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Resumo

Os Sistemas Distribuídos são a base para aplicações modernas usadas por milhões de utilizadores

diariamente. Apesar de estes sistemas serem desenhados e construídos por cima de protocolos de

tolerância a faltas, mais frequentemente do que pensamos, estas aplicações continuam a falhar

devido a faltas inesperadas e imprevisíveis no sistema. Estas falhas causam enormes prejuízos

tanto para o utilizador final como para a empresa que fornece o serviço. Por isso, é fundamental

ter um método sistemático e reproduzível para avaliar a resiliência e robustez destes sistemas

distribuídos.

O método de análise de sistemas distribuídos é desafiador e difícil devido à grande complexi-

dade e natureza não-determinista dos mesmos. Metodologias de injeção de faltas, tal como Chaos

Engineering, são usadas pelas maiores empresas de IT para avaliar o comportamento dos seus

sistemas após injetarem faltas aleatoriamente. No entanto, devido às faltas não serem baseadas

no estado do sistema, a mesma falta pode causar comportamentos diferentes em execuções difer-

entes. Engenheiros devem conseguir reproduzir faltas com facilidade para perceberem melhor o

problema e corrigi-lo.

Nesta dissertação, nós propomos o ReFI (Reproducible Fault Injection), uma ferramenta de

injeção de faltas reproduzíveis que deve eficientemente obter o estado do sistema distribuído e

injetar faltas baseadas no mesmo para reproduzi-las em diferentes execuções. Tratamos o sistema

como uma caixa-negra, obtendo informação sobre as chamadas de sistema (system calls), para

podermos utilizar o ReFI em diferentes sistemas. O ReFI utiliza a tecnologia eBPF, que permite

a inserção de código dinamicamente no kernel do Linux. ReFI reproduziu três bugs críticos

em dois sistemas distribuídos, MongoDB e Redis, utilizando um ficheiro de configuração para

especificar os sistemas e as faltas.

Palavras-chave: Sistemas Distribuídos, Reprodutibilidade, Injeção de Faltas, Robustez,

eBPF
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Abstract

Distributed systems are at the core of modern applications that are used daily by millions of

users. Although these systems are designed and built on top of fault-tolerant techniques to

avoid failures, most often than we think, these applications still fail due to unexpected and

unpredictable faults in the system. These failures cause severe harm to both the user and

the company that provides the service. Therefore, it is fundamental to have a systematic and

reproducible way to evaluate these distributed systems’ resilience and robustness.

This assessment method is challenging and difficult because of the high complexity and

non-deterministic nature of distributed systems. Fault injection approaches, such as Chaos En-

gineering, are used by major IT companies to evaluate their system’s behavior after randomly

injecting faults. However, the same fault can cause different system behaviors due to faults not

being based on the system state. Engineers should be able to reproduce faults with ease to better

understand the problem and correct it.

In this dissertation, we propose ReFI, a Reproducible Fault Injection tool that traces the

distributed system state efficiently, in a black-box manner, and injects faults based on the state

to reproduce these faults across different executions. ReFI utilizes eBPF technology that enables

the insertion of dynamic code in the Linux kernel. ReFI reproduced three critical bugs in two

distinguished distributed systems, MongoDB and Redis, using a configuration file to specify the

systems and the faults.

Keywords: Distributed Systems, Reproducibility, Fault Injection, Robustness, eBPF
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Chapter 1

Introduction

Distributed systems are the dominant backbone infrastructure for modern applications that users

rely on regularly for various purposes, such as e-commerce, social media, entertainment, banking,

finance, healthcare, and many others. Thus, the more we rely on distributed systems, the more

important it becomes to assess the robustness and reliability of these systems, where faults of

different types frequently happen.

Faults lead to application failures that cause loss of productivity and, consequently, the loss

of millions in revenue for both the organizations [1] that provides the service and the final user.

Hence, it is crucial to test the dependability of these distributed applications to prevent system

outages in the presence of faults.

System outages occur more often than we think due to faults caused by natural phenomenon’s,

such as lightning strikes [2], and even human error [3], but also by unexpected and unpredictable

bugs in the software of IT companies [4, 5, 6].

Despite the numerous fault-tolerant designs at the core of distributed systems to prevent

several faults from propagating and causing a system failure, faults still occur frequently. Faults

are becoming the norm rather than the exception due to the high complexity of distributed ap-

plications, often composed of thousands of services and micro-services [7], increasing the chance

of having system failures. It also brings tremendous difficulty in analyzing the system to under-

stand which components failed, why they failed, and which components were affected, directly

or indirectly.

Computer engineers and programmers who encounter these types of bugs need a precise

methodology to reproduce these events to evaluate and analyze their impact on the system.

After understanding how the bugs were produced and which parts of the system were affected,

the engineers can rectify the bugs caused by these unexpected faults with more ease. In the

process of reproducing the bugs, engineers are creating systems that are more robust and resilient
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to faults in a more reliable way since they can test similar behaviours on their or other systems.

At present, it is extremely difficult and challenging to reproduce faults in distributed systems

because of their non-deterministic nature and their complexity. In addition, the previous tracing

tools and mechanisms used by the state-of-the-art approaches are not efficient enough due to their

architecture or need to instrument all the code, which is unfeasible in the majority of distributed

applications. These tools need to analyze millions of system calls to trace the distributed system

and need to be exceptionally efficient for each call.

1.1 Topic Overview

Distributed applications are built on top of fault-tolerant mechanisms, model checking [8], and

test-driven [9, 10] approaches. Unfortunately, debugging and testing the fault-tolerance guaran-

tees of distributed systems is a notoriously complex task because distributed systems are highly

complex and have a non-deterministic behaviour due to, for example, the latency of network

communication between nodes or due to the complex algorithms used in distributed systems.

Nevertheless, these mechanisms and approaches have been shown to reduce the number of

faults and improve the resilience and dependability of distributed systems. However, these tech-

niques need to understand the system’s model in detail to prevent faults, which can be tedious,

time-consuming, and not extendable to other applications. On top of that, these techniques are

used at the core of building such applications and do not test the system once it is finished.

Thus, if we want to test the robustness of an already built system, these mainly do not apply to

them.

Therefore, how can we assess the robustness and reliability of a distributed system that has

already been built on top of these strategies without having to rebuild the whole distributed

system? The dominant top-down approach in the software engineering and dependability com-

munities is fault injection [11].

Fault injection [12, 13, 14, 15, 16, 17, 18, 19] mechanism tests the system dependability

requirements with minimal programmer investment and can quickly identify bugs. Amazon has

recently created a cloud service [20] that enables the use of Chaos Engineering fault injection

approach in their instances. Chaos Engineering is used by leading IT companies, and it started

to gain renown after the success of Netflix [21]. Then, Google [22], Microsoft [23], Facebook [24],

and Amazon [22] started using this approach too. Chaos engineering creates experiments that

randomly inject faults into the system and evaluate several key system metrics.

Since, in Chaos Engineering, these faults are injected randomly and hence do not depend on

the system state, the same fault can reflect different behaviours. For example, it can lead to a
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system failure, or it can lead to a correct system recovery, depending on the system state. These

behaviours happen due to the non-deterministic nature of distributed systems, where the same

fault may not always hamper their correctness or performance. This non-deterministic behaviour

is the origin of a complicated and challenging problem in distributed systems that engineers and

programmers are continuously facing when trying to understand and fix these types of bugs.

Accordingly, to ensure rigorous testing, we need to deterministically reproduce faults in a

given system. This dissertation aims to explore the idea of using a system’s internal state in a

black-box manner (via system calls, I/O, logs, and more) to coordinate fault injection with the

state, enabling engineers to correctly reproduce - and fix - incorrect system behaviour. Other

state-of-the-art fault injection approaches either are not able to reproduce bugs created by their

faults, such as chaos engineering, or are specific to a system type, such as file-systems [17],

storage systems [18], or they intend to catch a specific type of bugs, such as TOF bugs [15], or

crash consistency bugs [18]. Our approach, ReFI, a Reproducible Fault Injection tool, intends

to improve the state-of-the-art in these aspects.

For ReFI to accomplish these goals, great challenges arise. Throughout this dissertation, we

will discuss four goals and four key challenges. The goals of this dissertation are to create ReFI,

a reproducible, black-box, efficient, extendable and flexible prototype. The four key

challenges are the high complexity of distributed systems, their non-deterministic nature,

the difficulty to reproduce experiments and, correlated to the latter, the problems with

obtaining a system state.

This document will describe how we approached our goals, how we discussed these complex

challenges, how we hypothesized different solutions to them, and why we chose a specific solution

over others.

1.2 Objectives

This dissertation has the following four core goals:

Enable injection of faults to be reproducible, analyze the system behaviour by treating it

as a black-box application, accomplishing this in an efficient manner, and be extendable for

different fault patterns and system states as well as flexible to different types of distributed

systems (database systems, storing systems, file-systems, and more).

The core idea to enable reproducible fault injection is to coordinate fault injection with

the system state, as opposed to state-of-the-art time-based or random-based fault injection ap-

proaches, such as Chaos Engineering.

In this dissertation, we divided the system state into two categories, uni-state and multi-state.
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As the name indicates, a state can be uni-state when it is derived from the analysis of a single

source of application output (system calls, logs, I/O, and more), or multi-state, derived from the

analysis of two or more sources of application output.

To obtain the system state, we treat the application as a black-box. A black-box application

means that we do not analyze the inside of the application. We only analyze the distributed

application’s outputted information to the exterior, such as system calls, logs, I/O, and more.

For example, we do not need to know what complex algorithms each system uses nor understand

the code each system implements. There are state-of-the-art approaches [25] that utilize the idea

of understanding the source code and its algorithms. Still, it comes with the disadvantage that

developers need long periods to understand a single system due to the high complexity of each

distributed system and the majority of the knowledge acquired is not tangible to other systems.

When we talk about efficiency, we are mainly talking about the latency, throughput, and

overhead that the ReFI prototype adds on top of the application. These metrics should be

as efficient as possible to enable engineers and programmers to easily and rapidly utilize our

tool. The bottleneck of the fault injection experiment should not be the tool that is testing the

robustness and resilience of the system. Also, the overhead, in this particular case, should be as

small as possible because we are dealing with thousands, or even millions, of syscalls per second.

The slightest overhead can be transformed into an enormous handicap/inefficiency of the tool.

The fourth and final goal is to create a tool that not only can be extendable to different

distributed systems and also flexible to various outputs of the applications, such as different

system calls, and different logs. This extendability and flexibility come from the way that ReFI

was designed. By treating the application as a black-box and using eBPF as a technology

to accomplish this, we can change the distributed system being tested with ease. On top of

that, we created a mechanism to specify the types of faults and the system nodes, by simply

specifying them in a configuration file, which largely improves its easiness to be extendable to

other distributed systems and fault patterns.

To achieve these goals, we propose ReFI, a Reproducible Fault Injection tool that could

be used in different distributed systems. ReFI should be able to inject faults in a (1) reproducible

manner, using a (2) black-box approach, (3) in an efficient way, and (4) it should enable the

creation of different experiments described in a configuration file. To accomplish these goals, we

intend to use eBPF [26], a Linux kernel technology that enables the dynamic insertion of code

in the Linux kernel that can be used for various purposes such as tracing, profiling, monitoring,

and controlling the logic within Linux itself. With eBPF, we can collect an internal state of

the system by only analyzing its system calls, meaning that it is a black-box approach since we
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do not need to understand the application model and its algorithms. The state will be used

to precisely inject faults in specific system states, thus being reproducible. eBPF gives us a

negligible overhead because all the infrastructure of this technology is already built in the Linux

kernel, and we are only injecting a few lines of code into the already called system call. We

tested our ReFI tool with MongoDB and Redis, which are modern distributed applications used

by millions of users.

With the ReFI tool, we made the first critical step to prove that fault injection can be repro-

ducible by testing it on two different bugs in MongoDB, a database for modern applications used

by millions of users and companies, and one critical bug in Redis, an in-memory data structure

store, used as a database or cache for thousands of applications. This ability to reproduce fault

injection experiments is a novelty on the state-of-the-art that will help developers and engineers

to attack these complex and difficult bugs more efficiently and improve the research area of

reproducible fault injection.

As main results, we highlight three key accomplishments. ReFI, a working prototype that

was used to reproduce bugs in two real systems, MongoDB and Redis, as well as different

types of faults. A presentation of our work at the Advanced tools, programming languages, and

PLatforms for Implementing and Evaluating algorithms for Distributed systems (ApPLIED) 2021

workshop [27] in collaboration with ACM Symposium on Principles of Distributed Computing

conference (ACM PODC) [28]. Finally, a collaboration with a colleague working on Kollaps [29],

a network emulator, that is also using eBPF to surpass network problems.

1.3 Thesis Outline

The remainder of this document is organized as follows. At the beginning of each chapter, there

is a small summary, and at the end, there is a quick recap of the most important solutions

and arguments. In Chapter 2, we define basic concepts that are essential to understand our

work, such as faults, errors and failures, and describe the eBPF tool, which dynamically inserts

code on the Linux kernel. In Chapter 3, we discuss the state-of-the-art approaches on fault

injection, their frameworks and prototypes. We also discuss state-of-the-art kernel tracing tools

and studies on current bugs in popular systems. In Chapter 4, we detail the architecture of ReFI,

a Reproducible Fault Injection tool, as well as different solutions that we analyzed to accomplish

our goals (reproducible, black-box, efficient, flexible and extendable). We describe the three

main modules of ReFI, Tracing Module, Fault Injection Module, and the Orchestrator and their

implementation. In Chapter 5, we present the methodologies that we used to demonstrate

the efficiency and the utility of ReFI, show the results of the evaluation, and the fundamental
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experiments of ReFI in distributed systems. Finally, in Chapter 6, we conclude the document

and discuss how we accomplished the main goals, as well as the future work.
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Chapter 2

Background

In this section, we provide a background on basic concepts relevant to our work. Our tool,

ReFI, utilizes the injection of faults in distributed systems to catch bugs. The concepts of fault,

error, and failure are thus explained to avoid ambiguity and to understand the basic flow of

why injecting faults creates system failures. In Section 2.2, we briefly describe eBPF, which is a

technology that we will use in our approach.

2.1 Fault, Error, Failure

To understand why fault injection can improve the robustness of an application, it is crucial to

understand how a fault can generate a failure.

A fault is the adjudged or hypothesized cause of an error.

An error is the part of the system’s total state that may lead to its subsequent failure.

A failure is an event that occurs when the delivered service deviates from the correct service.

For example, a developer can accidentally delete a code line, producing a fault in the system.

This code, when executed, can trigger a fault that activates an error in a system component.

This error propagates to a system failure where the system crashes because it does not handle

that particular line missing. This is a simple example of the flow of a fault, error, and failure.

Figure 2.1: A fault can activate an error. The error can propagate to a system failure.

7



Figure 2.2: The architecture of an attachment of an eBPF program using the BCC framework [26]

2.2 eBPF

eBPF is a relatively new Linux kernel technology that enables the dynamic insertion of a Linux

kernel program that can be used for monitoring, security visibility, and control logic within Linux

itself. eBPF programs are event-driven, and they execute when a hook point is passed. Typically,

these hooks are system calls (syscalls) but can also be network events, kernel tracepoints, kernel

probes, among others. While not being executed, the eBPF programs have a zero cost over-

head [30]. This shows a better performance, while not in execution than tools such as PIN [31],

that injects code into the application, and even if the code is not executed, it still is checked,

resulting in unnecessary overhead.

Since eBPF programs run inside the Linux kernel, they must follow specific security policies,

such as not enabling dynamic loops. These eBPF programs can be updated and injected to

the Linux kernel without any changes to the application code or configuration. The eBPF

programs are written in the form of bytecode but fortunately, there are abstractions on top of

eBPF bytecode that facilitate the writing of an eBPF program such as BCC [32], BPFtrace [33],

Cilium [34], and libbpf [35]. We used libbpf-bootstrap [36] as an abstraction, to create ReFI

using C in the frontend and a pseudo-C in the attached eBPF program to the Linux kernel.

The pseudo-C code is then compiled to bytecode. An important difference between C and this

pseudo-C is that pseudo-C does not allow loops, to avoid infinite loops that could cause the

kernel to crash.

A key component of eBPF is sharing information between different eBPF programs through

a built-in data structure known as maps. These maps can be arrays, stacks, or a key-value data

structure (similar to maps in other programming languages). These maps can store state data

and are stored in a different stack than the eBPF program itself. Since the eBPF program is

loaded to the kernel, huge data structures would take all the small available space, but because

the maps are in a different stack, this is not a problem.

In Fig. 2.2 we can see the architecture of an eBPF program that runs on top of the BCC
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abstraction. The program is attached to a specific network system calls (syscall), and it is

executed before the syscall return to the application, storing data in the eBPF Maps. Before the

eBPF program is attached, it must be verified to avoid kernel crashes and translated to machine

code by the JIT compiler. It is possible to have multiple eBPF programs monitoring different

syscalls and sharing the state through Maps.

eBPF offers a robust, efficient, and secure mechanism to attach functionality to the Linux

kernel to monitor applications and inject faults.
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Chapter 3

Related Work

In Section 3.1, we discuss the state-of-the-art fault injection approaches as well as present their

advantages, disadvantages, key solutions and ideas and what can be improved. In Section 3.2, we

consider the main tracing tools that are used in the Linux kernel environment in state-of-the-art

approaches and describe their applications in specific types of applications. In Section 3.3, we

analyze current bugs of real and modern distributed systems that are documented. In Section 3.4

we summarize, in a table, the main aspects of the state-of-the-art fault injection approaches and

a comparison to what ReFI improves on each of them. We also summarize and discuss essential

conclusions outside of fault injection approaches such as configuration language details from

Faultsee, why we used eBPF instead of Strace from CAT conclusions and specific types of bugs

that ReFI enables us to test.

