develops. The

other faults were developed as they are generic faults that can be used in every experiment. The

faults implementation details are described in the Section 3.3.

Dashboard

The Dashboard displays visual information to the user. After the Local Controller processes the

logs of the experiment, smaller files are created with the logs. This way, when the Dashboard is

loading telemetry, it only needs to load smaller files, and therefore being more performant. Nev-

ertheless, longer experiments will produce bigger files, leading to longer times for the dashboard

to complete.

There are five files:

• Container Information - This file holds identification information about the containers

that ran in an experiment, such as its full id, the service the container belonged to and

the slot inside the service.

• Container Events - This file includes the information about the lifecycle of containers,

such as when they started and stopped.

• Container Logs - This file holds all the applicational logs produced by the containers of

the SUT

• Container Stats - This file has the metrics produced during the experiment about the

resource usage of each container.

• Hosts Stats - Like the previous file, this file holds metrics of the experiment resource

usage, however this metrics are stored by host in the experiment.

The Container Information file allows the Dashboard to provide additional information

about the containers information stored in the other files.

The Containers Events enables the Dashboard to display a plot that represents the number

of containers in each service throughout the experiment, one example is the Figure 3.3

The Containers Logs file enables the Dashboard to display all logs produced by the containers

during the experiment. We can see a Dashboard screenshot that shows how this information is

19

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4 cassandra
YCSB - Load
YCSB - Run

Time [s]

N
u
m
b
e
r

C
o
n
t
a
i
n
e
r
s

Figure 3.3: Service instances throughout time plot

displayed to the user in Figure 3.4. Additionally, the Dashboard enables the user to filter the

logs by service and container, as seen in Figure 3.5. In the Figure, we can see that containers

of service cassandra number 1 and 4 are shown, while the containers 2 and 3 are disabled.

Additionally, the user can activate or disable all the containers in the service by clicking in one

of the upper buttons.

Figure 3.4: Experiment logs displayed in Dashboard

The files Container Stats and Hosts Stats enable the Dashboard to display plots with the

resource usage throughout the experiment for each container and host. The plotted metrics are

CPU, memory and network usage.

In Figure 3.6 we can see an example of a plot of the number of outgoing packets during the

experiment, for each container.

In order to extend the Dashboard capabilities, we decided to develop it with the possibility

to easily extend it, the users can develop plugins to parse the logs of the Docker Services to

produce custom application metrics, such as request throughput and latency throughout time.

20

Figure 3.5: Dashboard’s Filter System

0 500 1000 1500 2000 2500 3000 3500
0

5k

10k

BFT-Smart-1:1
BFT-Smart-2:1
BFT-Smart-3:1
BFT-Smart-4:1
ycsb-client-load:1
ycsb-client-run:1

Time [s]

Figure 3.6: Example of number of outgoing packets during an experiment

3.2.2 FaultSee Domain System Language

The FaultSee Domain System Language (FDSL) contains two main sections, environment and

events. Environment defines the resources required for the experiment and its configuration

options that are specific to each experiment and Events describes the experiment throughout

time, as show in Example 3.1.

1 environment :

2 seed : s e e d v a l u e

3 ntp se rve r : URL

4 events :

5 - event 1

6 - . . .

21

7 - event N

Code Example 3.1: FDSL main structure

Currently, there are two properties that FaultSee recognises, the experiment seed and the

NTP1 server to be used when synchronising clocks. However, if the need arises, FDSL can easily

be extended to include other properties.

Events describes the experiment timeline. There are three types of events: beginning, end

and moment. The beginning event describes the initial state of the experiment. For each

service of the experiment, it defines the number of initial containers. The end event indicates

when the experiment ends. Moments describe a point in time in which something happens

in the experiment, in Example 3.2 we can see its structure, which has three components, time,

mark and the services. Time represents the moment in seconds, mark is the message to appear

in logs when this moment is processed and services holds the Service Events for every service

in the experiment. Services are the Docker Services running in the experiment, that is, the set

of docker containers running the same configurations.

1 − moment:

2 time : n u m b e r o f s e c o n d s

3 mark: c u s t o m m e s s a g e

4 s e r v i c e s :

5 serv i ce name 1 :

6 - s e r v i c e e v e n t 1

7 - . . .

8 - s e rv i c e event N

9

10 service name N :

11 - s e r v i c e e v e n t 1

12 - . . .

13 - s e rv i c e event N

Code Example 3.2: Moment structure

During an experiment there can be three types of Service Events: start, stop and fault.

Start adds nodes to a service and Stop gracefully removes nodes. Fault is a service event that

1RFC 1059 - Network Time Protocol (NTP) provides the mechanisms to synchronise time and coordinate
time distribution in a large, diverse internet operating at rates from mundane to lightwave. It uses a returnable-
time design in which a distributed subnet of time servers operating in a self-organizing, hierarchical master-slave
configuration synchronises logical clocks within the subnet and to national time standards via wire or radio. The
servers can also redistribute reference time via local routing algorithms and time daemons.

22

allows to inject abnormal behaviour into the SUT. All faults have a common structure, depicted

in Example 3.3. This structure includes the target and the fault type. The target can be set to

amount, percentage or specific, these options are mutually exclusive. The first is an absolute

quantity, picked randomly, the percentage also acts upon an absolute quantity randomly, this

value is calculated as the round up percentage of the expected healthy containers in the service,

while specific is the indication of the exact containers that are affected.

1 − f a u l t :

2 t a rg e t :

3 # amount , percentage and specific

4 # are mutually exclusive

5 amount: am ou n t n um be r

6 percentage : p e r c e n t a g e n u m b e r

7 s p e c i f i c :

8 - ID 1

9 - . . .

10 - ID N

11 f a u l t t y p e

Code Example 3.3: Fault structure

Currently there are three types of faults, covering the fundamental fault types that are

relevant to distributed systems in operations: CPU exhaustion, KILL containers, and Send

a Signal to the container. Additionally, there is the Custom Fault that is extensible with more

specific behaviours. It enables the user to run a script inside the containers, using any executable

available inside the container, with any arguments. This allows the user to do everything he

may need. In Example 3.4 we can see the structure, which includes six fields. kills containers

informs FaultSee if this fault kills the container or not. fault file name is the script filename,

while fault file folder is the path inside the container where the script is located, FaultSee, by

default mounts, faults scripts in /usr/lib/faultsee/, therefore, if this field is omitted, this is the

default value. Nevertheless, the user may create a container with a fault in a different path.

fault script arguments stores the scripts arguments, if omitted this field is empty. By default

FaultSee injects the fault by executing the script with /bin/bash without any argument, however,

the user may specify a different executable or set its arguments in executable arguments.

1 custom:

2 k i l l s c o n t a i n e r : y e s / no

3 f a u l t f i l e n a m e : f a u l t f i l e n a m e

23

4 f a u l t f i l e f o l d e r : f a u l t f i l e f o l d e r

5 # default - / usr / lib / faultsee /

6 f a u l t s c r i p t a r g u m e n t s :

7 # default - empty array

8 - arg 1

9 - . . .

10 - arg N

11 executab le : e x e c u t a b l e

12 # default - / bin / sh

13 executable arguments :

14 # default - empty array

15 - arg 1

16 - . . .

17 - arg N

Code Example 3.4: Custom Fault structure

FDSL examples, that we used in the use cases can be found in Appendix A and Appendix B.

3.3 Implementation

Significant work has already been developed in order to easily deploy complex systems. Docker-

Swarm and Kubernetes are two technologies that easily manage complex Docker deployments

across multiple hosts and locations from one central location. Furthermore, these technologies

have high adoption among the community, which contributes to increase ease of adoption of

FaultSee. Therefore, instead of creating our own deploy system we decided to use Docker-Swarm.

As Docker-Swarm has already defined their own configuration file, we decided to use it instead

of creating another one. This creates the additional benefit of previous configurations created

for deployment of systems can be directed imported into our system without any additional

effort. We chose Docker-Swarm as it has a lower learning curve when compared to Kubernetes.

As we decided to use Docker-Swarm, the deployment requirement is fulfilled and no further

development is required in this area. Docker Application Programming Interface (API) also has

some monitoring capabilities that detail the level of resource usage by each individual container,

that we take advantage of. Additionally, we also want to monitor the resource usage of every

host in the cluster, therefore we needed another framework, so we used the psutil framework.

Docker-Swarm and Kubernetes could have been chosen to implement the deployment solu-

24

tion. The system was designed in a way to support both technologies in the future. In order

to support Kubernetes as well, we only need to develop a new module that implements the

Kubernetes logic, without having to fiddle with FaultSee core logic.

In order to programmatically integrate with the Docker API, so that we could access its

resources, such as deploying nodes or gather resource usage metrics, we were limited to either

use its API, producing HTTP requests for every action, or using one of their available SDKs.

The SDKs provided by Docker are written in Python and GO. We decided to use Docker SDK

as they are actively maintained by Docker, as such both the Local and Master Controller were

limited to be implemented in GO or Python. We decided that the Master Controller would be

developed in Python, as it is a higher level language, that is easier to program, furthermore

there are community built frameworks that enable to process large quantities of data with few

lines of code. This decision comes at the expense of some performance, that we considered

to be an acceptable trade-off, as this component main workload does not directly impact the

experiments. On the other hand, the Local Controller runs on every host of the experiment, as

such we want it to be as performant as possible, therefore this component is implemented in

GO, which is a language that has better performance, at the cost of extra development effort.

In order to access the various hosts in the experiment ssh must be used, either through

user-password authentication or by using RSA keys. These are the protocols chosen as they are

widely available in most operating systems.

Before launching an experiment the Master Controller needs to make sure all the nodes in

the cluster have the necessaries images for the experiment, as such all hosts receive a Docker

Pull command for every image present in the system. This also makes sure that if any host

in the cluster had a previous version of the Docker Container Image then it is updated. This

command is sent in parallel to all hosts, so that the time to prepare an experiment does not

increase by incrementing the number of hosts in the experiment.

Every host has a local controller running locally, and every local controller knows the whole

experiment, which is implemented using a sorted list, that contains the time at which the fault

needs to be injected, the target container identification, which is its service name and slot

number2, and the fault itself. The local controllers then iterate this list, sleeping the required

time between the current and previous fault, then launching a thread in the background that is

responsible for injecting the fault. This way if there are many faults to be injected at the same

instant in the same host, the time elapsed between the first and last fault will be significantly

inferior.

2Container Number inside the Docker Service

25

However, before injecting the faults, the local controllers need to decide whether or not

they are responsible for injecting the current fault. Every fault has a target container, and if the

container is running in the host, then the local controller must inject the fault. In order to quickly

make a decision the controller must have an updated structure containing the containers running

in the host. In order to instantaneously access the information, this structure is implemented

using a map of maps. The main map has the service name as a key, and a map as its value, this

second map then has the slot number as its key and a boolean that means whether the container

is running on the host. By default, this structure starts empty, and the absence of information

means the container is not running. This structure can be accessed concurrently, therefore it is

protected by read-write locks. To populate this structure the local controller listens to a local

Docker API that spawns Docker Events, in particular to the events that register the containers

that are started and the ones that are stopped.

Conceptually, faults can either be a signal sent to main container process or a script that

runs inside the container. The Docker API supports both things and FaultSee leverages that to

inject the faults. Nevertheless, in order for the scripts to be able to be executed they first need

to be available inside the container. To achieve this, all faults are copied to every host in the

cluster, and then the local folder is mounted into all containers that are started in the context of

the experiment. Additionally, the user can also execute scripts that are already in the container,

upon the image creation.

The CPU intensive is achieved by creating the hash of a simple string in an infinite loop.

After the required seconds the script stops itself. The script runs inside the container, instead

of running on the host, in order to simulate the behaviour of a container exhausting the CPU.

If the user configures limits to the resources available to each container, then this fault does not

affect other containers running in the same host, therefore the user can test how his system will

behave when one container starts consuming all the available CPU.

The KILL nodes fault is implemented with sending a SIGKILL signal to the container, and

shares the implementation with the Send Signal fault. Both these faults leverage the Docker

API that supports sending signals to containers.

The dashboard is a web component, as such we decided to use React JS, as there are many

dashboard templates and many resources online that can help with developing it. The user can

create plugins in order to create custom plots from the experiment. These plugins are a simple

class that must implement a define interface, that only has one function: Process. It will process

every line of log produced by the services of the experiment. This function receives as input a

line of log, the time it was produced and the service that produced it. As output it is expected

26

Feature Implemented Future Work

Deploy system under test x
Support Docker images with credentials x

Add containers to the experiment x
Stop containers in the experiment x
Kill containers in the experiment x
Exhaust CPU in the experiment x

Support injection of custom faults x
Pick randomly an amount of containers for fault injection x

Pick randomly a percentage of containers for fault injection x
Support targeting specific containers for fault injection x

Display injected faults logs x
Monitor containers resource usage x

Monitor hosts resource usage x
Quantify network communication between nodes x

Plot resource usage x
Plot resource usage in real time x

Table 3.1: FaultSee features

to produce a list of points. Each point has an X value, Y value and the series name, different

series names enables the user to have multiple lines in the same plot. Additionally, for every

plugin the user installs, a new plot is displayed.

FDSL is written in YAML. We decided to choose this data format as Docker also uses YAML

to describe the containers, therefore the users are already familiar with it. YAML is an extensible

format, so we can easily add new elements to the language. While specifying the language we

designed it in a way that in every moment the user can inject as many faults as he wants into

the available containers.

3.4 Overview

In this chapter we presented FaultSee, a tool that leverages Docker functionalities to enable

its users to create reproducible scenarios that emulate components failures. The experimental

results are then displayed in a dashboard that creates plots automatically. FaultSee enable users

to use custom faults in their experiments and custom plugins for the dashboard. Additionally,

we specified FDSL, a language that describes fault scenarios, that can be shared among users,

thus making experiments reproducible. In table 3.1 we can FaultSee features, and whether or

not they are implement

27

28

Chapter 4

Evaluation

In this chapter, we describe the evaluation of FaultSee. First, in Section 4.1, we show how we

validated the FaultSee features implementation. Then, in Section 4.2 we detail experiments

we created to demonstrate how we could use FaultSee. Then, in Section 4.3 we discuss the

achievements of FaultSee.

4.1 Features

In order to validate that the software works as intended we created a set of simple tests so

that we could individually test some features. We then run this tests manually one by one, and

observe the behaviour of the system, to ensure the features are implemented. All the described

tests can be reproduced.

4.1.1 Test Target Functionality

We support three ways to target containers: pick N random containers, pick a percentage of

containers or pick specific containers. In order to test that we decided to create a test in which all

the three targets are present, that way we can check if they are implemented correctly. We used

the KILL fault and checked exactly what containers were killed. While running the experiment

we can see that FaultSee does implement the three targets functionality correctly.

4.1.2 Test Order

The events of an experiment all have a time associated, so that they can then be triggered at the

intended moment, however the order in which they are specified in the file is irrelevant. In order

to ensure that all events are applied in the correct order we created a simple test, with several

unsorted moments, and verified that all the moments were triggered in the correct moment.