3.1 Fault Injection Tools

Fault injection is a mature topic in distributed systems [12, 13] that has been growing quite

rapidly in the last decade. Since distributed systems have critically failed and caused significant

damage to applications multiple times due to faults [2, 3, 4, 5, 6], approaches to make these

systems more reliable have appeared. Fault injection mechanisms are the main approach to test

the resilience, dependability and understand the impact of system component’s failures.

In this section, we will discuss the state-of-the-art approaches to fault injection. Some of these

approaches only try to find specific failures/bugs in distributed systems, such as FCatch [15] and

B3 [17]. Others are less specific and try to find a variety of bugs, such as LDFI [11] and Chaos

Engineering [14]. Both have their advantages and disadvantages and we are going to explain and

discuss them.

Besides state-of-the-art fault injection approaches, we will discuss important key mechanisms
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Figure 3.1: The principles to design Chaos Engineering experiments [15].

that the ReFI framework infrastructure utilizes. We need to have a language that is simple

and describes these fault injection experiments in a concise way and to reproduce them like

Faultsee [37]. From CAT [38], we can understand eBPF advantages, in a similar concept, over

other technologies, such as Strace. Finally, but not least, analyze distributed system bugs [25, 39]

of, partial and complete, network partitions issues that were presented in different distributed

systems, including MongoDB, and test ReFI with these complex bugs.

3.1.1 Chaos Engineering

Chaos Engineering “is the discipline of experimenting on a distributed system to build con-

fidence in its capability to withstand turbulent conditions in production“ [14], i.e., by testing a

distributed system with faults injection and observing how it reacts, we can build trust on the

system’s robustness. The distributed system is tested by injecting simulated real-world faults

such as temporary network partitions, malformed data inputs, drop of incoming requests, a large

number of requests in a short time to congest the network traffic, among others.

In Chaos Engineering, engineers tend to look at the user response and related metrics rather

than if the system is behaving like the specification. In other words, after injecting a fault, if

the system is not too slow and the client receives a correct response, the system is considered

correct although the specification may not be fully met. The definition of correct depends on

each system.

The base of Chaos Engineering is to test the resilience of the system by running thousands

of experiments. Then, with the help of metrics, analyze the results and improve the robustness

by correcting bugs. The four principles to design Chaos Engineering experiments are: i) build

hypotheses around a steady-state behaviour, ii) vary real-world events by designing experiments,

iii) run these experiments in production and analyze the results, and iv) automate experiments to

run continuously. In Fig. 3.1, we have a simplified scheme that shows the principles in practice.

A steady-state behaviour depends on the system itself but in general, could be if the end-user

can access what the application has to offer. For example, a metric for Netflix would be if the
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user can watch streams. For an e-commerce application, such as Amazon, would be if the user

can buy products. To build a hypothesis on this, we need to understand what metric should

we analyze. For example, a metric could be streams started per second in Netflix or completed

purchases per second in the e-commerce application.

After finding a metric that can measure the normal behaviour of the system, we start to

inject faults that may happen at the production level. Principle ii) and iii) depend on each other

since we can only run experiments in production after varying the real-world events. Examples

are terminating virtual machines, dropping messages, among others. These faults are randomly

applied to the system and do not follow a model to inject faults. This is one of the major

downsides of this approach and the main reason that thousands of faults need to be injected at

different times to detect bugs. Most of the time, only a small amount of bugs are found, giving

the wrong impression that the system is robust and even bug-free. Bugs can be time and state

sensitive and/or depend on coordinated behaviours.

Finally, automation of this approach is needed, not only by varying events and the number

of faults to inject but also by the timings to when the faults start and their regularity. The goal

is to plan an experiment and apply it, e.g. crash a node for 10 minutes, gather the results of the

metrics to analyze later, recover that node after 1 minute, and repeat for each experiment.

The first dominant company using this approach was Netflix [21] but many large tech organi-

zations such as Amazon [22], Google [22], Microsoft [23], and Facebook [24] started using Chaos

Engineering to test the resilience of their distributed systems.

Over the last decade, Netflix has created the Simian Army [40] that has been developing

various tools that are based on Chaos Engineering. The most famous one is ChaosMonkey

2.0 [21]. Other tools are Chaos Kong [41] and ChAP [42]. FIT [43] is an auxiliary framework for

these tools that perform fault injection.

Chaos Monkey [44] is a tool that randomly terminates virtual machine instances and con-

tainers in a production environment. The goal is to expose engineers to the failures that are

hidden in the complexity of their systems and to fix them before it harms the clients or become

unmanageable. The name of the tool itself, Chaos Monkey, reassembles something like putting

a monkey in a system that tries to destroy it uncoordinated and causes chaos.

Netflix also uses the tool Chaos Kong that performs exercises that simulate the failure of

an entire Amazon EC2 region. Failure Injection Testing (FIT) simulates the loss of requests

between Netflix services and verify that the system degrades gracefully.

This approach is simple to understand and easy to implement. Randomly killing processes

and crashing virtual machines is not complex to do compared with other approaches using models
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for injecting faults. Nevertheless, it has demonstrated practical robustness in distributed systems

in the production environment, which allowed organizations to comfortably and confidently use

this approach for their benefit.

However, random injection of faults may show a false sense of robustness because the majority

of the faults injected do not produce bugs. Since the experiments are random and uncoordinated,

most of the faults may be redundant and test similar parts of the system which makes it inefficient.

Another important disadvantage is that faults are not reproducible. This means that because

they are randomly injected and do not depend on the state of the system, they can not always

recreate the same results. If we do the same steps, it likely will not cause the bug to appear

again because the production system is in another state.

If by crashing a virtual machine, the system shows below the standards measures, developers

and engineers still need to understand the root cause behind the failure, which can be a tedious

and time-consuming task. There is almost no control over the outcome of the faults, so engineers

must be careful when planning the experiments to avoid this kind of situation.

Lastly, bugs that consist of a combination of more than one fault can not be detected with

the simple Chaos Engineering approach. Modifications of the approach or even a completely new

approach is needed for this to happen.

3.1.2 FCatch

FCatch is a prototype developed by Liu et al. [15], in 2018, that aims at automatically detecting

bugs, specifically, Time-of-Fault (TOF) bugs, in cloud systems.

DCatch, the previous work of Liu et al [16], aims at automatically catching concurrency bugs

using identical principles. TOF bugs are a new type of concurrency bugs that are more harmful

to cloud systems.

TOF bugs are critical faults that occur at a particular moment and system states. They are

critical because they can cause a whole system to fail by breaking fault-tolerance schemes. TOF

bugs mainly manifest when a node crashes or a when message is dropped at a specific moment.

Fig. 3.2 shows an example of a TOF bug in a Hadoop-MapReduce execution. The Application

Manager (AM @Node1) receives a CanCommit message from @Node2 and updates the T.commit

variable so no other node can start a commit while this one is happening. After that @Node1

is waiting for a DoneCommit from @Node2 but @Node2 crashes before sending it. This crash

triggers a retry event on @Node3 that sends a CanCommit message. Despite the fault-tolerant

method implemented by the developers, @Node3 is not able to commit since the T.commit vari-

able is waiting on @Node2. If @Node2 crashed before CanCommit, the fault-tolerant process
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Figure 3.2: TOF bug example on a Hadoop-MapReduce execution [15].

Figure 3.3: FCatch flow [15].

would have made the system correct. If @Node2 crashed after DoneCommit, the system would be

correct because the execution was finished. Since the TOF bugs have an extremely small window

to occur, faults need to be coordinated. A brute force approach, such as Chaos Engineering, is

unlikely to catch TOF bugs because they are only produced when a set of faults are time precise

and synchronized. Also, it would be infeasible because of the large number of potential sets of

faults that can be injected into the system.

FCatch uses program analysis to automatically predict TOF bugs instead of a manually or

randomly guided fault injection. The model has two key properties: Triggering conditions,

specially timed faults, and root causes, such as a node crash leaving a shared resource in a

state that cannot be changed.

In Fig. 3.3 we can see the three steps that FCatch follows. Step 1, Observe Correct Runs,

monitors executions of the distributed system that are fault-free and record the resource-accesses

operations, happens-before operations, and time-out operations. These correct runs are not

random, and it is one of the main challenges of this work. Sometimes multiple runs of the same

execution are needed to monitor and compare. Step 2, Identify Conflicting Operations, analyzes

the traces collected in the previous runs to identify conflicting operations such as writes and

reads the same resource from different nodes. Step 3, Identify Fault-Intolerant Operations, test

these conflicting operations to see if there is actually a TOF bug and there are no fault-tolerant

mechanisms to protect from those TOF bugs. At the end of the flow, FCatch creates a report

with info about the bugs found to help the developers.

Conflicting operations are Reads and Writes that access resources that are in different

nodes. In particular, Fig. 3.2 shows an example of conflicting operations (Write from @Node2

and Read from @Node3).
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In step 1, FCatch is able to trace any correct run that has conflicting operations but there are

special TOF bugs, such as crash-recovery, that need more than one correct run to be analyzed,

which can difficult the analysis. Nevertheless, in general, their solution is to have two runs,

fault-free and faulty run.

Another challenge comes when trying to compare these two different runs. Object hashes that

are from the same object may differ from run to run, creating a non-deterministic execution and

difficult analyses of the distributed systems. To this, they simply use checkpoints created before

the fault injection given by a virtual machine or a container environment. They get a checkpoint

right before they intend to inject the fault. From the checkpoint, the system resumes in two ways.

One run without faults and the other injects a fault immediately after the checkpoint resumes.

This mechanism completely eliminates the non-deterministic execution problem. In the end,

both runs share the same initial state given by the checkpoint. Thus completely eliminating the

non-deterministic execution problem.

This approach does not need to identify the system model. It analyzes only the inter-node,

inter-thread, and intra-thread operations to find conflicting W-R pairs of operations. This is

better than approaches that collect and analyze the system model because extracting it is difficult

and sometimes infeasible. However, FCatch is still expensive in terms of performance. FCatch

imposes a 5.6x - 15.2x slowdown, mainly because they use Javassist, a dynamic instrumentation

tool, to inject tracing into the code causing the overhead. It is also slow due to their mechanism

of creating checkpoints because these can be extremely expensive and access the storage and

memory several times.

The authors claim that FCatch is more effective at finding TOF bugs than a random injection

of faults since 400 random fault injections did not reveal any TOF bugs but only 1 round of

FCatch can.

3.1.3 Bounded Black-box Crash Testing - B3

The state-of-the-art crash-consistency tests in the kernel for Linux file-systems (ext4 [45], xfs [46],

btrfs [47], and F2FS [48]) are dependent on around 400 tests and only 5% are for testing crash-

consistency bugs. Testing before deployment of the application is fundamental but it is not

enough to prevent crash-consistency bugs. Therefore, there is a need for fault injection mecha-

nisms to test the resilience and the correctness of these file-systems.

The Bounded Black-Box (B3) Crash Testing [17] approach has the goal of testing the correct-

ness of file-systems in the presence of crashes. They evaluate the correctness of the file-system

by injecting crash faults into it and analyze if the state after the crash is consistent.
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Figure 3.4: An existing crash-consistency bug that existed in the kernel since 2014.
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Figure 3.5: B3 approach to test file-system crash-consistency bugs [49]

A file-system is crash-consistent if it always recovers to a correct state after a crash fault.

For instance, a crash fault can be a system power loss or even natural phenomenons, such

as lightning or earthquakes. In a more general idea, a system is crash-consistent if, after a

crash fault, the system presents no failures. The file-system state is correct if its internal data

structures are consistent, and files that were persisted before the crash are not lost or corrupted.

An example of a crash-consistency bug is described in Fig 3.4. A file F1 is created in the

directory D1. A fsync() call is done to persist this file. F1 is created in D2 and rename/moved

from D2-F1 to D1-F1. F2 is created in D1. A fsync() call is done to persist these files. A crash

happens and we expected that after recovering, the files D1-F1 and D1-F2 should be persisted

but only D1-F2 is persisted. It is claimed in the article that this crash-consistency bug of data

loss exists in the kernel since 2014.

The two main challenges that the B3 approach tries to resolve are (1) lack of an automated

infrastructure to systematically test the file-systems and (2) the infinite number of workloads

that need to be tested. A workload is a sequence of file-system operations such as open(),

close(), fsync(), fdatasync(), rename(), sync(), and others.

To be able to accomplish this, B3 uses two tools, one for each challenge.

CrashMonkey [50] (not to confuse with ChaosMonkey from the Chaos Engineering ap-
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Figure 3.6: The 3 phases of CrashMonkey, Record IO, Replay IO, and Auto Checker [49].

proach) automatically simulates faults at different points of a given workload and tests the

correctness of the file-system after each fault injection. Normally, these faults are crash faults,

that simulate unexpected system failures such as power loss. To enable an efficient snapshot of

the file-system, CrashMonkey uses a copy-on-write RAM block device.

CrashMonkey follows three phases. First, the (1) Record IO phase starts from an initial

file-system state and collects a correct state of the file-system composed by operations and IO

requests until a persistent point, all the IO after that are safely unmounted. This phase is similar

to the correct run approach discussed in Section 3.1.2, since it collects a correct state from a

fault-free execution of a workload.

Secondly, the (2) Replay IO phase executes the workload until a persistent point is met. A

persistent point is when a sync operation, such as fsync(), fdatasync(), and sync(),

is executed. Then, a fault is injected, normally a crash fault. After being given some time to

recover, a crash state is collected.

Finally, the (3) Auto Checker phase is where it tests for the correctness of the crash state.

It compares the crash state from the Replay IO phase with the correct state from the Record IO

phase. If it is not correct, a crash-consistency bug has been found and a bug report is generated.

It is possible to have false positives in this phase that can only be verified by a developer at the

end of the execution of CrashMonkey.

This is a black-box approach since it does not need to analyze the model nor the code of the

file-system being tested. This is extremely helpful since it can be used in existing and different

file-systems with minimal modification such as changing arguments. Also, it is not costly since

the process should be the same and no internal knowledge of the file system is needed to be able

to test it with B3 approach.

The solution to the challenge (2) not only finds a way to handle the infinite space of workloads

but also how to create these workloads. Automatic Crash Explorer (ACE) exhaustively

generates workloads that satisfy the bounds specified by the test developer. These bounds are

used to narrow the space of workloads by arguments such as length of the workloads, number of
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Figure 3.7: The 4 phases of ACE [49]

operations, and the arguments to the system calls.

The challenges of ACE are i) infinite length of workloads, ii) large set of file-system operations,

iii) infinite parameter options (file/directory names, depth), iv) infinite options for initial file-

system state, and v) when in the workload to simulate a crash?

The solutions presented to these challenges are based on a study of the currently documented

crash-consistency bugs in file-systems. For challenges i) to iv), the solution is to bound their

size. They bound the number of file-system operations in the workload to a maximum of 3

because the study showed that two to three core operations were sufficient to catch almost all

the crash-consistency bugs. They also bound the parameters of these operations and set the

initial state before the beginning of each workload generation. The solution to challenge v) was

discussed earlier, and they simulate/inject a crash after a sync() call.

ACE has 4 phases: i) select operations, ii) select parameters iii) add persistence, and iv) add

dependencies.

Fig. 3.7 is an example of the process of the ACE following each phase. First, it selects the

operations that we want to create workloads for, and then it generates all the possible sequences

of 2 of these operations (or 3 depending on the arguments given to ACE). If we pick create(),

rename() and write(), it will generate 33 sets of 2 operations (create() and rename()

set is exemplified in the Figure). Second, it selects the parameter for these functions, such as the

name of the file to create. Third, it adds a persistence call after each operation, an fsync()

for example. Finally, add dependencies for each function chosen, such as create a new directory

before creating a file, and the workload is ready to be fed to the CrashMonkey framework.

It is essential to note that these challenges are not specific to this approach. Most of them

are generic to the fault injection approaches studied before and they will need to be addressed

in our work.

B3 is a black-box approach that allows testing various systems without knowing their con-

tents. Also, B3 can be used in an already existing system. It has been tested in file-system and

showed that the crash-consistency bugs can be caught with its tools.

But the benefits of the B3 approach came with a few limitations. By analyzing the Crash-
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Monkey phases, it can be seen that it only catches bugs that can appear after a sync() call.

Crash-consistency bugs in the middle or not exactly after a sync() call cannot be catch with this

approach. B3 only tests file-systems, such as ext4, btrfs, and F2FS. They catch a specific class

of bugs and not even all of them, thus not having completeness. As all black-box approaches,

it cannot say where in the code the bug is. Although this is a limitation, the benefit of the

black-box approach is far more useful. It is not scalable, since, with larger workloads, the cost

of computing the workloads is exponential because, for the core operations, B3 has to calculate

all the possible skeletons that can be created with those operations. Finally, they rely on the

deterministic nature of the system, so the correct run state must always be deterministic, which

may not always be the case in distributed systems.

3.1.4 PACE

The core mechanism of reliability used in distributed file-systems is replication of data in different

nodes. What happens if all the nodes that have this data crash? Distributed file-systems have

built fault-tolerant mechanisms to endure single machine crashes. Are the mechanisms to recover

from a correlated crash reliable? Multi-node or total system crashes happen more often than we

think due to natural phenomenon’s, such as lightning strikes [2] and even human error [3].

A correlated crash is when all the nodes that are correlated crash, i.e., all the nodes that

possess the crash data. After a correlated crash, the system recovers using recovery protocols.

But do they recover correctly after a correlated crash in a distributed system? When distributed

file-systems recover from correlated crashes, it is expected that persisted data is not lost. Often,

this is not the case and it represents a user-level guarantee violation.

These user-level violations are a vulnerability of the distributed system due to a correlated

crash thus being called correlated crash vulnerabilities.

Alagappan et al. [18] created PACE, Protocol-Aware Crash Explorer, a generic correlated

crash exploration framework. PACE explores correlated crash vulnerabilities in distributed file-

systems by systematically generating persistent states that exist in the execution in the presence

of correlated crashes.