29

4.1.3 Fail on Docker Pull error

All the containers in docker have an associated image, which is stored in a repository. In order

to use one image in the experiment the user must specify the image name, which includes its

repository location. However, the user may misspell the image name or the cluster’s hosts might

not have authorisation to access the repository. In these cases the experiment will inevitably

fail, as the docker images will not be available for use. As such we created a scenario in which

an image does not exist, so that we could ensure the experiment fails fast whenever there is an

error downloading a docker image. We verified that FaultSee aborts an experiment when it fails

to download one of docker images

4.1.4 Parse

To run a experiment, it first must be specified on the FDSL language, as such it is also important

to test that the systems aborts the experiment whenever there are errors. As such we created four

set of FDSL experiments that should fail. If the user specified an empty moment, it probably is

a typo, as such it is one of the cases we test for. Another typo is if the user details an event after

the time the experiment is considered to have ended, or if the user forgot to specify the time of

the event. Finally, we also test that if the user is trying to inject a fault into more containers

of a service than the ones expected to be alive at that moment the system aborts to start the

experiment. We validated that in all four scenarios FaultSee aborts to start the experiments,

while warning the user about the error.

4.1.5 Start and Stop Containers

Starting and stopping containers is one of the core features of FaultSee, as such we must test if

FaultSee behaves as expected when trying to launch and stop containers.

To test starting containers, we created a simple experiment with several docker services, in

which we added containers in two distinct moments, first in one service and then in a different

one, and validated the behaviour. This way we asserted that FaultSee launches the correct

docker containers..

The stop behaviour is slightly more complex, as the stopped container has ten seconds to

stop gracefully, otherwise its process is terminated. In order to be able to test this behaviour

we created two distinct docker images. The first is a very simple image that keeps on running

until its process is terminated externally and the second listens for the SIGKILL signal so that

it can gracefully terminate its own process. This way we validated that the correct container is

stopped at the correct moment, and if the containers fails to terminate itself on request, FaultSee

30

does terminate it abruptly.

4.1.6 CPU Exhaustion

One of the faults FaultSee supports is the CPU exhaustion. In order to test this fault we created

an experiment that uses containers without any workload. We then inject the CPU exhaustion

fault in three distinct moments with different durations. Then we check the containers resource

usage in the dashboard, to ensure the CPU was in fact exhausted. In Figure 4.1 we can observe

the results of the test, there were three durations, the first was 20 seconds, followed by 50 seconds

and then 200 seconds.

Figure 4.1: Percentage of CPU usage in the test

4.1.7 Custom faults

In order to make sure custom faults were injected, we created a script that writes the current

timestamp into a file. Then, we ran an experiment with a single container, and injected this

script. After the experiment, we checked the value, in the file, and asserted that FaultSee had

injected the custom fault we created.

Additionally, in order to test if the faults are all injected simultaneously, we repeated the

same test for three containers in four hosts and validated the values were all identical.

4.2 Macro Benchmarks

The evaluation has two main objectives, show that simple configuration files can model complex

behaviours in the SUT and show that after creating an experiment, the user can easily repeat

the experiments.

We created two sets of scenarios. The first set uses the database Apache Cassandra [23], that

is heavily used by the industry, while the second set uses the academic library BFT-Smart [24].

Both systems are set up in a cluster of four nodes and then subject to the Yahoo! Cloud Serving

Benchmark (YCSB) [25], which is a database benchmark used for NoSQL databases. While the

31

benchmark runs we inject different faults to see how it affects the system. In order to run the

benchmark we first had to load the data, so that we can then run the benchmark. In all the

experiments we used the YCSB (version 0.14) and run the Workload A (Operations: 50% Read

and 50% Write). The experiments were performed on Ubuntu 16.04.6 LTS, with Docker 19.03.4.

Additionally, all plots displayed in this chapter are downloaded from the FaultSee dashboard.

4.2.1 Cassandra

We ran this experiment in a Google Cloud Platform (GCP) cluster, with six n1-standard-1

servers. The servers have 1 vCPU and 3.75 GB memory. We used Cassandra version 3.11.4

and the YCSB ran 5 750 000 Operations. The Cassandra cluster has 4 nodes, each running

in a separate host. One of the remaining hosts controls the experiment and the other runs the

YCSB benchmark, both the Load and Run clients. The deployment files used to run this set of

experiments is present in Appendix A.1.

Inject Fault

The first scenario we decided to study is how Cassandra reacts when a fault that kills one of

the nodes is injected. Then, after a brief period we then launch a new container, so that we can

also study the impact of adding a new node to a running system. The FDSL file used in this

scenario is present in Appendix A.2.

The experiment can be summarized in the following points:

• Start 4 Cassandra nodes;

• Load the necessary data to run the benchmark, with data being replicated into 3 nodes;

• Start the YCSB benchmark;

• Kill one of the nodes in the cluster 600 seconds later;

• Start a node 700 seconds later.

In Figure 4.2 we can see the variation in number of nodes in the cluster of Cassandra servers

throughout the time of the experiment, blue line, and of the service YCSB, the load stage is the

yellow line and the run phase is the green line. In the plot we can see that only a node at a time

is started until the second 600. At the second 900 the YCSB Load client is started and lasts

around 100 seconds. At the second 1 400, two YCSB - Run clients are started, each one with 10

threads, this service runs for approximately 2 000 seconds, and each client performs 5 750 000

operations, half of the operations are updates of existing records, while the other half is reading

32

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4 cassandra
YCSB - Load
YCSB - Run

Time [s]

N
u
m
b
e
r

C
o
n
t
a
i
n
e
r
s

Figure 4.2: Number of containers running throughout the Cassandra experiment, in the scenario
of killing a node

the stored information. At 2 050 seconds, one of the containers of the service Cassandra is

killed, this container is replaced 700 seconds later, when another node is started.

In Figure 4.3 we can see the average of operations per second the YCSB clients perform.

After a few seconds the system stabilises at around 3 250 operations per second. At second

2 150 we can observe that Cassandra cluster performance plunges. This is a direct result of

the cluster restoring the replication factor to 3. The reason this dip in the performance only

happens at 100 seconds after the node crashes is due to how Cassandra operates: when a node

crashes it is not yet considered failed, as it may be a simple power outage, and then the node

would recover and receive a small batch of the updates it missed. Instead, 100 seconds after the

node crashes, the cluster receives the information that the dead node will not recover, as such,

the cluster uses the available 3 nodes to achieve a replication factor of 3. This information is

received through the injection of a custom fault: a script that runs a command that instructs

the cluster to consider the dead node as failed.

After the restoration of the replication factor is concluded, the cluster stabilises at a new

value of 2 750, a substantially lower value than the previous 3 250 operations per second.

This can be explained by the fact that now there are only 3 live nodes to answer the clients’

requests. At 2 700 seconds, a new node is started, to replace the dead one. As a consequence

of this operation, Cassandra performance once again plunges. This a direct result of the cluster

transferring a part of the data stored into the new node, this way utilising resources that could

be used to answer clients’ requests. Approximately 100 seconds later, this operation ends and

performance improves once again, stabilising around 3 250 operations per second.

At the end of the plot we can see a sudden spike in throughput, this is explained to one of

the two containers ends its 5 750 000 operations before the other. As a result, there are only

half of the concurrent requests, therefore more resources are available to the remaining client

requests, significantly improving its throughput.

33

0 500 1000 1500 2000 2500 3000 3500 4000
0

1k

2k

3k

4k
Operations

Time [s]

N
u
m
b
e
r

O
p
e
r
a
t
i
o
n
s

Figure 4.3: Average number of operations performed by YCSB-Run Clients throughout the
Cassandra experiment, in the scenario of killing a node

Resources Exhaustion

In the second scenario we intend to show how the exhaustion of resources affects the performance

of a Cassandra cluster. During this scenario, we run the same YCSB benchmark and during

700 seconds we exhaust the CPU of all the containers in the Cassandra’s cluster. The FDSL

file used in this scenario is present in Appendix A.3.

The experiment can be summarized in the following points:

• Start 4 Cassandra nodes;

• Load the necessary data to run the benchmark, with data being replicated into 3 nodes;

• Start the YCSB benchmark;

• Exhaust CPU for 700 seconds.

In Figure 4.4 we can see the variation in number of nodes in the cluster of Cassandra servers

throughout the time of the experiment, blue line, and of the service YCSB, the load stage is the

yellow line and the run phase is the green line. This figure is very similar to Figure 4.2, however,

in this scenario the number of nodes in service Cassandra remains constant.

In Figure 4.5 we can see the average number of operations per second of the YCSB clients,

similar to Figure 4.3. After a few seconds the system stabilises at around 3 250 operations

per second. At second 2 000 a fault is injected that starts consuming CPU, and it lasts for

700 seconds. We can see that the performance plunges to approximately 2 750 operations per

second. As soon as the CPU stops being exhausted, at second 2 700, the performance improves

rapidly, stabilising around 3 250 again. Similarly to the previous scenario, at the end of the plot

we can see a sudden spike in throughput, as one of the YCSB clients ends its 5 750 000 earlier

than the other.

34

Cassandra Discussion

Analysing the results in both experiments we can conclude that injecting faults has a real impact

in the performance of Apache Cassandra. Comparing both scenarios, the CPU exhaustion had

a bigger impact than removing one of the nodes of the cluster. Even though both scenarios

resulted in reducing performance from 3 250 to 2-750 operations per second, Apache Cassandra

was able to recover from one of the nodes crashing, whilst it was unable to recover from the

CPU exhaustion until it terminated. We can see this by comparing Figure 4.5 with Figure 4.3.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4 cassandra
YCSB - Load
YCSB - Run

Time [s]

N
u
m
b
e
r

C
o
n
t
a
i
n
e
r
s

Figure 4.4: Number of containers running throughout the Cassandra experiment, in the CPU
exhaustion scenario

0 500 1000 1500 2000 2500 3000 3500 4000
0

1k

2k

3k

4k

5k
Operations

Time [s]

N
u
m
b
e
r

O
p
e
r
a
t
i
o
n
s

Figure 4.5: Average number of operations performed by YCSB-Run Clients throughout the
Cassandra experiment, in the CPU exhaustion scenario

4.2.2 BFT-Smart

We ran this set of experiments in an Amazon Web Services (AWS) cluster, with six t2.medium

instances, which are virtual machines running in shared servers, with 2 vCPUs and 4 GB memory.

The YCSB benchmark ran 4 000 000 Operations in this set of experiments.

We decided to create three sets of experiments, the first we run the benchmark without

interference, in the second we inject a CPU exhaustion fault and in the third scenario we kill

one of the nodes. The BFT-Smart cluster has 4 nodes, each running in a separate host. One

of the remaining hosts controls the experiment and the other runs the YCSB benchmark, both

the Load and Run clients. The deployment files used to run this set of experiments is present

35

in Appendix B.1.

Faultless scenario

In the first scenario, we intended to see what was the system performance against the YCSB

benchmark, without injecting any faults. The FDSL file used in this scenario is present in

Appendix B.2.

The experiment can be summarized in the following points:

• Start 4 BFT-Smart nodes;

• Load the necessary data to run the benchmark;

• Start the YCSB benchmark.

In Figure 4.6 we can the number of containers of each service throughout the experiment.

The blue line represents the BFT-Smart nodes, the yellow line represents the YCSB Load service,

that loads all the necessary data, so that the YCSB benchmark can run. As we can see in the

green line, the YCSB benchmark service has 1 container, that runs with 10 threads.

In Figure 4.7 we can see the number of operations per second throughout the experiment.

We can observe the cluster processes 1 600 operations per second throughout the experiment,

with an exception at 2 700 seconds, when the performance has a negative spike due to some

requests timing out. In Figure 4.8 we can see that the network activity also has a negative spike,

as until the previous requests complete, the client does not create other requests.

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4 BFT-Smart

ycsb-client-load

ycsb-client-run

Time [s]

N
u
m
b
e
r

C
o
n
t
a
i
n
e
r
s

Figure 4.6: Number of containers running throughout the BFT-Smart experiment, in the fault-
less scenario

Resources Exhaustion

In the second scenario we intend to study how the exhaustion of CPU affects the performance

of the BFT-Smart ’s cluster. This scenario is similar to the faultless scenario, however, during

the YCSB benchmark we exhaust the CPU for 700 seconds of all BFT-Smart containers. The

FDSL file used in this scenario is present in Appendix B.3.

36

0 500 1000 1500 2000 2500 3000 3500
0

500

1k

1.5k

Operations

Time [s]

N
u
m
b
e
r

O
p
e
r
a
t
i
o
n
s

Figure 4.7: Average number of operations per second performed by the YCSB Client throughout
the BFT-Smart experiment, in the faultless scenario

Figure 4.8: Outgoing network usage for every host, in the faultless scenario

The experiment can be summarized in the following points:

• Start 4 BFT-Smart nodes;

• Load the necessary data to run the benchmark;

• Start the YCSB benchmark;

• Exhaust CPU for 700 seconds.

The Figure 4.9 is very similar to Figure 4.6 as the containers have the same churn model.

In Figure 4.11 we can see the percentage of CPU of all the hosts in the cluster. Faultsee-

0, yellow line, only runs the Master Controller, Faultsee-{1..4} run the BFT-Smart containers

and FaultSee-5, the green line, runs the benchmark loader and executioner. The first 4 spikes

represent the individual boot of the BFT-Smart’s containers, then we can see the toll of loading

the data for the benchmark from second 500 until 800, and finally, from second 900 until 3 400

the benchmark is running. The CPU fault is clearly visible from second 1 800 until 2 500 as the

lines representing the four hosts that have the BFT-Smart’s containers are maxed out at 100%.

In Figure 4.10 we can the BFT-Smart performance throughout this experiment. Similarly

to the faultless scenario, the number of operations per second processed stabilises around 1 750.

Then, when the CPU fault is injected, the performance decreases to 1 400 operations per second.

When the fault end, at second 2 500, BFT-Smart performance goes back to 1 750.

37

The dip in performance is explained by the BFT-Smart cluster having limited CPU resources

in that moment, as such it could not handle the same amount of requests simultaneously.

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4 BFT-Smart

ycsb-client-load

ycsb-client-run

Time [s]

N
u
m
b
e
r

C
o
n
t
a
i
n
e
r
s

Figure 4.9: Number of containers running throughout the BFT-Smart experiment, in the CPU
exhaustion scenario

0 500 1000 1500 2000 2500 3000 3500
0

500

1k

1.5k

2k
Operations

Time [s]

N
u
m
b
e
r

O
p
e
r
a
t
i
o
n
s

Figure 4.10: Average number of operations per second performed by YCSB Clients throughout
the BFT-Smart experiment, in the CPU exhaustion scenario

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100 faultsee-4

faultsee-0

faultsee-5

faultsee-2

faultsee-3

faultsee-1

Time [s]

P
e
r
c
e
n
t
a
g
e

Figure 4.11: CPU percentage usage for every host, in the CPU exhaustion scenario

Inject Fault

In the third scenario we intended to study the impact killing one of the nodes had on the cluster

performance. The FDSL file used in this scenario is present in Appendix B.4.

The experiment can be summarized in the following points:

• Start 4 BFT-Smart nodes;

• Load the necessary data to run the benchmark;

38

• Start the YCSB benchmark;

• Kill one of the nodes in the cluster 600 seconds into the benchmark.

In Figure 4.12 we can the number of containers of each service throughout the experiment.

The blue line represents the BFT-Smart nodes, the yellow line represents the YCSB Load service

and the green line shows the YCSB benchmark. We can see that at second 1 700 the number of

BFT-Smart containers decreases, this is due one of the containers being killed in this scenario.