The PACE framework was created with the goal of answering the following two critical

questions related to correlated crashes: (1) Do distributed systems violate user-level expectations

in the presence of correlated crashes? and (2) How to check for correlated crash vulnerabilities?

To understand how PACE works, first, we should understand how to catch persistent states

that occur during a correlated crash. These states are called globally reachable states and

we can find them by analyzing the operations made in the distributed system execution. Only
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Figure 3.8: PACE execution methodology [51].

a few operations, such as write(), change the globally reachable state of the distributed file-

system to the next one. PACE assumes that send and receive messages operations (send() &

recv()), do not change the globally reachable state.

Distributed file-systems are complex and so there are operations done differently in the back-

ground. Relaxations such as reordering of writes and atomicity of operations are applied to the

execution for the improvement of the system performance. For example, two sequential writes,

w_1 and w_2, could be reordered by a relaxation thus when a correlated crash happens, the

recovery protocol could get old data for w_1 but w_2 would be new and correct. Another

example is the atomicity of the write, it could happen, that a write is not atomic and when the

recovery protocol executes, only a part of the write is consistent.

When these relaxations are applied to a combination of nodes, it affects the recovery protocols

and makes the generation of persistent states explode in size. PACE uses generic rules to prune

this huge state space. For example, one of the rules generates states for relaxations applied to

the leader of the distributed system.

PACE starts by executing a workload in the initial state of the distributed system to analyze,

trace, and parse the operations. Operations can be of file-system type, such as write(),

or of network type, such as send() & recv(). Then, PACE prunes the possible states by

using PACE generic rules and replays those generated states. While the workloads are running,

correlated crash faults are injected and the results are collected. Finally, a report is generated

to show correlated crash vulnerabilities in the system. PACE goal is to examine and explore the

global crash recovery protocols in the presence of correlated crashes.

This framework was tested on systems, such as Redis [52], MongoDB [53], and etcd [54].

Instance, for Redis, with 11x fewer states than the brute force approach, PACE found the same

3 vulnerabilities.

In conclusion, PACE injects correlated crash faults to test the recovery protocols of the
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Figure 3.9: Overview of LDFI architecture [55].

Figure 3.10: Lineage graph of an execution of a write in a distributed database system [55].

distributed systems and prunes the space with generic rules. Yet again, it uses a similar approach

of a correct run at the beginning of the methodology. It proved to have a good performance

but it is not a black-box approach. Also, PACE only focuses on very specific correlated crash

vulnerabilities, which makes it not versatile. Nevertheless, it is a well developed state-of-the-art

framework that overcomes challenges like the prune of the huge state space and automatizes the

process of fault injection and testing the distributed system.

3.1.5 Lineage-driven Fault Injection - MOLLY

Peter Alvaro et al. [11, 55] developed an approach to fault injection called Lineage-driven Fault

Injection. It is based on the concept of data lineage, used in database literature [56, 57, 58, 59,

60, 61]. This lineage can be seen as the model of a particular execution of a process.

LDFI follows a top-down strategy to discover bugs in distributed systems using fault injection.

In Fig. 3.9 we can see the architecture of the LDFI approach and its specific steps such as (1)

Success, (2) Lineage (3) Conjunctive Normal Form (CNF), and (4) Repeat.

For a particular configuration and input, the LDFI approach does a forwarding step by

executing a (1) success run and obtaining the correct result. The LDFI then works backwards

from the correct results of this forwarding step, asking why this execution was successful. To

answer this, a (2) lineage is extracted from the execution, i.e., a lineage graph is created.

For example, Fig. 3.10 shows a lineage graph from a hypothetical execution of a write in a

distributed database system where BcastX means that a broadcast event named X occurred and
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Stored on RepX means that some data was stored in a replica X.

It is extremely difficult to obtain a lineage graph in a production distributed system where

there are many messages with various nodes and with the high complexity of each execution run.

This lineage graph is encoded into a (3) Conjunctive Normal Form (CNF) formula.

To solve the CNF formula, first we need to specify the events that can fail in this execution.

For Fig. 3.10, the events are:

E ≡ {RepA,RepB,Bcast1, Bcast2}

Being E the processes in the lineage graph, there are 2E combinations of faults that can be

injected in a lineage graph and specifically, we can inject 24 = 16 faults in this example. This

creates an exponential space of faults to explore. However, by carefully analyzing the lineage

graph, it is possible to observe a couple of redundancies. It can be seen that injecting a

fault in BcastA and RepA would still make the system and the execution correct by using the

alternative and redundant path, BcastB and RepB. With this type of reasoning through the

lineage graph, they can prune the exponential space of possible faulty executions by avoiding

redundant paths.

After solving the CNF formula, a set of faults that correspond to the solution is created. The

system can output two outcomes for each fault in the solution set:

1. The system fails with an incorrect outcome and a bug report is created. The lineage graph

is presented to help correct the bug and the execution terminates;

2. The system succeeds with a correct outcome and the process is repeated.

MOLLY is a prototype that implements the LDFI approach. MOLLY guarantees a com-

pleteness property, i.e., if the analysis completes without finding bugs, they guarantee that

no bugs exist for that configuration, even if the space of possible executions is enormous. This

completeness property is extremely useful for engineers and developers since it gives confidence

in the resilience of the system being tested.

However, this property comes with a downside which is that it only stands because of a major

simplification made in the model. They assume that delivered messages are received in a

deterministic order thus, they convert an asynchronous system into a synchronous one. If

we could assume this deterministic order in distributed systems, lots of complex problems, such

as Leslie Lamport, “Time, clocks, and the ordering of events in a distributed system“ [62] and

others, would become much easier to solve. This simplification is not feasible in the majority of
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distributed systems where messages are commonly being delivered out of order by each node on

the system, because of network issues, thus not ensuring the completeness property.

Peter Alvaro et al. [55] took a step further and tested the LDFI approach (not the proto-

type MOLLY) in a production-level distributed system, Netflix. To be able to accomplish this

task, they utilized the Netflix infrastructure “building blocks“ that is composed of heterogeneous

systems that provide different services, such as isolation of failures, communication with re-

mote services, IPC, databases, caches, etc. As expected, each distributed system brings a huge

complexity with it and so, they had to make lots of adjustments specific to the Netflix system.

One of the adjustments was on the obtaining of the lineage graph. As said before, obtaining

the lineage graph is an extremely complex task and not feasible in the Netflix system. So they

used one of the tracing services to get a call graph. A call graph is similar to a lineage graph

in the sense that it shows what processes were executed during an execution. However, it does

not represent the alternative paths that the execution could have taken. Because of that, the

redundancy that a lineage graph has is not obtainable and they cannot apply their strategy to

prune the exponential space of faults to inject.

To address this, they grouped the execution runs into classes of runs, i.e., different runs but

with similar outputs are grouped as one class. Then they ran the same experiments and mapped

them into the respective classes thus obtaining redundancy on the same class of executions for

each call graph. This reduction resolves one of the most difficult problems in fault injection in

distributed systems today, exponential space of possible executions. Chaos Engineering,

explained in Section 3.1.1, does not resolve this issue and Chaos Engineering is one of the main

fault injection approaches used by the dominant IT companies such as Amazon, Netflix, and

Microsoft.

Replayability was another problem solved by this solution of mapping executions to a finite

number of classes. These classes of requests were considered equal if they caused the same

back-end interactions as if they were replays of a single canonical request.

To conclude, the LDFI completeness property, which gives trust to the developers, comes with

a simplification that most of the distributed system can not have, transforming an asynchronous

into a synchronous system. We also acknowledge that lineage graphs solve the problem of

exponential space to fault injections but it is very difficult to have a graph like this in a complex

distributed system, although with some adjustments it is possible. In other words, it is very

difficult to obtain a system model that is needed to apply the LDFI approach.
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Figure 3.11: FDSL example for a Cassandra experiment, showing the environment attributes
and several events specifications [37].

3.1.6 Faultsee

It is critical to have a well-defined, precise, and concise description of fault injection experiments

to be able to evaluate different experiments with the same objectivity. As an example, different

research works using the same system can come to different conclusions depending on the way

faults were injected. A solution to this standard problem is Faultsee.

Faultsee is a toolkit composed by (1) Faultsee Domain System Language (FDSL), a

configuration language based on YAML to concisely describe the experiment, and (2) a Faultsee

platform to deploy and automatically execute the experiments specified in FDSL.

To describe the FDSL language, let’s use Fig. 3.11 as a concrete example of an experiment

written in FDSL. There are two main sections. The environment section and the events section.

The environment section specifies the system’s initial state, such as a seed to be able to

reproduce the experiment, the NTP clock synchronization of the nodes, and other specifications

such as the number of replicas.

The events section support beginning, moment and end events that can begin, add, fail and

stop nodes. In lines 7-11, the beginning event describes the artifacts that the experiment will use

and the 0 indicates that no artifacts are initialized at the beginning. This event is considered to

be part of the environment phase since it also specifies the initial state. The artifacts, such as

Cassandra in line 8, are described using Docker images and Dockerfiles. At lines 40-48 we can

observe an event that provokes a fault in the system. The fault is injected at time 2000 in a

Cassandra node, specifically in node 1 and it is a kill fault.

This language is decisive to obtain a well-defined system that can be reproduced with ease

and also allowing to be precise on what fault we want to inject and when.

Faultsee platform runs the experiments detailed by the FDSL and has the architecture de-

picted in Fig.3.12.

The Master Controller is responsible for converting the FDSL listing document into a
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Figure 3.12: Fautlsee platform architecture, with Master Controller, Local Controller and a
Dashboard [37].

concrete execution plan that is going to be received by the Local Controller. This has the

advantage that no extra coordination or communication is needed during the experiment between

the Master Controller and the Local Orchestrators and thus having better scalability. These

Local Orchestrators are the processes that run the experiment and are managed by the Local

Controller.

The Local Controller after receiving the concrete execution from Master Controller, starts

to execute the moments described by the FDSL such as starting instances and injecting faults.

The System metrics are gathered by the Local Controller and then sent to the Dashboard.

The Dashboard is a web application using a visual interface that shows the metrics and

logs in a more presentable way and additionally can control the experiments.

We can observe how easy and simple it is to specify an experiment with the FDSL, with just

a few dozen lines, and observe with transparency what the experiment does and importantly,

reproduce it. The results gathered from the experiment can be checked in the dashboard after

it finishes.

Certain faults, such as injecting faults in the network, are not available in Faultsee but the

system is extendable and designed to support custom faults. The main limitation is that it only

supports injecting faults base on time, and, as we have been discussing, there are bugs that only

manifest after complex and precise events (state) occur.

The goal of Faultsee is not to explain the behaviour of the system given the faults that are

injected, but rather to give us a powerful, yet easy and simple to use, toolkit to specify and

run experiments in a standard way. The results from the experiments can be visualized in a

dashboard to hypothesize about them and make conclusions.
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3.1.7 Elle

Elle [19] is a tool that detects anomalies in distributed database applications using transaction

histories and directed graphs to find them.

This checker tool was created by the author of Jepsen and of LDFI, and so, Elle combines

the Jepsen testing framework with transaction histories (similar to the lineage concept/idea from

LDFI).

A transaction is a set of operations that should be performed as one and can be committed

(C), when all operations succeed, otherwise the transaction is aborted (A) if any operation fails.

Transactions have a unique identifier to avoid ambiguity.

The transaction histories are based on Adya history [63, 64] and are composed of a set of

transactions on objects in a database. These transactions have an event order that indicates

the order of the operations in the transactions and show a version order � for each object.

The version order � for an object x can be represented by a list that appends each write on

x. Since only appends are made to this list, the version order is traceable. For example, if x

has the version history of [1, 2], we can trace the version order as [ ], [1] and [1, 2]. Also, the

tests append unique numbers to the list of object x thus, the exact write can be deduced and

its recoverable. The extraction of these Adya histories is done by observation of the outcomes of

the experiments done to the application.

Elle plots a Direct Serialization Graph (DSG) to visualize the dependencies between trans-

actions. A read dependency is when a read comes after a write and so it shows an event order

of writes that happens before the read (w < r). A write dependency is the opposite of a read

dependency, when a write comes after a read (r < w).

To be able to find anomalies in the database systems, Elle identifies cycles in the DSG. These

cycles in the graph are found by applying Tarjan’s algorithm to get the strongly connected

components (SCC). Then a breadth-first search (BFS) is applied to each SCC to identify short

cycles.

Elle is capable of identifying several types of anomalies through the analysis of cycles and

dependencies on the DSG’s it. For example, it can identify data loss and future writes and reads,

i.e., operations that return data that should not be available given the isolation properties of

each transaction history.

These are the type of anomalies that Elle automatically finds in the tests after injecting faults

like partition failure and message dropping. Besides cycles, there are other anomalies that Elle

also catches such as duplicated writes, garbage reads and internal inconsistencies.

Using the DSG, Elle can automatically check if there are contradictions in the specifications
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of the application, in the presence of fault injection and generate visualizations and human-

verifiable explanations. Also, they show that the performance is better than a previous similar

approach. Since thousands of experiments are made and the injection faults are not precise, it

is extremely difficult to reproduce a test that produces a failure.

As a black-box approach, it needs to create the Adya histories of the database through

observations of the application behaviour. These Adya histories can be seen as the state of the

distributed application.

3.2 Tracing Technologies

From the previous section, where we discussed state-of-the-art fault injection frameworks and

techniques, we can conclude that Reproducible Fault Injection in distributed systems is a complex

and challenging task. Since the principal premise of this dissertation is to obtain reproducibility

in fault injection experiments by collecting a state, we must research the area of tracing, what

tracing tools exist and their performance.

3.2.1 CAT

Tracing tools are necessary to test the correctness and dependability of distributed systems.

CAT [38] is a non-intrusive Content-Aware Tracing and analysis framework. CAT improves

the state-of-the-art in the concept of tracing the content and the context, instead of the usual only

context-driven tracing. They collect system I/O requests, following a non-intrusive (black-box)

approach. These I/O messages can come from the network, storage and more.

However, we are focusing on their study on the tracing tools to help us decide the best tracing

tool in terms of performance but also in terms of easiness to utilize. CAT, on top of their main

goal, tracing the content, considers what we believe are the fundamental aspects of tracing, in a

black-box manner. These fundamental aspects are the different Linux kernel tracing tools, their

advantages and disadvantages, their overall performance, what they can and cannot do, and

accomplishing this by only tracing into the system calls and I/O messages (black-box approach).

In Fig. 3.13, we can see a context-based tracing approach (a) and the benefit of having a

content-aware tracing approach (b). On (a), node 1 sent 12 bytes and received 12 bytes, so it is

assumed that the application was acting as expected. However, as we can see on (b), the 12 bytes

message received on node 1 are incorrect, and the application was, in fact, acting incorrectly on

node 2.

With this type of analysis, there are bugs that CAT captures that, otherwise, we were unable

to. This comes with this great benefit but also with more overhead because we not only have no
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Figure 3.13: Context-based (a) vs Content-aware (b) tracing example. [38]

analyze the context, which is normally a few arguments (file descriptor arguments, IP, port, and

others), but now we have to also analyze the content that can be small or huge, depending on

the message size.

Other state-of-the-art tracing approaches either take an intrusive approach, where it requires

the source code or binary instrumentation [65, 66, 67], using tools such as Intel PIN [31], or

they only consider the requests context [68, 69, 70]. The problem with these approaches is that

these systems are extremely complex, and understanding the source code and where to tackle

the problem is a notoriously complex task in distributed systems. CAT defends that a black-box

approach enables CAT to be application-agnostic, thus being more flexible to different developers

and engineers.

On top of being a black-box approach and also analyzing the content instead of only the

context, CAT also innovates by creating an algorithm that evaluates if the content is correct and,

if not, how much is incorrect. This is a crucial aspect to improve tracing tools in the research

community. However, it is not fundamental to explore in detail in this particular thesis document

because we do not consider it directly relevant to the theme, thus being quickly mentioned.

Instead, we focus on the black-box approach (to be application-agnostic), the Linux kernel tracing

tools, and how they used them to enable this black-box property, and their respective results.

How can CAT capture/trace the system’s events in a non-intrusive way? There is a panoply

of Linux tracing tools such as Ftrace, LTTng, eBPF, SystemTap, Strace, and more to trace the

system in a non-intrusive way. Due to the capability of tracing system calls, Linux kernel and

userspace function calls, CAT focused on eBPF (CatBpf) and Strace (CatStrace). They further

tested these two tools with two Big Data systems, Tensorflow [71] and Apache Hadoop [72].

The eBPF Linux kernel tool enables the dynamic insertion of code to the Linux Kernel without

having to change the kernel or load the modules. eBPF is further explained in Section 2.2.

Strace is a Unix command-line tool that captures the system calls issued by a process. Strace

stops the target process when entering or exiting a system call, allowing Strace to capture the

program information.
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By analyzing the results, they concluded that CatBpf imposed significant lower performance

and storage overhead but lost a considerable amount of events, being better than CatStrace on

a production setup. However, CatStrace had a better performance when collecting the events

because it got them all. For our ReFI particular case, since we do not gain much from analyzing

the content, eBPF was a trivial choice. eBPF also enables the modification of logic in the kernel

to implement fault injection and not only tracing. The Strace tool would be an excellent fit for

more critical distributed system applications since they are more confident in capturing all the

events.

In conclusion, CAT is highly efficient (negligible overhead) at tracing the context and the

content of I/O messages in a black-box approach. The Linux kernel tracing tools used were

eBPF and Strace, where both showed a negligible overhead. eBPF surpassed Strace because it

showed better performance (time and storage), and it had a better functionality, even tho Strace

had no events lost, and eBPF had. eBPF can inject code into the kernel, userspace and system

calls, where Strace can only show the context and content of each call and not modify the logic.

This makes eBPF good to inject faults into the system too, and not only trace it. CAT also

analyzes the content due to a complex algorithm developed by the authors to help understand

the problems that may surge.