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4 BFT-Smart

ycsb-client-load

ycsb-client-run

Time [s]

N
u
m
b
e
r

C
o
n
t
a
i
n
e
r
s

Figure 4.12: Number of containers running throughout the BFT-Smart experiment, in the kill
a node scenario

0 500 1000 1500 2000 2500 3000 3500
0

500

1k

1.5k

Operations

Time [s]

N
u
m
b
e
r

O
p
e
r
a
t
i
o
n
s

Figure 4.13: Average number of operations per second performed by YCSB Clients throughout
the BFT-Smart experiment, in the kill a node scenario

In Figure 4.13 we can the BFT-Smart performance throughout this experiment. Similarly to

the faultless scenario, the performance remains constant throughout the experiment, at around

1 750 operations per second. From the figure we can also conclude that killing one of the nodes

had no impact on BFT-Smart performance.

4.3 Discussion

We created two sets of experiments, each with more than one scenario, to study the impact that

faults had on the performance of two distributed systems.

We were able to reuse much of the configuration files in experiments. In the same set of

experiments we could reuse the same deployment configuration files and with small addendums

39

we were able to modify the faults to inject. Even from one set of experiments to the other we

could reuse much of the events configuration files, as even though the experiments incided over

different systems, the experiment flow was the same.

In the first set of experiments, we could verify that the injection of both faults affected the

Cassandra performance. While on the second set of experiments, we verified that the BFT-Smart

cluster was only affected in the CPU exhaustion scenario.

With those experiments we were able to demonstrate that with a few lines of configuration

files we can model complex behaviours. These complex behaviours can then easily be repeated,

even by other people, without much human effort. Additionally, we were able to demonstrate

that FaultSee supports both AWS and GCP, without the need for any additional configurations.

40

Chapter 5

Conclusion

In this chapter we conclude the document, draw the main conclusions of the work and discuss

future work.

5.1 Achievements/Contributions

In this dissertation we designed and implemented FaultSee, a tool that enables the execution

of fault scenarios in distributed systems, which represents an increasing need, as distributed

systems are operating at an increasing bigger scale and with a bigger number of components.

The automation of the execution of fault scenarios enables the improvement of the lifecycle of

software development, as defects can be detected sooner. Faultsee supports custom faults, which

enables the user to create new fault scenarios. FaultSee also comes with a dashboard so that

its users can see plots of resource usage generated automatically, or even extend this dashboard

with custom plugins.

Moreover, this system improves the area of research in distributed systems, as it allows

scenarios to be reproductible by independent investigators, which will only require the configu-

ration files used in the original experiment and access to servers with equivalent computational

power. For example, different consistency schemes and configurations for a set of servers can be

compared.

In this dissertation we also showed that FaultSee supports different cloud providers that

rent virtual machines. Specifically we ran the experiments in both AWS and GCP. We also

showed that experiments created in FaultSee are easily reproduced by other users by sharing the

configuration files. Additionally, we showed that with simple configuration files it was possible

to emulate complex behaviours. Moreover, reusing most of the fault scenario configuration file,

changing only the names of the services and the deployment configurations, we were able to

41

create a benchmark of a CPU exhaustion scenario for two different systems, Apache Cassandra

and BFT-Smart.

This work also resulted in a published paper in the INFORUM 2019 conference: FaultSee:

Avaliação Reproduźıvel de Sistemas Distribúıdos Sujeitos a Faltas. The paper authors are Miguel

Amaral, Miguel L. Pardal and Miguel Matos.

5.2 Future Work

This work represents a leap forward in the state of the art, as FaultSee enables independent

researchers to reproduce experiments created by other researchers. However, the work in this

area is far from complete. FaultSee itself could be improved in several ways. As future work we

suggest increasing the number of available faults to the users, such as emulating network failures.

Another useful feature would be the support for different experiment flows, currently FaultSee

only supports temporal events, however, triggering events based on the application state could

enrich the tool. In the current model, faults are injected based on how many seconds have

elapsed since the beginning of the experiments, when replaying the same experiment, faults can

then be injected in different application states, which can hinder the experiment reproducibility.

Due to this fact we can only atest to the validity of results by repeating the same experiment

several times, to be able to confidently take conclusions. An improvement would be to be able

record the application state on the first run of the experiment, then state conditions for fault

injection, thus enabling faults to be injected in the same application state. This would increase

the reproducibility of the experiments.

The dashboard was not the core focus of the work. As future work the dashboard could

be improved in order to be able to interact with the cluster to run experiments and have

an experiment editor. Additionally, the dashboard could include features to accompany the

experiment in real time, such as the running containers in the cluster or event the resources

being used by every container or host, by displaying information sampled every period of time,

such as 10 seconds. Finally, the dashboard should also enable the user to compare results from

two different experiments side by side, in order to take conclusions faster.

42

Bibliography

[1] John Graham-Cumming. Details of the Cloudflare outage on July 2, 2019, 2018. URL

https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/

details-of-the-cloudflare-outage-on-july-2-2019/.

[2] Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh Bhat, and Laurie Williams.

Realizing quality improvement through test driven development: Results and experiences

of four industrial teams. Empirical Software Engineering, 13(3):289–302, jun 2008. ISSN

13823256. doi: 10.1007/s10664-008-9062-z. URL http://link.springer.com/10.1007/

s10664-008-9062-z.

[3] Boby George and Laurie Williams. A structured experiment of test-driven development.

Information and Software Technology, 46(5 SPEC. ISS.):337–342, 2004. ISSN 09505849.

doi: 10.1016/j.infsof.2003.09.011. URL www.elsevier.com/locate/infsof.

[4] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing Dependability

with Software Fault Injection. ACM Computing Surveys, 48(3):1–55, 2016. ISSN 03600300.

doi: 10.1145/2841425. URL http://dl.acm.org/citation.cfm?doid=2856149.2841425.

[5] Docker Inc. Docker Documentation, 2018. URL https://docs.docker.com/.

[6] Paulo Verissimo and Luis Rodrigues. Distributed systems for system architects, volume 1.

Springer Science & Business Media, 2012.

[7] Giampaolo Rodola. Psutil package: a cross-platform library for retrieving information on

running processes and system utilization, 2016.

[8] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher, Swaminathan Sun-

dararaman, Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti, Caitie McCaf-

frey, et al. Fail-slow at scale: Evidence of hardware performance faults in large production

systems. ACM Transactions on Storage (TOS), 14(3):23, 2018.

43

https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
http://link.springer.com/10.1007/s10664-008-9062-z
http://link.springer.com/10.1007/s10664-008-9062-z
www.elsevier.com/locate/infsof
http://dl.acm.org/citation.cfm?doid=2856149.2841425
https://docs.docker.com/

[9] Ariel Tseitlin. The antifragile organization. Communications of the ACM, 56(8):40,

aug 2013. ISSN 00010782. doi: 10.1145/2492007.2492022. URL http://dl.acm.org/

citation.cfm?doid=2492007.2492022.

[10] Pumba: Chaos testing tool for Docker, 2016. URL https://github.com/alexei-led/

pumba.

[11] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Redundancy Does Not Imply Fault Tolerance. ACM Transactions on

Storage, 13(3):1–33, 2017. ISSN 15533077. doi: 10.1145/3125497. URL http://dl.acm.

org/citation.cfm?doid=3141876.3125497.

[12] Ismäıl Senhaji. Lsdsuite: Evaluation framework for large-scale distributed systems. Master

thesis, Université de Fribourg, 2018.

[13] M.a Roza, M.a Schroders, and H.b Van De Wetering. A high performance visual profiler for

games. In Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, Sandbox

’09, pages 103–110, New York, New York, USA, 2009. ACM Press. ISBN 9781605585147.

doi: 10.1145/1581073.1581090. URL http://www.scopus.com/inward/record.url?eid=

2-s2.0-70450233363{&}partnerID=40{&}md5=7b55258d7b1f679c009148162e510a2c.