3.3 Bug Analysis

State-of-the-art fault injection approaches usually follow two strategies when it comes to bug

analysis. They either try to replicate bugs that are already documented, such as B3 [17] or they

try to find specific types of bugs, such as FCatch with TOF bugs [15].

The primary goal of this dissertation is to create a reproducible fault injection framework

and not to find new bugs. Thus, we followed the first approach, replicating already documented

bugs.

In this section, we will explore two research studies on the analysis of distributed system

bugs. We will start with Jepsen [25], a project and a framework that finds and documents new

bugs for production distributed systems, such as MongoDB [53], Redis [52], PostgreSQL [73], and

many more. Then we will look at Alfatafta et al. [39] study, which shows us that partial network

partition bugs in distributed systems are more frequent than we may think. Astonishingly, they

are easy to replicate by only needing 3 to 5 nodes and a few operations.
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3.3.1 Jepsen

Jepsen [25] is a framework that utilizes fault injection mechanisms to verify the properties and

specifications claimed by distributed applications such as MongoDB, Redis, PostgreSQL, Cas-

sandra, and many others.

Jepsen first replicates the environment of the distributed application by creating a set of

distributed nodes. To set up these nodes, Jepsen offers several options to set up these nodes,

such as Docker [74] and AWS [75]. Then, after the setup is ready and the system starts, a control

node is used to coordinate the tests. The tests are generated and each client node executes the

operations in the correct order coordinated by a clock synchronization from the control node.

All operations are saved to generate a history that is analyzed at the end of each testing process.

While these tests are running, a special process injects faults into the system that were scheduled

at the generation of the tests. These faults can be, for example, partitioning of the network that

connects the nodes, crashing nodes, etc.

When the tests are completed, Jepsen generates reports and graphs of availability and per-

formance to help the developers analyze the history for correctness. This verification process is

not automated since developers need to check and understand the results, making this process

slow.

A complete analysis of the distributed system, like MongoDB distributed database, can take

months to be completed due to its difficulty and the necessity of having a specialized under-

standing of the system. Engineers need to understand the system model, find ways to break it,

using the Jepsen framework, and then analyze if it caused a bug. This is an extense and long

process for engineers and developers.

Nevertheless, they publicly show the results gathered by testing different distributed systems

such as MongoDB, PostgreSQL, etcd, and Redis, which helps production distributed systems

correct major bugs. On top of this, it enables fault injection frameworks, like ReFI, to focus

on testing specific distributed systems bugs instead of having to find complex and difficult bugs

throughout the exponential space of possible bugs.

3.3.2 Partial Network Partitioning

Alfatafta et al. [39], conducted a comprehensive study on partial network partitions. They found

51 failures in 12 popular distributed systems, where 39 were catastrophic failures (e.g., data loss

and system unavailability) that easily manifest. All the mentioned failures are caused only by

partially partitioning a single node.

A partial network partition is a specific type of network partition where a group of nodes can
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Figure 3.14: Example of a partial network partition where groups 1 and 2 are disconnected but
group 3 can communicate with group 1 and 2. [39]

not communicate between another group of nodes but can communicate with other groups. In

Fig. 3.14, we can see a simple example of a partial network partition on a three-group system.

This study has three key goals. The first goal is to find and study failures mentioned in the

issue websites of the twelve popular systems (Elasticsearch [76], MongoDB [53], RabbitMQ [77],

MapReduce [72], HBase [78], Mesos [79], HDFS [72], Ceph [80], MooseFS [81], Kafka [82], Ac-

tiveMQ [83], and DKron [84]) to improve systems’ resiliency to this specific type of fault. The

second goal is to dissect fault tolerance techniques in these popular systems and identify their

disadvantages. The third goal is to design a generic tolerance technique to improve the system

for partial network partitioning.

In this section, we will only focus on the first goal because it is the one that is essential for

this dissertation. We only need to understand the impact of these faults in distributed systems,

how can we replicate them, and their characteristics. The other two goals focus on improving

the systems via a generic tolerance technique, called Nifty, which is out of the scope of this work

since we are focusing on fault injection with ReFI.

The impact of more than 74% (39 in 51) of the failures is catastrophic. Once more, this

shows how vital these types of studies are and the importance of creating fault injection frame-

works to try to catch these critical failures.

On top of being catastrophic, these failures are easy to manifest because the majority of

them require less than four events (e.g., reads and writes) to occur and less than five nodes.

Furthermore, all the failures studied are triggered by partially partitioning a single node.

Although the authors mention these 51 failures, they do not present nor document all of them

in their article. However, they provide the link for the bug report and we can access them (e.g.,

3 MongoDB and 7 ElasticSearch [76] failures). Given this, we could replicate some of them in

ReFI, showed in the results section.

Alfatafta study enables us to focus on the more essential aspects of this work by efficiently

documenting the catastrophic bugs they found, how they can be replicated, and their impact on

the systems. These documented bugs are a critical part of testing the tool’s reliability. If the
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tool can quickly reproduce these bugs, we can confidently affirm that the tool is working for that

specific scenario.

3.4 Discussion

Table 3.1 places our framework, ReFI, in comparison with state-of-the-art fault injection tools,

frameworks, prototypes, and their ideas. These approaches use the mechanism of injecting faults

in distributed systems to test their robustness and discover bugs that cause catastrophic failures,

such as irreversible data loss or corruption and system unavailability.

To inject faults into various systems in a scalable way (automatic and fast), a tool should

have a minimal learning curve and reduce modifications for each different system. A black-box

approach does not depend on the system. Therefore, it is amenable to achieve these objectives

as the programmer only needs minimal knowledge to understand the system and its model and

does not need to modify depending on what system is testing.

A framework is application agnostic when it does not depend on a specific application type.

FCatch, B3, and PACE are not application agnostic because they are specially made for file-

system applications. These frameworks are also made to catch specific bugs such as TOF bugs,

crash-consistency bugs, and correlated crash-consistency bugs, respectively. ReFI follows the

idea of Faultsee where it uses a configuration file to specify the experiment that transverse to

different distributed systems, thus accomplishing the goal of being application agnostic.

The reproducibility of an experiment is fundamental when we want to have a standard way

of evaluating different systems and comparing these evaluations. One of the main goals of our

system ReFI is to accomplish this task utilizing a black-box approach that aims to correlate

the internal state of a system with an observable external state allowing for systematic repro-

ducibility of an experiment. B3, although it is a black-box approach and can reproduce the tests

through different file-systems, it misses the scalability factor and ability to test systems other

than file-systems. Reproducibility is the major downside of Chaos Engineering since develop-

ers need to understand the system model in depth to identify the bug. Reproducibility is the

major improvement that ReFI accomplishes from the state-of-the-art frameworks such as Chaos

Engineering, FCatch and PACE.

Elle uses tests based on specific workloads. However, they are not reproducible since we can

input these workloads and obtain different behaviours due to the non-deterministic nature of

distributed systems. However, these workloads are public and are reusable to try to reproduce

these bugs. By doing this in a transparent way, the community of distributed systems can only

improve the reliability of their systems.
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To have reproducible experiments, we decided to trace and collect a distributed system state.

For this, we analyzed CAT’s work where they used two tools, eBPF and Strace, to trace and

collect the content and context of system I/O requests. From their results, eBPF was better

suitable to our needs because it yielded better overall performance (time overhead, memory and

storage) than Strace. Also, the advantage of Strace over eBPF was that it lost fewer events

and performed better when collecting the content. Since tracing the context is enough to obtain

a usable system state, the system calls content, and the loss of events was not critical to our

solution.

eBPF had a more general technology where we could trace the system calls and change the

logic of those methods without changing the Linux kernel. This is particularly useful for ReFI

because we intend to inject faults and collect a usable state.

After understanding the state-of-the-art Linux kernel tracing tools, it was essential to analyze

known system bugs. For this, we studied Jepsen, a framework with several documented bugs

for different distributed systems, where we concluded that they had two great experiments. One

for MongoDB and another for Redis that are described in the evaluation Section 5.3. We also

studied partial network partitions issues from the research of Alfatafta et al. [39]. We understood

how to replicate specific bugs from these two works and, with ReFI, we could make them 100%

reproducible.

In the next chapter, we present the implementation of ReFI. ReFI is a Reproducible Fault

Injection framework that improves state-of-the-art fault injection approaches shown in Table 3.1.

We also discuss the key ideas to address the above challenges based on the related work and

further research. Finally, how we attacked these difficult and complex challenges and why we

choose some solutions over others.

Fault-free
Run

Black-Box
Approach

Application
Agnostic

Different
Bugs

Reproducible

Chaos
Engineering

7 3 3 3 7

FCatch 3 7 7 7 7

B3 3 3 7 7 3

PACE 3 7 7 7 7

LDFI 3 7 3 3 3

Faultsee 7 3 3 7 3

Elle 7 3 3 3 7

ReFI 3 3 3 3 3

Table 3.1: Comparison between state-of-the-art fault injection approaches and ReFI.
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Chapter 4

ReFI

In this chapter, we will briefly recap the objectives of this dissertation and how they correlate

to the implementation of ReFI. We will describe ReFI’s architecture, its components and how

they correlated with each other and ReFI’s goals in a high-level top-down fashion. We will

discuss how we divided the problem into modules and critical decisions on each of these modules.

Furthermore, we will tackle how we obtained a usable state of the system to base our fault

injection. Finally, we will explain how we create experiments for ReFI using a configuration

language.

As indicated earlier, the objective of this dissertation is to surpass the state-of-the-art in the

following four essential aspects.

1. Reproducibility of fault injection

2. Treat the application as a black-box

3. Efficiently perform tracing and fault injection

4. Extendability to various system calls and Flexibility for different distributed systems

How does ReFI enable reproducible fault injection?

ReFI reproducibility is built on the concept that if we base a fault on the system state, instead

of based on time or random injection (as state-of-the-art fault injection approaches discussed in

Section 3 do), ReFI can reproduce these faults. Thus, to have reproducible faults, we need to

collect a system state.

Collecting a system state is a challenging task in distributed systems due to their non-

deterministic nature and complex architecture often composed of several different services. In

some cases, it is even impossible for the state to always be coherent between all nodes. So, we

had to make a few adjustments discussed in subsequent sections of this implementation chapter.
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How does ReFI treat the application as a black-box?

ReFI makes use of the Linux kernel tracing tools. In particular, ReFI uses eBPF to trace,

collect, analyze, and even change the logic of the system calls that the application does to the

kernel. ReFI accomplishes this without having to either instrumentate the code of the distributed

system or understand the algorithms of the system.

How does ReFI efficiently trace and inject faults into the application?

ReFI utilizes the eBPF technology that adds minimal overhead to the application. eBPF can

trace almost all system calls, such as storage calls, network calls, and much more. However, why

is eBPF so efficient? One of the reasons is that eBPF programs have a zero-overhead when not

in use [30] and minimal (nanoseconds) overhead for each program’s execution because they run

on top of the already built kernel infrastructure.

How does ReFI extend to various system calls and I/O requests?

ReFI was built in a way that we can add an eBPF program for each new system call and

I/O request. Thus, enabling the addition of more submodules to trace other requests of the

distributed system. We explain in detail the specific details of the extendability.

How does ReFI can be flexible to support different distributed systems?

ReFI is guided by a configuration file. The configuration file specifies the distributed system

nodes and the faults to be injected, depending on the state. Since ReFI treats the application as

a black-box, we can apply the same structure and reasoning to other applications. The meaning

of the state may vary, and engineers need to understand how they can take a viable state from

the tested distributed system.

The eBPF technology helps us accomplish the goals that we have. The complex part is

the interconnection of all these goals into an efficient and coherent tool. For that, we have a

particular module, called Orchestrator that coordinates all the modules of the tool.

It is essential to highlight that some of these objectives are interconnected. By having a tool

that treats distributed applications as a black-box, we can accomplish the objective of being

flexible to different distributed systems with more ease since we do not need to comprehend

details of these distributed systems with the granularity of the engineers that developed it. Also,

we can extend to various system calls because we treat it as a black-box.

The following sections will describe the architecture of ReFI and how we divided and con-

quered this complex problem into three modules. A Tracing Module (TM) that handles the

tracing of the state of the application. A Fault Injection Module (FIM) that handles the in-

jection of faults using the state collected by the TM. An Orchestrator that facilitates all the

communication between the TM and the FIM and manages the observed system state, and
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the initiation of the tool, including the TM and FIM. Finally, we will explain how to create

experiments with ReFI using the configuration file.

4.1 Architecture

ReFI intends to accomplish its objectives by dividing the architecture into simpler modules that

compose ReFI. As depicted in Fig. 4.1, we can delimitate three core components. The Tracing

Module (TM), the Fault Injection Module (FIM) and the Orchestrator. Each of these modules

has a particular goal.

The architecture of ReFI can also be divided by user space and Linux kernel space. This

division facilitates the understanding of the user and the implementation.

Figure 4.1: ReFI architecture (in green) incorporated with a black-box application. The applica-
tion is issuing syscalls that are handled by the Linux kernel. The TM (in blue), intercept these
syscalls to trace the state. The Orchestrator synchronizes the state between the TM and the
FIM (in red) to enable reproducible fault injection experiments.

TheTracing Module (TM) has the goal of deriving information of the application by tracing

and profiling its behaviour. TM is composed of several eBPF programs that intercept and inject

code into specific syscalls. TM collects information about networking, Virtual File-System, and

general information deduced by system calls and I/O. In particular, the TM collects TCP and

UDP socket details (ipv4 or ipv6 protocols), uses XDP (eXpress Data Path), a low-level eBPF

framework, to monitor and filter packets, and inspects the VFS (Virtual File System) most used

syscalls (e.g., write and read). This critical information is passed through the Orchestrator which
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uses it to create a usable state. In the Tracing Module subsection, we will discuss in more depth

the collected state.

The Fault Injection Module (FIM) has the goal of injecting faults into the application. The

faults are predefined before the experiment begins via the configuration file. At the beginning

of the experiment, we already know when and what type of faults will be injected into the

application in a specific state.

The Orchestrator collects the information from the TM and creates a state that is used to

precisely notify the FIM that a fault is to be injected. It also parses the configuration file that

possesses the information about the distributed application and the faults that will be injected.

The Orchestrator manages the state by modifying it and, when needed, informing the other two

modules, TM and FIM, of these changes when necessary. The user of the ReFI tool receives

information about the experiment via the Orchestrator.

The configuration file has a crucial role in the design and architecture of ReFI. It enables

ReFI to be flexible in a different distributed system by specifying the nodes that compose the

distributed system and specifying different fault patterns to test the robustness and resilience of

those systems.

Throughout the development and implementation of ReFI, we found challenging problems,

such as coordinating different information of the TM to create a state. eBPF intrinsically came

with several challenges. eBPF is a relatively recent technology that is constantly changing,

creating unstable documentation. This caused compatibility problems and developing changes

due to recent advancements throughout the implementation of ReFI.

Another challenge is with having several eBPF programs on the TM and on the FIM. Coor-

dination and communication between these programs needed to be efficient. This was one of the

main reasons we created the Orchestrator, to facilitate this coordination between modules, state,

and configuration. Even when we have an excellent performance in the eBPF programs, the

response time of each program might add a significant impact on the overhead of the framework.

By making ReFI a modular framework and dividing it into modules and submodules, we

gained indispensable advantages. In the TM, having several eBPF programs, allows each program

to have a specific function in the overall system. We can extend our TM submodules to have

more tracing syscalls making ReFI an extendable framework. In the FIM, we can add different

fault patterns, e.g., adding rules for packet filtering.

The following sections will explain how we overcame these challenges, how these decisions

improved ReFI, and a more detailed explanation on the implementation of the Core Modules

(TM, FIM, and Orchestrator) and the tools around it (configuration file).
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4.2 Tracing Module

This section will describe the objective of the Tracing Module (TM) and how it correlates with

the objectives of ReFI. We will explain what information is crucial to trace and profile, why

it is crucial and how we obtain it. We discuss how the TM is extendable to different syscalls

and flexible to other distributed systems. We will understand the division in submodules, where

each traces a specific syscall and collect information from it in a black-box manner using eBPF.

Finally, we will see how the TM coordinates and communicates with the Orchestrator via events

and eBPF maps. We will continuously explain how TM helps accomplish the four ReFI objectives

(reproducibility, black-box, efficiency, flexible and extendable).

The main objective of TM is to derive information about the distributed application by

tracing and profiling its behaviour in a black-box manner.

What information do we need to create a usable state? (1) To answer this question, we first

need to answer another fundamental question.

What type of faults do we want to inject? (2) In fact, our objective is for ReFI to inject all

different fault types and patterns. Unfortunately, this is an impracticable objective due to the

exponential space of faults to inject. Nevertheless, we implemented the TM in an extendable way

to enable all types of faults in the future and flexible to be used in different systems. Throughout

the development of ReFI, we studied at least 25 different issues in different distributed systems.

In Section 3.3, we describe the leading research where we discussed Jepsen [25], and Alfatafta

et al. [39] article on generic fault tolerance. We decided to focus on network and storage bugs

because they were the most frequent issues in these reviews. Later, we created specific experi-

ments in these areas, described in more detail in Section 5.3. To answer question (2), we wanted

to inject all types of faults, such as faults that perturb the storage system and the file system.

However, since this is a challenging and impracticable objective, we focused on a more narrow

space of networking and storage faults but always enabling the extension to other types of faults.

An example of a network fault is a network partition, where we, partially or completely, isolate

a group of nodes from another group by disabling their communication via the network.

Now, we can answer question (1). Since we want to inject networking and storage faults,

we need to trace network and storage information outputted from the distributed system. To

accomplish this in an extendable way, we subdivided the TM into submodules.

Fig. 4.2 shows the general implementation of a submodule of TM. Each submodule is an

eBPF program for each important syscalls. We can see three submodules. Packet filter, socket

and VFS. We can also notice that the packet filter and the socket submodule are in a group of

networking. The networking group means that the submodules collect information about the
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Figure 4.2: ReFI TM is composed by several tracing eBPF programs that have a corresponding
event handler in the Orchestrator. The events are filtered in the eBPF program, leaving no
overhead for the Orchestrator, when the event is not useful.

network.