[14] Benjamin H Sigelman, Luiz Andr, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald

Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-Scale Distributed Sys-

tems Tracing Infrastructure. Google Technical Report dapper-2010-1, page 14, 2010. ISSN

<null>. doi: dapper-2010-1. URL https://static.googleusercontent.com/media/

research.google.com/en//pubs/archive/36356.pdf.

[15] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A. Maltz,

and Ming Zhang. Towards highly reliable enterprise network services via inference of multi-

level dependencies. ACM SIGCOMM Computer Communication Review, 37(4):13, 2007.

ISSN 01464833. doi: 10.1145/1282427.1282383. URL http://portal.acm.org/citation.

cfm?doid=1282427.1282383.

[16] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha

Muthitacharoen. Performance debugging for distributed systems of black boxes. Proceedings

of the nineteenth ACM symposium on Operating systems principles - SOSP ’03, 37(5):

74, 2003. ISSN 01635980. doi: 10.1145/945445.945454. URL http://portal.acm.org/

citation.cfm?doid=945445.945454.

44

http://dl.acm.org/citation.cfm?doid=2492007.2492022
http://dl.acm.org/citation.cfm?doid=2492007.2492022
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
http://dl.acm.org/citation.cfm?doid=3141876.3125497
http://dl.acm.org/citation.cfm?doid=3141876.3125497
http://www.scopus.com/inward/record.url?eid=2-s2.0-70450233363{&}partnerID=40{&}md5=7b55258d7b1f679c009148162e510a2c
http://www.scopus.com/inward/record.url?eid=2-s2.0-70450233363{&}partnerID=40{&}md5=7b55258d7b1f679c009148162e510a2c
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
http://portal.acm.org/citation.cfm?doid=1282427.1282383
http://portal.acm.org/citation.cfm?doid=1282427.1282383
http://portal.acm.org/citation.cfm?doid=945445.945454
http://portal.acm.org/citation.cfm?doid=945445.945454

[17] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Marcos K. Aguilera, and Amin

Vahdat. Wap5. Proceedings of the 15th international conference on World Wide Web -

WWW ’06, page 347, 2006. doi: 10.1145/1135777.1135830. URL http://portal.acm.

org/citation.cfm?doid=1135777.1135830.

[18] Wolfgang Barth. Nagios: System and network monitoring. No Starch Press, 2008.

[19] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, and Christof Fetzer. Fex: A Soft-

ware Systems Evaluator. In Proceedings - 47th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks, DSN 2017, pages 543–550. IEEE, jun 2017.

ISBN 9781538605417. doi: 10.1109/DSN.2017.25. URL http://ieeexplore.ieee.org/

document/8023152/.

[20] Lorenzo Leonini, É Rivière, and Pascal Felber. SPLAY: Distributed Systems Evalua-

tion Made Simple (or How to Turn Ideas into Live Systems in a Breeze). Nsdi, 9:1–

20, 2013. URL http://www.usenix.org/event/nsdi09/tech/full{_}papers/leonini/

leonini{_}html/.

[21] Grzegorz Milka and Krzysztof Rzadca. Dfuntest: A testing framework for distributed ap-

plications. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10777 LNCS, pages

395–405. Springer, Springer Nature, mar 2018. ISBN 9783319780238. doi: 10.1007/

978-3-319-78024-5 35. URL http://arxiv.org/abs/1803.04442{%}0Ahttp://dx.doi.

org/10.1007/978-3-319-78024-5{_}35.

[22] Tony Ohmann, Ryan Stanley, Ivan Beschastnikh, and Yuriy Brun. Visually reasoning about

system and resource behavior. In Proceedings of the 38th International Conference on

Software Engineering Companion - ICSE ’16, pages 601–604, 2016. ISBN 9781450342056.

doi: 10.1145/2889160.2889166. URL http://dl.acm.org/citation.cfm?doid=2889160.

2889166.

[23] Apache Cassandra. Apache cassandra. Website. Available online at http://planetcassandra.

org/what-is-apache-cassandra, page 13, 2014.

[24] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for

the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[25] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.

45

http://portal.acm.org/citation.cfm?doid=1135777.1135830
http://portal.acm.org/citation.cfm?doid=1135777.1135830
http://ieeexplore.ieee.org/document/8023152/
http://ieeexplore.ieee.org/document/8023152/
http://www.usenix.org/event/nsdi09/tech/full{_}papers/leonini/leonini{_}html/
http://www.usenix.org/event/nsdi09/tech/full{_}papers/leonini/leonini{_}html/
http://arxiv.org/abs/1803.04442{%}0Ahttp://dx.doi.org/10.1007/978-3-319-78024-5{_}35
http://arxiv.org/abs/1803.04442{%}0Ahttp://dx.doi.org/10.1007/978-3-319-78024-5{_}35
http://dl.acm.org/citation.cfm?doid=2889160.2889166
http://dl.acm.org/citation.cfm?doid=2889160.2889166

Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium

on Cloud computing, pages 143–154. ACM, 2010.

46

Appendix A

Apache Cassandra experiments

configuration files

A.1 Docker-Compose file

1 ver s i on : " 3.1 "

2 s e r v i c e s :

3 cassandra :

4 l a b e l s :

5 # gather detailed stats

6 org . l s d s u i t e . s t a t s : " true "

7 image : d o c k e r . i o / mapa12 / c a s s a n d r a : s e r v e r

8 environment :

9 DNS CASSANDRA NAME: t a s k s . c a s s a n d r a

10 cassandra . c o n s i s t e n t . rangemovement: " false "

11 MAX HEAP SIZE: 2 0 4 8M

12 deploy :

13 r e p l i c a s : 0

14 placement :

15 c o n s t r a i n t s :

16 - node . hostname != f a u l t s e e −5

17 - node . hostname != f a u l t s e e −0

18 networks :

19 - " backend "

20

47

21 setup−s e r v i c e :

22 deploy :

23 r e p l i c a s : 0

24 image : d o c k e r . i o / mapa12 / c a s s a n d r a : s e t u p

25 networks :

26 - " backend "

27

28 ycsb load :

29 image : d o c k e r . i o / mapa12 / y c s b : l a t e s t

30 environment :

31 WORKLETTER: a

32 ACTION: l o a d

33 DBTYPE: c a s s a n d r a − c q l

34 DBARGS: −p h o s t s = t a s k s . c a s s a n d r a

35 RECNUM: 1 0 0 0 0 0

36 OPNUM: 5 7 5 0 0 0 0

37 deploy :

38 r e p l i c a s : 0

39 placement :

40 c o n s t r a i n t s :

41 - node . hostname == f a u l t s e e −5

42 networks :

43 - " backend "

44

45 ycsbarun :

46 image : d o c k e r . i o / mapa12 / y c s b : l a t e s t

47 environment :

48 WORKLETTER: a

49 ACTION: r u n

50 DBTYPE: c a s s a n d r a − c q l

51 DBARGS: −p h o s t s = t a s k s . c a s s a n d r a

52 THREADS: 10

53 RECNUM: 1 0 0 0 0 0

54 OPNUM: 5 7 5 0 0 0 0

48

55 deploy :

56 r e p l i c a s : 0

57 placement :

58 c o n s t r a i n t s :

59 - node . hostname == f a u l t s e e −5

60 networks :

61 - " backend "

62

63 networks :

64 backend :

65 dr i ve r : o v e r l a y

66 ipam:

67 c o n f i g :

68 - subnet : 1 0 . 2 2 . 0 . 0 / 1 6

49

A.2 FDSL file for the Kill a node scenario

1 environment :