The concept of syscall, throughout this document, is defined broadly. When we talk about

syscalls, we mean all the following kernel and user space probes: kprobes, kretprobes, tracepoints,

uprobes, uretprobes, USDT probes, raw tracepoints, kfuncs, kretfuncs, lsm probes, bpf iterators,

and more. This simplification was made to facilitate the reading and explanation of ReFI at a

higher level.

To build these submodules, we analyzed the already built-in eBPF tools that can be found

on their open-source project, IOvisor [85]. From this, we based our infrastructure on two tools,

where only the syscall names and the skeleton were used.

In more detail, we first developed these tools using BCC, an eBPF project that uses Python

as the frontend and facilitates the development of eBPF tools by hiding infrastructure imple-

mentation. Soon, we realized that this was not efficient enough and started searching for more

efficient options. We discovered libbpf-bootstrap [86], used by Facebook’s kernel engineers and

changed our stack to it. This change enabled us to divide the eBPF program into two compo-

nents: kernel and user space. It also allowed us from using C instead of Python, which is much

more efficient.

Each eBPF process comprises an eBPF program (kernel space program) and the frontend

(user space program) that is stored in the Orchestrator.

The eBPF program contains the code that is running in the kernel, and it has unique security

requirements, e.g., not extending beyond a specific size and disabling all loops to avoid infinite

loops that could crash the kernel. Because of these requirements, it follows a specific open, load,

and attach protocol.

The frontend sets up the eBPF program as well as create a direct communication channel
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Figure 4.3: ReFI TM communicates via an BPF ringbuf with events and via eBPF maps.

for the events and access to the eBPF maps.

In the kernel space (TM), eBPF program implements the following aspects:

1. Initializes the eBPF maps

2. For each syscall/event:

(a) Filters the syscalls by PID (Process Identifier)

(b) Creates the event data structure with the information from the syscall

(c) Sends the event to the frontend, located in the Orchestrator

In the user space (Orchestrator), the frontend implements the following aspects:

1. Opens the eBPF program

2. Loads the eBPF program by checking with the compiler for errors

3. Attaches the eBPF program in the kernel space and checks for correctness

4. Waits, without blocking, for events

5. Accesses the eBPF maps for information

In Fig. 4.3 we can see that the eBPF programs have two types of data structures to receive

information and data. These types are events and eBPF maps. eBPF is an event-driven technol-

ogy, and each specific syscall represents an event caught in the eBPF program. After catching

a syscall, the eBPF program creates an event data structure sent to the front end via a direct

communication channel.

There are two types of channels, BPF ringbuf and BPF perfbuf [87]. We decided to use

BPF ringbuf because it is more recent and modern as well as has the most crucial features of

BPF perfbuf, namely enabling variable-length data records, and efficiently reading data from

user space. It also improves several BPF perfbuf issues such as better performance, better

applicability, and less memory overhead.
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However, ringbuf and perbuf are both unidirectional communication channels. Thus, we need

them for an efficient way to treat millions of syscalls, but we also need a way to bidirectionally

communicate between the frontend and eBPF program. eBPF maps are the solution. They are

key-value data structures, similar to the general concept of maps that can be accessed on both

sides.

TM collects information about networking, Virtual File-System, and general information de-

duced by system calls and I/O. In particular, the TM collects TCP and UDP socket details, using

a security socket syscall, and inspects the VFS (Virtual File System) most used syscalls (write,

read, open, fsync, and create). This critical information is passed through the Orchestrator that

uses it to create a usable state. In Section 4.4, we will discuss in more detail the usable state.

In the TM, we have a special submodule that is not divided into two spaces, the Packet Filter

submodule. The Packet Filter submodule is based on a technology called XDP (eXpress Data

Path). XDP is a low-level eBPF framework, to monitor and filter packets, that enables eBPF

applications to perform high-speed packet processing. XDP enables faster response to network

operations because it runs a BPF program immediately as a packet is received by the network

interface. This program is attached to the virtual network device thus, not needing the kernel

space program. However, the Orchestrator opens, loads and attaches it to the virtual device.

The infrastructure of the XDP program is more complex than the other two submodules,

and it requires more setup and libraries. However, this comes with the great advantage of being

extremely efficient since it runs the program at a lower level immediately as the packet is received.

With the power of filtering packets and collecting their information, we can also use the XDP

framework to precisely inject faults into the system, based on the source IP and destination IP

of the packets, as we will discuss in more detail in Section 4.3.

An example of data that the TM sends via events is, in the networking submodule, the IP

address, the family (ipv4 or ipv6), the protocol (UDP or TCP), the ports, and more. We use

eBPF maps for the rules of the XDP submodule because the eBPF program needs to access

them, and they are changed via the frontend in the Orchestrator.

It is important to note that an extremely small and not significant amount of events can be

lost. However, the faults injected have enough flexibility to this event loss and it does not affect

the tool and the bugs caught.

In conclusion, we saw how the TM could be extendable for different syscalls, using the

submodules, and flexible to different systems by using a general, black-box manner to extract

information. This information is transmitted to the Orchestrator via events and eBPF maps.

We also discussed why division into two programs is crucial for the submodules. We tackled the
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improvements in the efficiency of the TM. In the following Section 4.3, we will discuss how can

we inject faults using the traced information from TM.

4.3 Fault Injection Module

This section will describe the objective of the Fault Injection Module (FIM) and how it satisfies

ReFI’s objectives. We will recapitulate what types of faults ReFI intends to inject. We will

explain why we affirm that these faults are reproducible. We will discuss how we implemented

and improved the performance of injecting faults compared to state-of-the-art fault injection

mechanisms.

FIM’s objective is to inject reproducible faults into the distributed system. The FIM

injects a fault after receiving the order from the Orchestrator, which is the module that manages

the state. These faults are reproducible because they are injected based on the system state

as we show later in the experimental evaluation. Throughout this section, we will abstract

the implementation of the Orchestrator and how it manages the state because, in the next

Section 4.4, we will explain this topic in more detail. With this abstraction in mind, we will

focus on explaining the FIM.

As discussed in Section 4.2, although the goal of ReFI is to inject various types of faults, due

to its impracticability, we narrowed these to two types: network and storage faults. However,

ReFI can be extended to several types of faults, in the future, because of its implementation in

submodules.

How does the FIM implement fault injection? In the FIM, we implemented two ways of

injecting faults into distributed systems:

1. XDP (packet filter)

2. override the return of the syscalls

XDP

How did we utilize XDP to inject faults into the distributed system?

We used a concept of rules, similar to the idea of firewall rules, where each rule enable

or disable unidirectional filtering of packets between two nodes. For example, we can have a

system with three nodes (A, B and C) and a network that connects each node. We can add

a unidirectional rule to filter out the packets from A to B and another for B to A, creating a

partial network partition between nodes A and B.

43



1 ...
2

3 #pragma clang loop unroll(full) // eBPF flag to enable loops by unrolling them
4 for (__u32 i = 0; i < MAX_RULES; i++) { // at most MAX_RULES iterations
5 __u32 key = i;
6

7 value = bpf_map_lookup_elem (&rules_map , &key);
8 if (value) {
9 if (value ->src_ip == 0) { // to avoid looping an empty array , since the

loop must be static and not dynamic
10 break;
11 }
12 if (src_ip == value ->src_ip && dest_ip == value ->dest_ip) {
13 return XDP_DROP;
14 }
15 }
16 }
17

18 return XDP_PASS;

Listing 4.1: Loop through the XDP rules

The XDP rules are implemented by attaching the eBPF program to a Virtual Ethernet

Device, also known as veth. Each node of the distributed system has its own veth that handles

the network communication. By adding a rule to a specific veth, we can enable or disable the

communication between the node with that veth and other nodes. We use this to create partial

and complete network partitions.

How can we specify these rules in the kernel side from the user side (frontend)?

We use the bidirectional way of communicating between kernel and user side, eBPF maps.

The Orchestrator creates an eBPF map at the start of the execution of ReFI. Both the kernel and

user sides possess a reference to this map, but only the user side attaches rules. The kernel side

only has to loop through the rules to filter specific packets. However, this is a challenging task

for eBPF since it does not enable dynamic loops because it may cause security vulnerabilities

such as infinite loops that crash the kernel.

How did ReFI surpass the challenge of eBPF not enabling dynamic loops?

We used static loops with a specific compiler flag for eBPF. In Listing 4.1, we can observe a

few critical changes. First, in line 3, we see the flag enabling the compiler to unroll the loop fully.

This flag not only allows the usage of static loops in eBPF but also improves its performance

by skipping a few JUMP instructions. This performance gain is critical since we are filtering

a considerable amount of packets each second. Line 4 indicates that we can attach at most

MAX_RULES, making it a static loop. Then we have another performance gain, in lines 9 and

10, where we break when the rules are empty. To conclude, lines 13 and 18 show how simple it

is to drop or pass packets, respectively, using XDP. These are called XDP actions [88] and can

be XDP_PASS, XDP_DROP, XDP_TX and XDP_ABORTED.
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Override return

The override approach uses the method bpf_override_return [89], a specific method from the

eBPF debugging methods described in eBPF BCC Reference guide [90].

When used in an eBPF program attached to a syscall, it causes the syscall execution to be

skipped, immediately returning an error value instead, which is passed as an argument to the

method. Immediately returning means that the usual logic of the syscall is not executed, thus

being extremely useful and can be used for fault injection. For example, if we are profiling the

syscall __x64_sys_write, which is typically used to write in the VFS, we can change the return

value to an error value (e.g., -1) and simulate a fault in this syscall.

bpf_override_return, by default, only works to a certain subset of syscalls. In the official

Linux man-page [91], we can find the subset list of syscalls. However, the probed function can

be whitelisted to allow error injections. Whitelisting entails tagging a function with the tag

ALLOW_ERROR_INJECTION in the kernel source tree. By changing the Linux kernel to add this

tag, we would be losing the advantage of using eBPF. With eBPF, we can add logic to the Linux

kernel syscalls without changing the kernel itself. When adding this tag, we would lose this

great advantage, and every time a final user wanted to enable a new type of fault injection, the

kernel had to be changed. On top of this, some syscalls, even with the tag, do not enable this

for security reasons. Adding this tag to every probe is not feasible because it would be quite

demanding and lose the objective of ReFI being a flexible tool.

In Listing 4.2, we can see a method used in the FIM, where we first filter the syscalls by PID,

equal to what we do in the TM. Then, with a certain probability, we override the syscall return

in lines 15 and 23 hence simulating a fault.

The XDP approach is more specific than the override of the return approach because it only

works for packet filtering. In contrast, the override approach applies to the syscalls, thus being

more general. Throughout the development of these two approaches, we inject faults into the

sockets syscalls to create network partitions. The XDP approach, in this specific case of network

faults, yields better performance results, although the implementation was more complex and

challenging due to all the dependencies and learning curve that XDP has.

The state-of-the-art approaches to fault injection, such as Jepsen, used the IPTABLES com-

mand to inject network faults into distributed systems. The XDP surpasses the IPTABLES in

performance. The learning curve of XDP is higher than the IPTABLES, i.e., XDP is harder to

implement at the beginning, but in the long run, it is easier to adjust the rules compared with

IPTABLES.

In conclusion, we saw how the FIM implements the fault injection using XDP and the override
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1 static __always_inline
2 int fault_injection(struct pt_regs *ctx)
3 {
4 int err;
5

6 if(! filter_pids ()) {
7 return 0;
8 }
9

10 if(probability == 100) {
11 err = send_event ();
12 if(err) {
13 return -1;
14 }
15 bpf_override_return(ctx , -1);
16 }
17 else {
18 if(bpf_get_prandom_u32 () < MAX_INT /100* probability) {
19 err = send_event ();
20 if(err) {
21 return -1;
22 }
23 bpf_override_return(ctx , -1);
24 }
25 }
26

27 return 0;
28 }

Listing 4.2: Usage of the bpf_override_return

of the return. XDP has a better efficiency in the exchange of a steep learning curve. We

accomplish reproducible faults by receiving an event from the Orchestrator to inject a fault. We

inject faults without understanding the code of the distributed system application, making it

a black-box manner to inject faults. We also discussed performance gain over the state-of-the-

art approach, IPTABLES. In the next section, we will discuss how can we manage the state and

coordinate the TM with the FIM.

4.4 Orchestrator

This section will describe the objective of the Orchestrator and how it satisfies ReFI’s goals. We

will follow the flow of the execution of the Orchestrator. First, we will discuss the initialization

of the configuration variables by describing the configuration file template and the configuration

submodule. Second, we will discuss how the Orchestrator manages all the frontend (user side)

of the eBPF programs. We also present, to the final user, the logs from the TM and how it gets

notified of the attached and detach faults from the FIM. We will then discuss how it creates and

manages the state. Third, we will see how it coordinates the state to send an event to the FIM

to inject reproducible faults.

TheOrchestrator goal is to initiate, coordinate and manage the flow of the ReFI tool and its

main modules, the Tracing Module and Fault Injection Module. Fig. 4.4 shows the design of the

Orchestrator module and its components. These components are the configuration submodule,
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Figure 4.4: ReFI Orchestrator is composed by the configuration submodule, the tracing frontend,
the fault trigger, and the state manager.

1 # configs/template.yaml
2

3 system : mongo
4 docker_amount : 3
5 docker_name : mongo0
6 docker_name : mongo1
7 docker_name : mongo2
8 [primary_index : 0]
9

10 fault :
11 - begin_state : 10
12 end_state : 50
13 rules :
14 - src_ip : mongo0_IP
15 dest_ip : mongo1_IP
16 - src_ip : mongo1_IP
17 dest_ip : mongo0_IP
18 [- isolate : primary]

Listing 4.3: The template of the configuration file. The lines with [] are optional lines.

the submodules management (tracing frontend and fault trigger), and the state manager. We

can also see that the Orchestrator communicates with the TM in a unidirectional channel and

with the FIM in a bidirectional channel.

4.4.1 Configuration submodule

The configuration file template describes the basic information of the distributed system

configuration. The configuration file is described using the YAML language because it showed

to be simple to write, read and understand its content. In our experiments, we used Docker [74],

more specifically Docker Compose [92], because it would facilitate the deployment of several

distributed systems with different properties in a testing environment. Since the injection of

faults can critically fail distributed systems with no comeback, Docker also enabled us to quickly

destroy and rebuild the distributed system into a similar initial state. With this, we had extreme

flexibility to quickly test different environments by simply modifying a Dockerfile and using
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Docker Compose.

The scenario described in the Listing 4.3 is only used for explaining purposes. Briefly, it

describes a MongoDB distributed system with three nodes and it injects one fault. In Chapter 5,

we demonstrate specific examples of configuration files that were used in the experiments made

with ReFI.

In Listing 4.3, we define several fundamental constants used in the flow of ReFI. First, the

system type change how we collect the state for each system. Secondly, the amount and the

names of the containers. Thirdly, the faults, where we specify the initial and final state and

what are the fault rules. As a quick recap from Section 4.3, these rules are unidirectional rules

similar to firewall rules, where we specify the source and destination IP we want to disable

communications.

The docker_amount is a configuration variable that stores the number of nodes that compose

the distributed system. This constant is useful because we are using C as our main language

for the development and implementation of ReFI. In C, although there are workarounds for this

problem, such as dynamically allocating memory to the vectors, this simple configuration variable

facilitates the implementation of several aspects of the ReFI, such as the creation of vectors and

specify the number of iterations in loops.

The docker_name are a sequence of variables that are stored to obtain variables from it. For

example, from the name of the container, we can deduct their IP and their veth name (used for

XDP attachment). These are crucial variables that we indirectly deduct from the configuration

file.

The fault is composed by a begin_state and an end_state, and a set of rules to enable a

partial network partition. Looking into the specific Listing 4.3, we will inject a network partition

fault in the state 10 and heal the partition in the state 50, and the network partition partially

isolates the mongo0 from mongo1, and vice-versa. In Fig. 4.5, we can see a sketch of how the fault

would work based on this configuration file template.

There are two optional properties that can be added to the YAML configuration file. The

first is the primary_index property and the second is the isolate property.

The primary_index property enables the Orchestrator to know, beforehand, which of the

nodes is the leader. Of course, this is only useful in distributed systems that utilize leaders

to manage the system. For the specific case of MongoDB, we created a Python script that

automatically discovered the leader node.

The other optional property is in the fault section called isolate. This fault property is, again,

specific for distributed systems that have a primary/leader. The isolate specifies a specific group
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Figure 4.5: Representation of the experiment that the configuration file template describes. The
green downwards arrow means that the network is working and the red cross means it is not
working. ((P)-Primary, (S)-Secondary, (A)-Arbiter)

of rules and facilitates the reading and writing of the configuration file. In Fig. 4.5, if we wanted

to isolate the primary from all the nodes, we would have to make two rules per node, excluding

the primary, i.e., four rules. With this optional property, we simply use one rule to specify that

we want to isolate the primary. This facilitates fault specification for large systems.

Note that the state shown in the configuration file is not time. We will explain this in detail

in Section 4.4.3.

Note that some of the information described in the configuration file must be known before

the experiments by the user of the ReFI tool, independently of how they fix these values, such

as the names of the containers and their IP’s. For example, in our experiments, we specified the

names and IP’s of the containers in the Dockerfile.

4.4.2 Submodules Management

The Orchestrator is responsible for the initialization of the eBPF code responsible for tracing

and injecting the faults. To be more specific, it is responsible for the following eBPF programs:

a program that traces the network sockets, a program that traces the VFS syscalls and the fault

injection program that overrides the return of the syscalls. The first three programs are from

the tracing frontend and the last program is from the fault trigger.

To initialize these programs, we use three core methods that come from eBPF helper func-

tions: open, load and attach. In Listing 4.4 we can see the frontend (user side) of the VFS

tracing submodule. The open follows the same flow as when opening a file in the Unix system.