2 seed : 5 6 8

3 ntp se rve r : e u r o p e . p o o l . n t p . o r g

4 events :

5 - beginning :

6 cassandra : 0

7 setup−s e r v i c e : 0

8 ycsbarun : 0

9 ycsba load : 0

10 # give the cluster time to be good

11 - moment:

12 time : 10

13 s e r v i c e s :

14 cassandra :

15 - s t a r t :

16 amount: 1

17 - moment:

18 time : 2 0 0

19 s e r v i c e s :

20 cassandra :

21 - s t a r t :

22 amount: 1

23 - moment:

24 time : 4 0 0

25 s e r v i c e s :

26 cassandra :

27 - s t a r t :

28 amount: 1

29 - moment:

30 time : 6 0 0

31 s e r v i c e s :

32 cassandra :

33 - s t a r t :

50

34 amount: 1

35 - moment:

36 time : 8 0 0

37 s e r v i c e s :

38 setup−s e r v i c e :

39 - s t a r t :

40 amount: 1

41 - moment:

42 time : 9 0 0

43 s e r v i c e s :

44 ycsba load :

45 - s t a r t :

46 amount: 1

47 - moment:

48 time : 1 4 0 0

49 s e r v i c e s :

50 ycsbarun :

51 - s t a r t :

52 amount: 2

53 # inject the fault

54 - moment:

55 time : 2 0 0 0

56 s e r v i c e s :

57 cassandra :

58 - f a u l t :

59 t a rg e t :

60 s p e c i f i c : [3]

61 k i l l :

62 - moment:

63 time : 2 1 0 0

64 s e r v i c e s :

65 cassandra :

66 - f a u l t :

67 t a rg e t :

51

68 s p e c i f i c : [2]

69 custom:

70 k i l l s c o n t a i n e r : " no "

71 f a u l t f i l e n a m e : r e m o v e d e a d n o d e f r o m c l u s t e r

72 - moment:

73 time : 2 7 0 0

74 s e r v i c e s :

75 cassandra :

76 - s t a r t :

77 amount: 1

78 - end: 4 0 0 0

52

A.3 FDSL file for the CPU exhaustion scenario

1 environment :

2 seed : 5 6 8

3 ntp se rve r : e u r o p e . p o o l . n t p . o r g

4 events :

5 - beginning :

6 cassandra : 0

7 setup−s e r v i c e : 0

8 ycsbarun : 0

9 ycsba load : 0

10 - moment:

11 time : 10

12 s e r v i c e s :

13 cassandra :

14 - s t a r t :

15 amount: 1

16 - moment:

17 time : 2 0 0

18 s e r v i c e s :

19 cassandra :

20 - s t a r t :

21 amount: 1

22 - moment:

23 time : 4 0 0

24 s e r v i c e s :

25 cassandra :

26 - s t a r t :

27 amount: 1

28 - moment:

29 time : 6 0 0

30 s e r v i c e s :

31 cassandra :

32 - s t a r t :

33 amount: 1

53

34 - moment:

35 time : 8 0 0

36 s e r v i c e s :

37 setup−s e r v i c e :

38 - s t a r t :

39 amount: 1

40 - moment:

41 time : 9 0 0

42 s e r v i c e s :

43 ycsba load :

44 - s t a r t :

45 amount: 1

46 - moment:

47 time : 1 4 0 0

48 s e r v i c e s :

49 ycsbarun :

50 - s t a r t :

51 amount: 2

52 # inject the fault

53 - moment:

54 time : 2 0 0 0

55 s e r v i c e s :

56 cassandra :

57 - f a u l t :

58 t a rg e t :

59 amount: 4

60 cpu:

61 durat ion : 7 0 0

62 - f a u l t :

63 t a rg e t :

64 amount: 4

65 cpu:

66 durat ion : 7 0 0

67 - f a u l t :

54

68 t a rg e t :

69 amount: 4

70 cpu:

71 durat ion : 7 0 0

72 - end: 4 0 0 0

55

56

Appendix B

BFT-Smart experiments

configuration files

B.1 Docker-Compose file

1 ver s i on : ’ 3.4 ’

2 s e r v i c e s :

3 server −1:

4 l a b e l s :

5 # gather detailed stats

6 org . l s d s u i t e . s t a t s : " true "

7 image : d o c k e r . i o / mapa12 / b f t −smar t− e x p e r i m e n t : l a t e s t

8 environment :

9 REPLICA INDEX: 1

10 MAX HEAP SIZE: 2 5 6 0M

11 deploy :

12 r e s our c e s :

13 l i m i t s :

14 memory: 3G

15 r e p l i c a s : 0

16 placement :

17 c o n s t r a i n t s :

18 - node . hostname == f a u l t s e e −1

19 networks :

20 - " backend "

57

21

22 server −2:

23 l a b e l s :

24 # gather detailed stats

25 org . l s d s u i t e . s t a t s : " true "

26 image : d o c k e r . i o / mapa12 / b f t −smar t− e x p e r i m e n t : l a t e s t

27 environment :

28 REPLICA INDEX: 2

29 MAX HEAP SIZE: 2 5 6 0M

30 deploy :

31 r e s our c e s :

32 l i m i t s :

33 memory: 3G

34 r e p l i c a s : 0

35 placement :

36 c o n s t r a i n t s :

37 - node . hostname == f a u l t s e e −2

38 networks :

39 - " backend "

40

41 server −3:

42 l a b e l s :

43 # gather detailed stats

44 org . l s d s u i t e . s t a t s : " true "

45 image : d o c k e r . i o / mapa12 / b f t −smar t− e x p e r i m e n t : l a t e s t

46 environment :

47 REPLICA INDEX: 3

48 MAX HEAP SIZE: 2 5 6 0M

49 deploy :

50 r e s our c e s :

51 l i m i t s :

52 memory: 3G

53 r e p l i c a s : 0

54 placement :

58

55 c o n s t r a i n t s :

56 - node . hostname == f a u l t s e e −3

57 networks :

58 - " backend "

59

60 server −4:

61 l a b e l s :

62 # gather detailed stats

63 org . l s d s u i t e . s t a t s : " true "

64 image : d o c k e r . i o / mapa12 / b f t −smar t− e x p e r i m e n t : l a t e s t

65 environment :

66 REPLICA INDEX: 4

67 MAX HEAP SIZE: 2 5 6 0M

68 deploy :

69 r e s our c e s :

70 l i m i t s :

71 memory: 3G

72 r e p l i c a s : 0

73 placement :

74 c o n s t r a i n t s :

75 - node . hostname == f a u l t s e e −4

76 networks :

77 - " backend "

78

79 ycsb−c l i e n t −load :

80 l a b e l s :

81 # gather detailed stats

82 org . l s d s u i t e . s t a t s : " true "

83 image : d o c k e r . i o / mapa12 / b f t −smar t− e x p e r i m e n t : l a t e s t

84 environment :

85 ACTION: l o a d

86 RECNUM: 1 0 0 0 0 0

87 OPNUM: 1 2 5 0 0 0

88 deploy :

59

89 r e p l i c a s : 0

90 placement :

91 c o n s t r a i n t s :

92 - node . hostname == f a u l t s e e −5

93 networks :

94 - " backend "

95

96 ycsb−c l i e n t −run:

97 l a b e l s :

98 # gather detailed stats

99 org . l s d s u i t e . s t a t s : " true "

100 image : d o c k e r . i o / mapa12 / b f t −smar t− e x p e r i m e n t : l a t e s t

101 environment :

102 ACTION: r u n

103 THREADS: 10

104 RECNUM: 1 0 0 0 0 0

105 OPNUM: 4 0 0 0 0 0 0

106 START CLIEND ID: " {{. Task . Slot }} "

107 deploy :

108 r e p l i c a s : 0

109 placement :

110 c o n s t r a i n t s :