Then we can make operations, in these cases, specify the PID of a node of the system or the

probability of the fault to be successful and other variables for the eBPF program. Then, we load

the program into the kernel. When the program is compiled, it is checked for security issues and

other issues. Finally, if it passes all checks, it gets attached to the kernel and now it is running
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1 static struct vfsstat_bpf* vfsstat_open_load_attach ()
2 {
3 int err;
4 /* Load and verify BPF application */
5 vfsstat_skel = vfsstat_bpf__open ();
6 if (! vfsstat_skel) {
7 fprintf(stderr , "Failed to open and load BPF skeleton\n");
8 return NULL;
9 }

10

11 /* Parameterize BPF code with filter PID parameter */
12 vfsstat_skel ->rodata ->filter_pid = env.pid;
13 err = bpf_map__reuse_fd(vfsstat_skel ->maps.rb , bpf_map__fd(tcptop_skel ->maps.rb));
14 if (err) {
15 fprintf(stderr , "Failed to load and verify BPF skeleton\n");
16 goto cleanup;
17 }
18

19 /* Load & verify BPF programs */
20 err = vfsstat_bpf__load(vfsstat_skel);
21 if (err) {
22 fprintf(stderr , "Failed to load and verify BPF skeleton\n");
23 goto cleanup;
24 }
25

26 /* Attach tracepoints */
27 err = vfsstat_bpf__attach(vfsstat_skel);
28 if (err) {
29 fprintf(stderr , "Failed to attach BPF skeleton\n");
30 goto cleanup;
31 }
32

33 return vfsstat_skel;
34

35 cleanup:
36 /* Clean up */
37 vfsstat_bpf__destroy(vfsstat_skel);
38

39 return NULL;
40 }

Listing 4.4: The template of the configuration file

and intercepting the syscalls.

The frontend of the eBPF programs is also composed of the non-blocking waiting for events

that send information from the TM to the Orchestrator. The Orchestrator creates a ring buffer

that is constantly polling, without blocking the execution of ReFI. The polling is done every ten

milliseconds, but it can be adjusted. The smaller the interval, the more CPU overhead it would

take. Thus, ten milliseconds was a middle term between CPU usage and losing events, and hence

precision.

As explained before, the events are not the only way to communicate between the TM and

FIM with the Orchestrator. eBPF maps allow for bidirectional communication. Both sides of

the communication can use them to add, delete and update the key-value data structure.

The information collected from the events and eBPF maps of the TM is then converted into

a usable state. The final user can also turn on the logs for the ReFI, which is useful for seeing

the information being sent from the Orchestrator to the TM, in the beginning, and from the TM

to the Orchestrator, throughout the execution of the program. The logs from the TM consist of
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events, and from the FIM consist of when a fault is injected and healed.

4.4.3 System State

The state of the system can be uni-state or multi-state. A state is described as a uni-state

when it is based on only one type of data that comes from the TM. When the state is based on

a group of data from the TM, it is called a multi-state state.

In ReFI, we collect information about the network through socket communication and in-

formation of the system storage, through VFS syscalls, such as writes, reads, opens, fsyncs and

creates. The usable state depends on this information, but it is different depending on the system

being tested.

Throughout all different experiments made with ReFI, we used different approaches. In the

first approach, we used the communication via sockets to obtain information about the system

state. This turned out to be excellent when evaluating the system state via the client. However,

in a later analysis, we decided to base our state on the nodes of the system to enable more

fault patterns, and there was a lot of communication that did not contribute to the state when

analyzing the nodes communication, such as heartbeats from each server to the leader. To filter

out this useless information, we tried a solution using a multi-state such as the following. When

the system called a socket syscall of type receiving (recv), we would look into the eBPF maps

that contain that information and compare it with the eBPF maps that contain the information

from the VFS. If the VFS map changed too, it would mean that it was a socket syscall that

changed something essential in the system that had to be stored in the VFS. This strategy was

challenging to have low false positives, and it became complex, so we took another approach.

Instead of analyzing both and creating a multi-state, we followed the principle of parsimony,

where we used simple strategies to accomplish our goals. In this matter, if the state depends

on each system, we created a state that fitted our experiments. In our particular case, the

state would increment when we received a message with a specific size, thus filtering out the

unnecessary heartbeat messages that difficult the collection of a usable state.

This state was stored in the execution of the Orchestrator. There are two core methods

- update the state and check the state. When we received an event from the TM, it would

pass through the state updater that would increase the state depending on the information.

If it modified the state, it would then check if the fault injection condition described in the

configuration file was met. If yes, it sends an event for the FIM, and a fault is injected.

In conclusion, we saw how the Orchestrator initializes ReFI using a YAML configuration

file. We saw how the Orchestrator manages the frontend by initializing them with the correct
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arguments. We also described the usable state in more detail, such as uni-state and multi-state

state, and which one we used and when. We presented how we used this state to communicate

to FIM that a fault needs to be injected as well as the logs information.

4.4.4 Summary

The ReFI design takes into consideration ReFI goals. For ReFI to be reproducible, we built the

Orchestrator module that receives data from the TM, creates a usable state, and use it to trigger

the FIM. This enables the injection of faults based on the system state.

The TM collects data in a black-box manner because it only traces syscalls. The implemen-

tation of the TM in submodules that have a specific syscall to trace, enable the extendability

for new submodules to trace new syscalls. The flexibility to use ReFI for different distributed

systems is obtained due to the black-box approach of collecting the data.

Finally, we use eBPF, and its technology, such as XDP, to efficiently trace data and trigger

faults.
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Chapter 5

Evaluation

This chapter describes how we evaluated the ReFI prototype and how this evaluation correlates

with its goals. In a detailed manner, we describe the methodology used to evaluate ReFI and its

modules and how the experiments were created at the beginning of each section. In Section 5.1,

describes the methodology used in our evaluation and a brief background of MongoDB and Redis.

In Section 5.2, we present the results of ReFI’s efficiency. We used three quantitative metrics,

time overhead, throughput, and latency. We also present one qualitative metric, the severity of

the bugs detected, to evaluate the experiments described in Section 5.3. Section 5.3 describes real

experiments that utilize the ReFI prototype and exemplify how ReFI can improve the resilience

and robustness in real modern distributed systems. We perform, from basic to advanced, three

different experiments: Unavailability MongoDB, Data Loss MongoDB and Split-brain Redis.

These three experiments show real use cases and demonstrate how ReFI accomplishes its main

goals. Finally, in Section 5.4 we quickly recap the important aspects, as well as respond to the

three key questions that this chapter intends to fulfil.

The success of ReFI depends on the performance of accomplishing its four key goals. ReFI’s

prototype (1) should be able to inject faults in a reproducible manner, (2) by treating the

application as a black-box, (3) in an efficient way, and (4) it should be flexible to different

distributed systems as well as extendable to different syscalls.

Given these goals, our evaluation intends to answer three key questions:

1. Is ReFI able to reproduce faults?

2. Is ReFI efficient?

3. Is ReFI able to test different distributed systems?

The goal of treating the application as a black-box is already proven in Section 4 since we

explain how the TM module collects information about the application without understanding
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its source code and algorithms. However, we once more architect our evaluation and experiments

to restate that ReFI satisfies its goals.

Question 1 allows us to access how ReFI accomplish the goal of reproducible injection of

faults. To evaluate if ReFI can reproduce the injected fault, we will use a standard approach

on experimental evaluation, which is the repetition of the same experiment several times and

check if the results are identical. Repeating the same experiment several times will accomplish

two essential results. Firstly, it will decrease errors in measuring, a standard procedure in

experimental evaluation. Secondly, it will prove ReFI can reproduce the injected faults based on

the state because the system shows similar behaviour for each execution. The experiments that

inject faults can either produce a bug or not. Regardless of the final result, the experiments will

be repeated for the two reasons explained before. It is important to note that if the injected

fault produces a failure, it is crucial to our work since we intend to discover bugs in applications

to improve their resilience and robustness. Nevertheless, if the fault does not produce a failure,

it could prove that the application is resilient and robust. Thus, fault-free and faulty executions

need to be evaluated several times.

Question 2 intends to prove that ReFI accomplishes its goals in an efficient way. To

evaluate if ReFI is efficient, we measure the overhead of the application with and without ReFI

tracing enabled, with a specific workload, and then compare them. It is expected that the time

without ReFI should always be shorter than the time with ReFI. Nevertheless, this directly shows

the low overhead, thus, the high efficiency of ReFI.

We will evaluate the efficiency of the ReFI framework as a whole but also the efficiency of

the Tracing Module. We predict that the TM will be the component with the highest overhead

as it will be running all the time and filtering millions of syscalls.

Since ReFI’s primary technology is eBPF, programs can be attached and detached to enable

and disable specific tracing tools. As opposed to instrumentation tools, such as PIN [31], eBPF

adds zero-overhead [30] to the application, when not in use, due to its event-based architecture.

The throughput metric will consist of the number of operations executed during an experi-

ment. Since ReFI is a black-box approach, we will measure the throughput through the output

of operations. For example, in a distributed database such as MongoDB [53], the number of

writes and reads that we can execute per minute.

Question 3 demonstrates how ReFI can test different distributed systems. Our experi-

ments carefully test different systems with different requirements to demonstrate the application-

agnostic property that ReFI enables. For this, we developed two experiments in MongoDB and

one in Redis. For ReFI to work with different distributed systems, we only had to create a new
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configuration file for the specific system and change how we managed the state.

The bugs found in the experiments have different severity depending on the impact that they

cause on the distributed system. The severity of a bug can be Minor, when the bug manifests

unexpected or undesired behaviour, but not enough to disrupt system function. Major, when

the bug can collapse large parts of the system. Critical, when the bug can trigger complete

system shutdown.

Since ReFI is a novelty in fault injection approaches because it was created to be reproducible,

it is challenging to analyze and compare ReFI with other baselines. However, one of the state-

of-the-art prototypes that test their overhead is FCatch [15]. FCatch imposes a 5.6x - 15.2x

overhead slowdown on the system depending on the workload. Most of this slowdown is caused

by the inefficient technology utilized, Javassist [93]. In our case, we used eBPF, which has been

tested by the community [26, 30, 94] and recognise it as an efficient tool.

5.1 Methodology

The methodology of the ReFI’s overhead evaluation largely depends on the workload of the

application. For this reason, we had to decide which system would be used to test ReFI overhead.

The best candidate we had was MongoDB [53] because of three concrete reasons. We already

had experiments using this particular distributed application. Researchers and the community

largely use Yahoo Cloud Serving Benchmark [95] workloads to test their applications. YCSB

already has several fundamental workloads that we can test different behaviours.

After deciding on MongoDB as our testing distributed system, we have another critical deci-

sion which is to decide what workload to test ReFI. Since we already planned to use YCSB, there

are six default workloads that came with the benchmark. These workloads are named starting

on A and ending in F. Most of the workloads are focused on querying/reading the data.

Workload A, update heavy workload, has a mix of 50% read and 50% writes.

Workload B, Read mostly workload, is a read-mostly workload that has 95% reads and 5% of

writes.

Workload C, Read only, is a read-only workload, so it has 100% read operations.

Workload D, Read latest workload, inserts new records and the most recently inserted records

are the most popular, i.e., the records with the most read frequency.

Workload E, Short ranges, queries short ranges of records, instead of individual records.

Workload E is more used for applications where bulk reads are important.

Workload F, Read-modify-write, the client will read a record, modify it, and write back the

changes. YCSB uses a random delta for writing rather than some value derived from the current
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YCSB Workloads Read (%) Write (%) Behavior

A 50 50 Default
B 95 5 Default
C 100 0 Default
D 95 5 Mostly read latest writes
E 95 5 Short bulk reads
F 50 50 Read, modify, write back

Table 5.1: Summary of the YCSB workloads. In our evaluation we used workload A - Update
heavy workload - and workload F - Read-modify-write.

record (say incrementing a counter).

Table 5.1 summarizes the percentage of read and write operations, as well as the general

behaviour of the YCSB workloads.

For our purposes, we chose workload A, which has a mix of 50% read and 50% writes, and

workload F, which simulates a client reading a record to modify it and write the changes back.

We decided to use these two specific workloads because they were the ones that had a significant

amount of writes and this enables us to test the read and write syscalls. The other workloads,

B to E, are mainly composed by reads and would not test the write syscalls enough. These two

systems are used in the experiment section, thus being a critical factor to choose these workloads.

To run these workloads, we have two key commands, load and run. The load command

loads the database and the run command runs the workload specified into the loaded database.

However, none of these commands deletes the database at the end and so, we created a script

to delete the database at the end of each run. Each run, consisting of loading, running and

resetting. Depending on the arguments given to load and run commands, they could perform

different behaviours, such as being synchronous or asynchronous, and more.

The evaluation followed the three steps represented on Fig. 5.1 (a):

1. We would load the database.

2. Then we would run the experiment specified in the workload A and F.

3. Finally, we connect to the distributed database application and reset it, by deleting the

YCSB testing database (created on step 1) to perform the same test.

However, there was another method that we considered, approach (b) showed in Fig. 5.1. Al-

though approach (b) is considerably faster than approach (a), we discarded this method because

we wanted to have isolation between tests, where a test does not depend on other tests. The

approach (b) has a dependency from the first load and thus can be biased to the first load, where

the approach (a) shows a more realistic test because it is not deterministic, similar to distributed

systems.
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(a) Approach

(b) Approach

Figure 5.1: The two different approaches for testing ReFI with YCSB workloads. ReFI evaluation
utilizes approach (a).

We repeated these three steps, five times for each environment we wanted to evaluate. We

evaluated three environments. The first was the workload without ReFI. The second was the

workload with ReFI. The third and final was the workload with ReFI and verbose mode enabled.

Verbose mode is when ReFI prints to the console/terminal the logs of the collected information

from each module, TM, FIM, and Orchestrator. The results obtained are presented in Table 5.2.

These three environments enable us to present ReFI’s overhead and how the logging system

affects ReFI.

We briefly give a background on the distributed applications used in Section 5.3, MongoDB

and Redis.

For all the experiments we used a VM with Ubuntu 20.10, 64 bits, installed with 4GB of

RAM, 4 processor cores, and 110 hard disk capacity. For this VM setup, we used VMWare

Workstation 16 player. The main reason for the usage of Ubuntu 20.10 was that it already

comes with the default installation of some eBPF prerequisites.

5.1.1 MongoDB Background

MongoDB is a cross-platform document-oriented database program. MongoDB uses JSON-

like documents that do not need a schema but you can optionally define one if it makes sense.

MongoDB provides the most common data structures and enables atomic operations. It supports

transactions, ad-hoc queries, indexing, and asynchronous replication.

MongoDB can be accessed via Cloud using the MongoDB Atlas product but in this disserta-

tion, we are only using the server based product, MongoDB Enterprise Advanced. We made this

decision because the Enterprise version gives us the flexibility to create our own replica set with

specific rules. A MongoDB replica set is a distributed system where each node has a replica of

the data. MongoDB uses a PSA hierarchy where it stands for the Primary, as a leader, Secondary
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and Arbiter nodes.

The primary server is the leader and it is elected by the secondary and arbiters in a leader

election. The primary is the only one that accepts writes and reads to the database application.

Although it is possible for secondaries to accept reads, MongoDB states that they only query stale

reads, which means that their might already be accepted new writes that are being replicated

and do not show in these secondary reads.

The secondary server has to goal to store replicated data and contribute to the leader election

voting.

The arbiter server has the goal to only contribute to the leader election voting but do not

store replicated data.

MongoDB has already built in the failover system for when it starts a new leader election,

thus it does not need any auxiliary node to manage this behaviour.

MongoDB also supports sharding, i.e., there can be a cluster, not a replica set, that contains

nodes that only have specific data and this is all managed by the internal software of MongoDB.

In the experiments, we did not use this feature of MongoDB.

5.1.2 Redis Background

Redis is an in-memory data structure store, used as a database, cache, and message broker. It

differs from the other databases as it is an in-memory data storage system, thus being normally

used as a faster cache system but can also persist data by periodically dumping the dataset to

disk or by appending each command to a disk-based log. Redis provides the most common data

structures and enables atomic operations like increment a value among others. Redis has built-

in replication, asynchronous replication, transactions, and different levels of on-disk persistence,

and provides high availability via Redis Sentinel and automatic partitioning with Redis Cluster.

Before continuing, it is important to notice that Redis and MongoDB have a similar

approach where it comes to the replication of the data. Although some of the names are different,

the idea behind them is similar in both storage systems. For example, a Redis cluster is the same

as a MongoDB replica set, a Redis master and slaves are the same as a MongoDB primary and

secondaries.

Nevertheless, Redis introduces new concepts to the storage distributed systems, such as

Redis Sentinel. Redis Sentinel has the goal of monitoring, notification, automatic failover,

and configuring the provider, all of this being an isolated component from the Redis instances

(master and slaves). They provide high availability to the distributed system by checking if the

nodes are alive. They are responsible for monitoring the master and the replicas to check if they
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are working as expected. They notify the system administrator when something unexpected

happened with the Redis instances. Most important, they are the mechanism that automatically

starts a failover process, such as leader election.

With this background of Redis, we will now discuss the experiment.

5.2 Overhead

This section presents the throughput and latency of ReFI, the methods used to evaluate TM

independently from the other ReFI modules and shows the results collected. TM’s overhead is

evaluated independently because it has the capability of processing millions of syscalls requests

and each request needs to be efficient.

5.2.1 ReFI

From Table 5.2, we can observe that for 100000 operations, where 50% are reads and 50% are

writes, it took, on average, 22 seconds. With ReFI turned on, it suffer an increase of 30%

(1.311357396) on the overall run time compared with the default, passing from 22 to 27 seconds.

In regards to the throughput, we had a decrease of 24% (0.7625766585) in workload A. In

regards to the latency, ReFI adds around 38% (1.383724836) read and 26% (1.26847078) write

latency.

From Table 5.3, we can observe that for 100000 operations, where 50% are reads and 50% are

writes, where the behaviour is read, modify and write back, it took, on average, 41 seconds. With

ReFI turned on, it suffer an increase of 23% (1.230200496) on the overall run time compared

with the default, passing from 41 to 51 seconds.

In regards to the throughput, we had a decrease of 19% (0.8133174104), i.e., in terms of

operations, ReFI slows the throughput around 500 operations per second in the workload F. In

regards to the latency, ReFI adds around 25% (1.25367864) read and 20% (1.205141055) write

latency, i.e., ReFI adds around 50 microseconds to reads and 70 microseconds to writes.

In regards to the ReFI with verbose mode enabled, in both workloads, they increase the

overhead more than without the verbose mode enabled. This was expected and it is a trade-off

that engineers need to do when understanding the system via ReFI. Approximately, the verbose

mode adds twice the overhead when compared to the non-verbose mode.
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1 000 000 Operations

Run Time(ms) Throughput(ops/sec) [R] avg. Latency(us) [W] avg. Latency(us)

wo/ ReFI
22917 4363.572893 188.5043584 260.4294423
21165 4724.781479 169.1793846 245.0113554
21505 4650.081376 171.1940353 248.5934046
22741 4397.344004 184.3561961 259.8886288
22384 4467.476769 183.4059152 254.4316614

avg. 22142.4 4520.651304 179.3279779 253.6708985
Baseline 1 1 1 1

ReFI
29422 3398.817212 252.6373249 324.3983046
30441 3285.043198 262.5314917 335.1478458
27774 3600.489667 234.927099 310.2084342
29182 3426.769927 248.3570339 324.7921866
28364 3525.595826 242.2499347 314.3238452

avg. 29036.6 3447.343166 248.1405768 321.7741233
Overhead 1.311357396 0.7625766585 1.383724836 1.268470783

ReFI -v
58655 1704.884494 470.9349874 675.241313
59262 1687.421957 477.2578528 681.1301531
58200 1718.213058 473.1592996 664.1231584
57811 1729.77461 465.2649108 662.9462809
58067 1722.148553 472.9311754 663.7909049

avg. 58399 1712.488534 471.9096452 669.4463621
Overall 2.637428644 0.3788145599 2.631545009 2.639034931

Table 5.2: Time overhead of ReFI using the YCSB workload A for environment without ReFI,
with ReFI and with ReFI and verbose mode (ReFI -v). The [R] and [W] in the latency column
stand for Read and Write latency.

5.2.2 TM

methodology

To evaluate the TM independently, we subdivided this task into two parts. The first part, we

used the methodology available by the bpftool [96], a helper tool for eBPF developers. The

bpftool enables us to turn on the flag kernel.bpf_stats_enabled sysctl that turns on stats

collection for all eBPF programs. When this flag is enabled, all eBPF programs collect their

status, it does not give the option to choose which one to collect stats. This flag exposes two

variables, run_time_ns and run_cnt, that show the total run time, in nanoseconds, for a specific
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1 000 000 Operations

Run Time(ms) Throughput(ops/sec) [R] avg. Latency(us) [W] avg. Latency(us)

wo/ ReFI
41168 2429.071123 234.17338 335.3317545
42895 2331.274041 244.90414 349.4563969
41737 2395.955627 239.78182 336.1715639
40992 2439.50039 236.0936 330.7062237
41092 2433.563711 234.47033 334.6617348

avg. 41576.8 2405.872978 237.884654 337.2655348
Baseline 1 1 1 1

ReFI
48828 2048.005243 286.71355 383.474496
50133 1994.694114 292.60207 398.7653049
51657 1935.846062 300.28097 410.6435521
52486 1905.269977 305.63403 417.6562138
52635 1899.876508 305.92393 421.7231449

avg. 51147.8 1956.738381 298.23091 406.4525423
Overhead 1.230200496 0.8133174104 1.253678642 1.205141055

ReFI -v
74864 1335.755503 423.39517 614.8937484
78216 1278.510791 442.6566 643.4304953
76886 1300.626902 435.55735 633.3025883
77842 1284.653529 442.59977 639.0090146
78182 1279.066793 442.04749 643.5863571

avg. 77198 1295.722704 437.251276 634.8444408
Overall 1.856756653 0.5385665474 1.838081056 1.882328241

Table 5.3: Time overhead of ReFI using the YCSB workload F for environment without ReFI,
with ReFI and with ReFI and verbose mode (ReFI -v). The [R] and [W] in the latency column
stand for Read and Write latency.

eBPF program and the number of times that the eBPF program was called, respectively. With

these two variables, we can check the performance of the attached eBPF programs from the TM.

We used the workload A with approach (a), in the same manner that we used in the ReFI over-

head evaluation, but instead of measuring the overhead, we enabled the kernel.bpf_stats_enabled

sysctl flag and measured the run_time_ns and run_cnt variables from the TM eBPF programs

attached. These eBPF programs are security_socket ss_sendmsg and security_socket ss_recvmsg

from the network submodule of TM, and vfs_read, vfs_write, and vfs_open from the VFS

submodule of TM. The vfs_fsync and vfs_create are not considered because they do not make

sense in this particular case, i.e., they are not utilized. These would make sense in a file-system,
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1 SEC("kprobe/vfs_read")
2 int BPF_KPROBE(vfs_read , struct file *file , void *buf , size_t size)
3 {
4 u64 start = bpf_ktime_get_ns (); // start schedule clock
5

6 u32 pid = bpf_get_current_pid_tgid () >> 32;
7

8 if (filter_pid && pid != filter_pid) {
9 return 0;

10 }
11

12 // ... code to get information from syscall
13

14 bpf_printk("READ %d\n", bpf_ktime_get_ns () - start); // log of end of schedule clock
15

16 return inc_stats(S_READ);
17 }

Listing 5.1: Code example of task 2 evaluation.

for example.

However, eBPF collects information from syscalls that come from every process. eBPF filters

unwanted syscalls by checking the PID of the process, and filtering out unwanted processes.

Thus, a huge size of the syscalls is discarded without almost no computation. Since these

unwanted/filtered calls appear in more quantity than the wanted/not filtered calls, this task

shows an average of the overall syscalls, which is essential to analyze the system but also we need

to evaluate the wanted calls with more precision.

For this reason, we created a second task, where we could evaluate specifically the calls that

were not filtered and thus, they executed all the code that the eBPF program attached to the

Linux kernel. The second task has the goal to only evaluate these wanted syscalls. We schedule

a clock at the beginning of each syscall that only terminates if the call goes until the end, thus

it only register the wanted calls. Then we collect this clock via logs from the eBPF program.

To better explain this division, in Listing 5.1, we demonstrate the pseudo-code of the eBPF

program attached to the kernel. In this code, we can see a condition, an if statement, that

filters out all the syscalls that came from another PID, i.e, that came from unwanted processes.

After this condition, the code that intercepts the information that the syscall possess and where

the computation takes more performance and time. Since only one in around 1000 syscalls are

wanted, with the first part of the evaluation, we were averaging out these important calls. This

second task is a solution designed by us to prevent this problem in the evaluation.

results

In Table 5.4 and Table 5.5, we present the results of task 1 measures. We also present some useful

results that we can derive from the run_time_ns and run_cnt variables. From observing these

tables, we can see that the security_socket ss_sendmsg syscall has a much higher average
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overhead than the vfs_read syscalls. This can happen because we have much more information

to collect from the network submodule, 10 arguments, whereas from the VFS submodule we only

collect 3 arguments.

In Table 5.6, we present the results of task 2 measures. We present the average of the wanted

calls, as well as the minimum and maximum of these values to show that the values are really

sparse, due to being called on the Linux kernel which has a high number of interruptions. We

can see, for example, that although we have an average of 8131 nanoseconds for each VFS READ

syscall, without interruptions we can have 273 nanoseconds call, which is extremely efficient for

the goal of collecting information from syscalls.

1 000 000 Operations

Number of Syscalls Overall Run Time (ns) Run Time per Call (ns)

ss_sendmsg
219631 2483335923 11306.85524
222558 2487414767 11176.47879
219732 2355059248 10717.87108
218573 2395660524 10960.45954
220635 2560211766 10960.45954

avg. 220225.8 2456336446 11153.0996

ss_recvmsg
363573 3752322687 10320.68577
372472 3428599944 9204.98707
363693 3637070691 10000.38684
359427 3450084490 9598.846191
365985 3720742584 10166.38

avg. 365030 3597764079 9858.257174

Table 5.4: Task 1: Raw run time overhead of the TM module. In this table, we present the
results of two syscalls, ss_sendmsg (security socket send message) and ss_recvmsg (security
socket receive message), that compose the network submodule.

The method used to collect these results add, on average, 20 nanoseconds per traced syscall

because both of them make two calls to sched-clock() method. One call to start and the other

to end the clock. The sched-clock() is a kernel method to obtain the current time, and each call

takes approximately 10 nanoseconds.
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1 000 000 Operations

Number of Syscalls Overall Run Time (ns) Run Time per Call (ns)

vfs_read
139237 44997633 323.1729569
139799 46705091 334.087447
136789 54248082 396.5821959
136255 44056278 323.3369638
138344 53283369 385.1512823

avg. 138084.8 48658090.6 352.4661692

vfs_write
124339 262932787 2114.644536
127128 331148504 2604.843182
125966 396723115 3149.446001
125519 335608231 2673.764378
123479 293422153 2376.291944

avg. 125286.2 323966958 2583.798008

vfs_open
19826 7496909 378.1352265
19319 7518188 389.1603085
17886 7247458 405.2028402
17732 6725277 379.2734604
19186 6727356 350.6387991

avg. 18789.8 7143037.6 380.4821269

Table 5.5: Task 1: Raw run time overhead of the TM module. In this table, we present the results
of three syscalls, vfs_read, vfs_write, and vfs_open, that are part of the VFS submodule.

Task 2 Average (ns) Minimum (ns) Maximum (ns)

ss_recvmsg 13998 990 314599
ss_sendmsg 18889 2967 281478
vfs_read 8131 273 110403
vfs_write 16936 444 274254
vfs_open 12921 205 95637

Table 5.6: Task 2: Average, minimum and maximum values obtained from only the wanted
syscalls from TM module.

5.3 Experiments

In this section, we detail three experiments made with ReFI, two using MongoDB and one

with Redis. For each experiment, we describe the overview of the experiment, how we setup

the distributed system, how we integrated ReFI to trace and inject faults into the distributed
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system, the workload used, how and when we inject the fault, and why this caused a bug. We

also present the results and evaluate the severity of the failure/bug encountered.

5.3.1 Unavailability - MongoDB

This experiment was reproduced by ReFI and it has the specific goal to test the FIM, the most

critical part of a Fault Injection framework. This experiment demonstrates that ReFI FIM

is working correctly and as expected. We used MongoDB [53], a document-based distributed

database, as our distributed application. In specific, for this experiment, we used MongoDB

3.2.10 version.

The experiment is based on an issue made in the MongoDB Jira forum [97], found in the

research article made by Alfatafta et al. [39] described in the Section 3.3.2.

Overview

The experiment consists of three nodes that have a network connection between each node. These

three nodes form a replica set, i.e., they form a group of database servers that will replicate data

to each other. They replicate data, following a PSA hierarchy, with one primary, one secondary

and one arbiter.

In Fig. 5.2 shows a diagram of the unavailability MongoDB bug. The bug consists of an

injection of a partial network partition fault that triggers an infinite loop of leader elections.

For a primary node to stay primary, it needs to have a majority of nodes, in this case 2. The

secondary cannot communicate with the primary node, so it starts a new leader election. Since

it can communicate with itself and the arbiter, the secondary node wins the leader election. The

same process happens to the primary since the arbiter tells it that there is a new primary. Node

1 (initially primary) and node 2 (initially secondary) are constantly swapping between primary

and secondary roles. While this is happening, the clients cannot write to the storage system

because they do not agree on which is the primary node.

Setup

For the setup of MongoDB, we used Docker Compose [92] and the docker-compose.yaml file, to

automatically initiate the distributed system. For this experiment, we initiated three nodes that

formed a replica set, each of them having a static IP address and a static port to facilitate the

usage of ReFI.
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Figure 5.2: Diagram showing an overview of the MongoDB unavailability bug. We have 3 nodes,
a Primary (P), a Secondary (S), and an Arbiter (A). After a partial network partition there is
an infinite swap of the new primary.

1 # config/public.yaml
2

3 system : mongo
4 docker_amount : 3
5 docker_name : mongo3 -2-10_rs0 -0
6 docker_name : mongo3 -2-10_rs0 -1
7 docker_name : mongo3 -2-10_rs0 -2
8 primary_index : 0
9

10 fault :
11 - begin_state : 0
12 end_state : 50
13 rules :
14 - src_ip : 172.19.0.2
15 dest_ip : 172.19.0.3
16 - src_ip : 172.19.0.3
17 dest_ip : 172.19.0.2

Listing 5.2: Configuration file for the unavailability MongoDB bug.

ReFI integration

To enable ReFI to use the TM to collect information, create a state, and inject reproducible

faults using that state, we specify the configuration file.

In Listing 5.2, we can see that we specify three docker names as well as their IP addresses

for the rules of the faults that we want to inject. These IP addresses are static and specified in

the Docker Compose configuration file.

We only have to specify the configuration file as an argument for ReFI to parse it and the

experiment executes.

Workload

This experiment is the most simple one and has the specific goal to prove that ReFI FIM is

working correctly and as expected. So in this particular case, no workload was needed. We

analyzed the logs of the distributed system, from the docker-compose up command, and can take

the necessary conclusions to observe the unavailability of the system.
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Injected Faults

As we can see from the configuration file, presented in the Listing 5.2, we inject a fault that

consists of two rules. Each rule prevents unidirectional communication with two nodes. The

fault begins at state 0, at the beginning of ReFI and ends in state 50. In this specific experiment,

the state is the amount of WRITE syscalls that are of a certain size.

The logs shown from the docker-compose up command precisely show the primary and sec-

ondary continuously changing, and this happens until the partial network partition is healed.

Bug explanation

The bug occurs because node 0 and node 1, the nodes that store data, cannot communicate with

each other, but there is a third node, node 2, that can communicate with both. This implies that

whenever the secondary cannot communicate with the primary and it can communicate with a

majority of nodes, 2 in this case, itself and the arbiter, it invokes a leader election that it wins

since it is the only viable candidate. Nevertheless, the same happens again to the new secondary

and an infinite loop is generated.

This shows a problem on the MongoDB failover system, as well as, that the FIM is working

as expected, the faults are successfully being injected, and attacking the system reliability.

Bug severity

The unavailability bug is a major bug since it disables all operations that can be made to the

distributed database. It is also an extremely simple yet devastating bug. This is just a great

example of how we can improve the modern application distributed system with a small and

precise injection of faults and improve their robustness and reliability.

5.3.2 Data Loss - MongoDB

This experiment was reproduced by ReFI and it has the goal to test the ReFI prototype and

all its modules, i.e, TM, FIM, and Orchestrator. This experiment demonstrates that ReFI, as a

whole, is working correctly and as expected. On top of this, it shows a particular aspect of ReFI,

where, depending on the state, the system has different behaviours. This not only shows that

ReFI can be reproducible but also shows the great advantage of having fault injection prototypes

that are reproducible. Similarly to the Unavailability experiment, described in Section 5.3.1, we

use MongoDB as the underlying distributed application to reproduce this critical bug. The

experiment is based on an online article [98] from Jepsen analyses [25]. However, due to the
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Figure 5.3: Diagram showing an overview of the MongoDB data loss bug. We have 5 nodes,
a Primary (P), and four Secondaries (S). After a complete network partition, there are two
available primaries to write. After healing the fault, the data is lost from one of the primaries.
The primary that wins depends on the state chosen in the configuration file.

docker image repository, we use the MongoDB 2.2.7 version instead of the Jepsen analyses,

which uses the MongoDB 2.4.3 version.

Overview

The experiment consists of five nodes that have a network connection between each node. These

five nodes form a replica set. In this experiment, there is only one primary as expected, and

secondary servers, and no arbiter servers.

Fig. 5.3 shows a diagram of the data loss MongoDB bug. The bug consists of an injection of

a complete network partition fault that isolates the primary from the other nodes, creating two

groups/partitions. The first group is composed of only the initial primary and the second group

is composed of the other four secondary servers.

Before explaining how the bug works, it is crucial to understand that, depending on the state

where we heal the complete network partition, we can show different system behaviours. The

two behaviours show the initial primary losing data or the second primary losing data. This not

only shows that the ReFI tool is working, but it clearly shows that it injects reproducible faults
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that affect directly the outcome of a bug and how important ReFI is compared to state-of-the-art

random fault injection approaches such as Chaos Engineering.

After a specific state, a complete network partition fault is injected to isolate the primary.

Since the initial primary server is still up, the operations that connected clients send to it are

successful and do not show any error message. In fact, if we look at the logs, we see that after

writing a value and reading it, we can check that the data is, supposedly, replicated and persisted.

Meanwhile, the other partition, composed of four secondaries, start realizing that there is

no primary and so they start a new leader election. Since more than a majority of servers are

reachable in this partition, they elect a new primary server. In Fig. 5.3, for simplification, we

identify the node 2, mongo1, as being the new primary but it depends on the leader election and

so it could have been any secondary to become primary. This is a perfect example of the non-

deterministic nature of distributed systems and the sort of hard challenges we face throughout

the development of ReFI and these experiments.

In this moment of the experiment, we have two accepted primaries, an initial and a second

primary, but in theory, only the second primary should be able to perform writes and reads.

Because of this, both primaries have one client writing and reading from them and we start

seeing two different results from reading the same document. Finally, after state 80, the initial

primary realizes that he does not have a majority and it stops accepting writes and reads, but

this is enough to cause damage and data loss in the application. After state 150 is met, the

complete network partition is healed and we lose all the data that the client connected to the

initial primary thought it was persisted, because writes were accepted, and did not report any

error, and also reads showed what was expected.