111 - node . hostname == f a u l t s e e −5

112 networks :

113 - " backend "

114 networks :

115 backend :

116 dr i ve r : o v e r l a y

117 ipam:

118 c o n f i g :

119 - subnet : 1 0 . 2 2 . 0 . 0 / 1 6

60

B.2 FDSL file for the faultless scenario

1 environment :

2 seed : 5 6 8

3 ntp se rve r : e u r o p e . p o o l . n t p . o r g

4 events :

5 - beginning :

6 server −1: 0

7 server −2: 0

8 server −3: 0

9 server −4: 0

10 ycsb−c l i e n t −load : 0

11 ycsb−c l i e n t −run: 0

12

13 - moment:

14 time : 10

15 s e r v i c e s :

16 server −1:

17 - s t a r t :

18 amount: 1

19 - moment:

20 time : 1 0 0

21 s e r v i c e s :

22 server −2:

23 - s t a r t :

24 amount: 1

25 - moment:

26 time : 2 0 0

27 s e r v i c e s :

28 server −3:

29 - s t a r t :

30 amount: 1

31 - moment:

32 time : 3 0 0

33 s e r v i c e s :

61

34 server −4:

35 - s t a r t :

36 amount: 1

37

38 - moment:

39 time : 5 0 0

40 s e r v i c e s :

41 ycsb−c l i e n t −load :

42 - s t a r t :

43 amount: 1

44 # wait for operation LOAD to end

45 - moment:

46 time : 9 0 0

47 s e r v i c e s :

48 ycsb−c l i e n t −run:

49 - s t a r t :

50 amount: 1

51 - end: 3 6 0 0

62

B.3 FDSL file for the CPU exhaustion scenario

1 environment :

2 seed : 5 6 8

3 ntp se rve r : e u r o p e . p o o l . n t p . o r g

4 events :

5 - beginning :

6 server −1: 0

7 server −2: 0

8 server −3: 0

9 server −4: 0

10 ycsb−c l i e n t −load : 0

11 ycsb−c l i e n t −run: 0

12

13 - moment:

14 time : 10

15 s e r v i c e s :

16 server −1:

17 - s t a r t :

18 amount: 1

19 - moment:

20 time : 1 0 0

21 s e r v i c e s :

22 server −2:

23 - s t a r t :

24 amount: 1

25 - moment:

26 time : 2 0 0

27 s e r v i c e s :

28 server −3:

29 - s t a r t :

30 amount: 1

31 - moment:

32 time : 3 0 0

33 s e r v i c e s :

63

34 server −4:

35 - s t a r t :

36 amount: 1

37

38 - moment:

39 time : 5 0 0

40 s e r v i c e s :

41 ycsb−c l i e n t −load :

42 - s t a r t :

43 amount: 1

44 # wait for operation LOAD to end

45 - moment:

46 time : 9 0 0

47 s e r v i c e s :

48 ycsb−c l i e n t −run:

49 - s t a r t :

50 amount: 1

51

52 # inject the fault

53 - moment:

54 time : 1 8 0 0

55 s e r v i c e s :

56 # inject 3 times for each server

57 server −1:

58 - f a u l t :

59 t a rg e t :

60 amount: 1

61 cpu:

62 durat ion : 7 0 0

63 - f a u l t :

64 t a rg e t :

65 amount: 1

66 cpu:

67 durat ion : 7 0 0

64

68 - f a u l t :

69 t a rg e t :

70 amount: 1

71 cpu:

72 durat ion : 7 0 0

73 # inject 3 times for each server

74 server −2:

75 - f a u l t :

76 t a rg e t :

77 amount: 1

78 cpu:

79 durat ion : 7 0 0

80 - f a u l t :

81 t a rg e t :

82 amount: 1

83 cpu:

84 durat ion : 7 0 0

85 - f a u l t :

86 t a rg e t :

87 amount: 1

88 cpu:

89 durat ion : 7 0 0

90 # inject 3 times for each server

91 server −3:

92 - f a u l t :

93 t a rg e t :

94 amount: 1

95 cpu:

96 durat ion : 7 0 0

97 - f a u l t :

98 t a rg e t :

99 amount: 1

100 cpu:

101 durat ion : 7 0 0

65

102 - f a u l t :

103 t a rg e t :

104 amount: 1

105 cpu:

106 durat ion : 7 0 0

107 # inject 3 times for each server

108 server −4:

109 - f a u l t :

110 t a rg e t :

111 amount: 1

112 cpu:

113 durat ion : 7 0 0

114 - f a u l t :

115 t a rg e t :

116 amount: 1

117 cpu:

118 durat ion : 7 0 0

119 - f a u l t :

120 t a rg e t :

121 amount: 1

122 cpu:

123 durat ion : 7 0 0

124 - end: 3 6 0 0

66

B.4 FDSL file for the Kill a node scenario

1 environment :

2 seed : 5 6 8

3 ntp se rve r : e u r o p e . p o o l . n t p . o r g

4 events :

5 - beginning :

6 server −1: 0

7 server −2: 0

8 server −3: 0

9 server −4: 0

10 ycsb−c l i e n t −load : 0

11 ycsb−c l i e n t −run: 0

12

13 - moment:

14 time : 10

15 s e r v i c e s :

16 server −1:

17 - s t a r t :

18 amount: 1

19 - moment:

20 time : 1 0 0

21 s e r v i c e s :

22 server −2:

23 - s t a r t :

24 amount: 1

25 - moment:

26 time : 2 0 0

27 s e r v i c e s :

28 server −3:

29 - s t a r t :

30 amount: 1

31 - moment:

32 time : 3 0 0

33 s e r v i c e s :

67

34 server −4:

35 - s t a r t :

36 amount: 1

37

38 - moment:

39 time : 5 0 0

40 s e r v i c e s :

41 ycsb−c l i e n t −load :

42 - s t a r t :

43 amount: 1

44 - moment:

45 time : 9 0 0

46 s e r v i c e s :

47 ycsb−c l i e n t −run:

48 - s t a r t :

49 amount: 1

50 - moment:

51 time : 1 8 0 0

52 s e r v i c e s :

53 server −3:

54 - f a u l t :

55 t a rg e t :

56 amount: 1

57 k i l l :

58 - end: 3 6 0 0

68

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Requirements
	1.2 Contributions
	1.3 Thesis Outline

	2 Background and Related Work
	2.1 Definitions
	2.2 Fault Injection
	2.3 Monitoring/Tracing
	2.4 Deployment
	2.5 Usability
	2.6 Overview

	3 FaultSee
	3.1 Approach
	3.1.1 Requirements
	3.1.2 Experiment Lifecycle
	3.1.3 Experiment Configuration

	3.2 Design
	3.2.1 FaultSee Architecture
	3.2.2 FaultSee Domain System Language

	3.3 Implementation
	3.4 Overview

	4 Evaluation
	4.1 Features
	4.1.1 Test Target Functionality
	4.1.2 Test Order
	4.1.3 Fail on Docker Pull error
	4.1.4 Parse
	4.1.5 Start and Stop Containers
	4.1.6 CPU Exhaustion
	4.1.7 Custom faults

	4.2 Macro Benchmarks
	4.2.1 Cassandra
	4.2.2 BFT-Smart

	4.3 Discussion

	5 Conclusion
	5.1 Achievements/Contributions
	5.2 Future Work

	Bibliography
	A Apache Cassandra experiments configuration files
	A.1 Docker-Compose file
	A.2 FDSL file for the Kill a node scenario
	A.3 FDSL file for the CPU exhaustion scenario

	B BFT-Smart experiments configuration files
	B.1 Docker-Compose file
	B.2 FDSL file for the faultless scenario
	B.3 FDSL file for the CPU exhaustion scenario
	B.4 FDSL file for the Kill a node scenario