Setup

For the setup of MongoDB, we once more used Docker Compose [92] and the docker-compose.yaml

file, to automatically initiate the distributed system. For this experiment, we initiated five nodes

that formed a replica set, each of them having a static IP address and a static port to facilitate

the usage of ReFI.

ReFI integration

Listing 5.3, we can see that we specify five docker names as well as the fault rule. Since

partitioning the primary from the other secondary servers is extremely useful for forcing a new

leader election and identifying bugs in the algorithm, we can see a simplification made in the

configuration file where we can specify to isolate the primary instead of describing all (N - 1)x2
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1 # config/public.yaml
2

3 system : mongo
4 docker_amount : 5
5 docker_name : mongo2 -4rs0 -0
6 docker_name : mongo2 -4rs0 -1
7 docker_name : mongo2 -4rs0 -2
8 docker_name : mongo2 -4rs0 -3
9 docker_name : mongo2 -4rs0 -4

10

11 fault :
12 - begin_state : 10
13 end_state : 150
14 rules :
15 - isolate : primary

Listing 5.3: Configuration file for the data loss MongoDB bug.

(in this case eight) rules. This is also why we do not need to specify the primary index property

since a script is executed to identify which of the nodes in the primary.

We only have to specify the configuration file as an argument for ReFI to parse it and the

experiment executes.

Workload

For the workload, we had to choose between the MongoDB drivers. We choose Python for the

following reasons: we had already made a few preliminary testing of ReFI with the Python

driver, pymongo, which had more information online than Java driver; Python is also simpler

than Java when it comes to create these types of scripts.

The workload is the most complex part of the experiment because we use a parallelism

method to simulate several clients writing into the system and to the different nodes that are

not primaries. One, unknown secondary node will eventually become a primary because we are

going to inject faults into the initial primary and it will create new leader elections and a new

primary will arise. For this, we had to surpass a few challenges, where is important to mention

how we accomplished it.

We used three key techniques, the first is writing sequence integers into a list, this enables

us to track the writes more easily and check for missing writes. Secondly, we start to write from

a specific integer for each server, i.e., for node/server 0, we write 00001, 00002, 00003, and so

forth, for server 1 we write 10001, 10002, and so forth for the other servers. This enables us to

quickly analyze the logs and see which server is the primary. Thirdly, we purposely create clients

that write into secondaries that fail, so when they become primary, they will start accepting the

new writes, where the old failed writes are just not acknowledged, as we wanted.

With these three techniques, which are based on the work of Jepsen [25], we can easily prove

when a bug has occurred. We simply have to look at the logs and visually see the discrepancies.
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Injected Faults

From the configuration file, we deduct that we are only going to inject one fault that contains

a single rule. However, this single rule is, in fact, a simplification made that contains 8 rules (

(N-1)*2 ). So, to be more precise, we are injecting a unidirectional rule for each communication

between node 1 (initial primary) with the outgoing channels.

It is important to note that the state is extremely important and has to be precise for the

faults to cause a failure, in this case, a data loss bug. We can also observe that depending on

the end state when we heal the complete network partition, we get two different types of bugs.

One where the first primary loses data and the other where the second primary loses data. We

start the fault after the system had already been going for a few states to enable the system to

be fully operable before we inject faults.

Throughout the process of creating this experiment, it was expected that the state interferes

with the behaviour of the system and the bug shown. These faults show the potential of this

prototype and this approach to fault injection.

Bug explanation

The bug occurs because node 1, the initial primary, does not check, with heartbeats, if it has a

majority, and also because the error from the secondary servers is delayed due to the secondary

servers not being reachable. In this case, node 1 delays the realization that it has no majority

and cannot accept writes or reads.

In the other partition, the new primary has no way to know that the old primary is still alive,

and so it proceeds as expected and continues the execution of write and read operations.

This creates a great conflict when we heal the partition and both of the primaries realize that

they have a different sequence of writes. In this case, the initial and oldest primary wins, and

all the writes accepted from the new primary get rollback. This is a huge problem in security,

affecting Mongo’s reliability.

On the other hand, if we can delay the state into a specific state where the initial primary

has realized that he has no majority and step down from the leader position, the new primary

wins the rollback, i.e., the initial primary writes get rollback.

With this experiment, we not only can reproduce these experiments and observe their con-

sequences but also we could better understand the algorithm and where it can be improved.

Developers can more easily fix these problems in their distributed systems. Engineers can more

easily architect their solutions knowing that these types of errors are common. Finally, more

robust and resilient distributed systems are built.
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Bug severity

The data loss bug is a critical bug since it affects the main goal of a database, which is persisting

data. And the client does not even is notified or understands the problem, since it is connected

to a primary but the bug happens on the rest of the distributed system.

5.3.3 Split-brain - Redis

This experiment was reproduced by ReFI and it has the goal to test the ReFI prototype and all its

modules, i.e, TM, FIM, and Orchestrator. This experiment demonstrates that ReFI is compliant

with its fourth goal, being flexible to different distributed systems, as well as, extendable to

different syscalls.

Similarly to the Data Loss MongoDB experiment, described in Section 5.3.1, this experiment

creates a complete network partition that isolates the primary from all the other nodes. The

experiment is based on an online article [99] from Jepsen analyses [25]. However, due to the

docker image repository and legacy changes, we use the Redis 3.0.7 version instead of the Jepsen

analyses, which uses the Redis 2.6.13 version.

Overview

The experiment consists of six nodes that have a network connection between each node. Three

nodes form a Redis cluster set (which is equivalent to the MongoDB replica set). On top of

these three nodes, each node has a corresponding sentinel node. Note that this sentinel node is

independent and isolated from the Redis instances. There is only one master, as expected. The

rest are slaves and sentinels.

Fig. 5.4 shows a diagram of the split-brain Redis bug. The bug consists of an injection of

a complete network partition fault that isolates the master from the other nodes, creating two

groups/partitions. The first group is composed of only the initial master and the second group

is composed of the other two slaves. The sentinels are not part of the cluster, so they are not

considered to the partition. However, they are the ones that monitor the master and start the

failover process when the network partition occurs.

This bug is similar to the MongoDB Data Loss bug described in the Section 5.3.2 but it

differs that the two primaries are still up even after the healing of the partition, demonstrating

not only that eventually the data of one of the primaries is lost but also the inconsistency of the

distributed system with its nodes. It is even possible to write into both of the masters at the

same time, making this a perfect demonstration of a split-brain bug, where there are two active

brains, in this case, masters, enabling the write and read to the storage distributed system.
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Figure 5.4: Diagram showing an overview of the Redis split-brain bug. We have 3 nodes, a
Master/Primary (P), and two Secondaries/Slaves (S). After a complete network partition, there
are two available primaries, creating a split-brain bug. The two primaries have a different version
of the data since both can write, in parallel, without communicating with each other.

In a more descriptive and precise manner, we have a counter variable and we wait for the

first master to acknowledge a few writes and reads to the counter. Then we inject a complete

network partition where we isolate the master from the other four nodes. Then after this state,

the sentinels realize that the master is down and they start a new leader election. After the end

of the leader election state, we have a new master, that can be specified in the configuration file,

by changing the priority property of the slave. Then we create a similar client that is writing

to the storage system in parallel to the new/second master. By checking both reads, from the

first client and from the second client, we realize two different behaviours. The first client reads

are continuously changing the value and do not realize the network partition. The second client

starts at a specific value and it diverges from the first. Creating a split-brain bug where there

are two viable values for the same variable. Of course, we as an outside spectators, know that

the second master which has a majority should be the only node to write to the counter.

Setup

For the setup of Redis, we used Docker [74] and the for each Redis instance (master, slave and

sentinels) we created a configuration file, to automatically initiate each node with the appropriate

properties. The main properties that we changed were the slaveof property for the slave nodes,

priority property for the respective node that we wanted to be the second master, after the fault

was injected, we also added a few properties to enable the cluster creation with replication data,

and other minimal properties.

For this experiment, we initiated six nodes where three formed a cluster and the other three

were the sentinels. We also created a docker network for them to communicate with each other.

Also, the clients that write and read into the master needed to be connected to this network.

The clients simply write to a counter that is incremented every 2 seconds.
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1 # config/public.yaml
2

3 system : redis
4 docker_amount : 6
5 docker_name : redis -0
6 docker_name : redis -1
7 docker_name : redis -2
8 docker_name : sentinel -0
9 docker_name : sentinel -1

10 docker_name : sentinel -2
11 primary_index : 1
12

13 fault :
14 - begin_state : 10
15 end_state : 50
16 rules :
17 - isolate : primary

Listing 5.4: Configuration file for the split brain Redis bug.

ReFI integration

Starting from MongoDB’s previous experiment, the ReFI integration took less than an hour to

be completed. It consisted of two main processes: Changing how we collected the state based

on the TM module and creating a configuration file for the Redis system, which was just reusing

the already written configuration files for MongoDB.

In Listing 5.4, we can see that we specify six docker names as well as the fault rule. Since

partitioning the primary/master from the other secondary servers is extremely useful for forcing

a new leader election and identifying bugs in the algorithm, we reused the simplification made

in the configuration file where we can specify to isolate the primary instead of describing all (

(N-1)*2 ) (in this case four rules, N is three because we do not need to count the sentinels).

We only have to specify the configuration file as an argument for ReFI to parse it and the

experiment executes.

Workload

For the workload, we had several API’s to decide from. The main two options were Python and

Go. Since we had already used Python for the MongoDB experiments, this seemed a natural

choice. However, the complexity that the Python added and the lack of community help was

huge limitation. So we decided to use the Go client because it was also easy to implement as

well as having a helpful online community.

The workload consisted of a connection from a client to the Redis master. The master name

is passed as an argument to the client Go program and then the application connects to the

master node. After verifying that the connection was successful by checking for any error, the

client proceeds to try to write into the master. In the first attempt, since there are no keys, it

fails but the client catches this exception and creates the key with the respective item. In the
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consecutive writes, everything works as expected. The client simply increments a counter key by

one every two seconds and after successfully writing into the counter key, it reads it and prints

it to a log for us to check if everything was correct.

After the fault is injected, a new client must be created, in parallel, to connect to the new

master. We just follow the same approach by passing the new master name as an argument.

The clients follow the same steps described previously.

Injected Faults

From the configuration file, we deduct that we are only going to inject one fault that contains

a single rule. However, this single rule is, in fact, a simplification made that contains four rules

((N-1)*2). So, to be more precise, we are injecting a unidirectional rule for each communication

between node 1 (initial master) with the on and outgoing channels.

It is important to note that the state is extremely important and has to be precise for the

faults to cause a failure, in this case, a split-brain bug. We can also observe that in the end state

50 when we heal the complete network partition, we get an inconsistent value for the counter

variable.

This experiment shows how simple it is for ReFI to be flexible since the faults are injected

and implemented in a way that enables the use for different distributed systems.

Bug explanation

The bug occurs due to the way that the sentinel nodes work. In the Redis case, the sentinels are

the key working node when it comes to availability. There is one sentinel for each Redis node

monitoring their availability.

After a fault is injected at state 10, where we isolate the Redis node 0, the primary, from the

other slaves, the sentinels start a failover procedure (leader election). For simplicity purposes,

node 1 wins and becomes the new primary. Nevertheless, the old primary is not aware of this

voting and is still up.

Since the sentinels are separated nodes, when we heal the partition, they do not check if

there is already a primary. They only check if the current primary can reach a majority, which

in this case is true for both. Thus, none of the primaries steps down. The real problem in this

distributed system is the way that the sentinels work.

Since there are two primaries, they both accept reads and writes and have their own version,

creating a split-brain. This is a huge problem in security, affecting Redis’s reliability.

With this experiment, we not only can reproduce these experiments and observe their conse-
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quences but also we could better understand the algorithm and where it can be improved even

without looking into the code. Developers can more easily fix these problems in their distributed

systems. Engineers can more easily architect their solutions knowing that these types of errors

are common. Finally, more robust and resilient distributed systems are built.

Bug severity

The split-brain is a critical bug since the fault creates inconsistency in the data that the clients

are reading. It would be possible that this storage system was storing a bank and a client would

have more money, depending on the server that is connected. This of course would be a huge

problem, not only for the bank but legally.

The real severity of these simple yet devastating bugs that engineers and developers need to

be considerable of is a huge problem in today’s modern applications.

5.4 Discussion

In this section we will discuss the evaluation’s three key questions:

1. Is ReFI able to reproduce faults?

2. Is ReFI efficient?

3. Is ReFI able to test different distributed systems?

From the experiments done in a realistic distributed system, we can affirm that ReFI is

reproducible. All the experiments also show the advantage of the reproducibility that ReFI

gives. In particular, the experiment described in Section 5.3.2 shows two distinct behaviours of

the distributed system that happen depending on the state that the fault is injected and healed.

Chaos Engineering approach fails in this precise topic, where two runs of the fault injection

approach can lead to two different behaviours.

The results obtained in the Section 5.2 were auspicious in comparison to other state-of-the-

art fault injection approaches such as FCatch. The key aspects were the use of a highly efficient

technology with a reliable design architecture. The design of ReFI was, from the start, planned

to use eBPF and thus creating an efficient prototype.

We can see from Table 5.2 and Table 5.3, that, approximately, ReFI adds 25% to 30% more

overhead to the application. Given what ReFI accomplishes, the tracing of millions of syscalls has

minimal overhead. In comparison with FCatch, which imposes a 5.6x - 15.2x overhead slowdown,

this is negligible.
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On a more precise analysis, ReFI TM also presents a low overhead for each operation. From

Table 5.4 and Table 5.5, TM an average of wanted and unwanted syscalls of 350 nanoseconds for

reads and writes, 2500 nanoseconds for writes and 11000 and 10000 nanoseconds for the network

submodule. In Table 5.6, we observe the results from only the wanted calls, which largely depend

on the Linux kernel and their interruptions because we see a huge discrepancy from the minimum

and maximum values.

Finally and crucially, The experiment described in Section 5.3.3 shows ReFI’s flexibility by

using it in different distributed systems. This experiment proves that ReFI can be used in other

distributed systems by simply modifying a configuration file, changing how the state is managed,

and creating a new workload for that system.

The experiment described in Section 5.3.1 tests the ReFI FIM module and presents a simple

yet critical bug that ReFI can catch.

All bugs caught are major or critical bugs. All of the bugs require five or fewer nodes to be

reproduced and two clients to write and read at the same time from the system. This represents

the importance of ReFI and fault injection prototypes in the modern world and why it is essential

to create more resilient and robust distributed systems.
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Chapter 6

Conclusions

This chapter restates and summarizes the other chapters most essential aspects, as well as an

overall view of this dissertation. It also reiterates the problems and the key solutions designed.

It presents our achievements by stating the ReFI goals and how we accomplished them. Finally,

we present several future work aspects and areas that can improve the ReFI tool.

The main goal of this thesis was to innovate the state-of-the-art in fault injection approaches

by passing from the era of random and uncoordinated faults, used by Chaos Engineering, to a

modern and reproducible era where we can test the resilience and robustness of the distributed

systems via reproducible fault injection experiments. We accomplished this by creating ReFI

a Reproducible Fault Injection prototype that enables developers and engineers to test their

distributed applications in a reproducible manner.

ReFI, has four key goals. Create a reproducible fault injection framework, that treated

the application as a black-box, had an efficient mechanism, and finally, to be flexible and

extendable.

Throughout the design and implementation of ReFI, we had in consideration our key goals.

To accomplish reproducible fault injection, we decided to create an Orchestrator module that

coordinates the collection of data, from the TM, and the fault trigger, from the FIM. The TM

collects data of the system, in a black-box manner, by analyzing syscalls, their arguments and

logic. The Orchestrator not only coordinates this fault injection, making the faults based on

the system state, but it also initialized the system via a configuration file. This configuration

permits to specifying different distributed systems as well as different fault patterns. Using eBPF

to monitor syscalls and inject faults is a novelty in the state-of-the-art. We also measured the

efficiency of ReFI by measuring the overhead, throughput, and latency in two YCSB workloads

and showing a negligible overhead when compared with other state-of-the-art fault injection

tools.
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We showed three essential experiments. Each of them has a specific goal. The first one, the

MongoDB unavailability bug, was to test the FIM module since it is the critical module of ReFI.

The second one, the MongoDB data loss bug, had the goal to show the reproducibility and the

importance of the state that ReFI has. The third and final experiment, the Redis split-brain

bug, showed that ReFI could be flexible to other distributed systems as well as extendable to

different syscalls. It also showed how easy it is to use ReFI in other systems by only needing to

change the configuration file and the state which is specific to each system.

6.1 Future Work

This work explores a new path to improve fault injection systems that can use eBPF technology.

eBPF was known to be used for tracing and monitoring systems but with this work, we unlocked

a new perspective not only for eBPF but to the community, in regards to reproducible fault

injection.

However, there are still improvements to be done and we will enumerate the main ones.

1. Although ReFI is easily adjustable to test different distributed systems, there is a need to

test more different distributed systems. Only by doing this, we can see improvement in the

distributed systems community on reliability and resilience.

2. ReFI was built to be extendable to different syscalls. There are thousands of syscalls but

finding which ones are useful is a challenging and complex task. Trying new syscalls and a

combination of two or more syscalls would be a great step for the future.

3. The current workload and setup of the experiments could be even further automated. With

this current ReFI version, we automated the setup of the distributed system, we automated

the clients’ workload by having a more realistic approach of several parallel clients, writing

and reading, and we also automated the setup of ReFI using a configuration file. The

improvement that could be done is to automate even further by having either a newly

created module or by using already built systems, such as Kollaps [29]. In other words,

ReFI could be integrated with other systems to facilitate and automate the evaluation

process. This is a crucial step to facilitate ReFI’s adoption because the more simple it is

to use a system, the more easily developers and engineers are willing to utilize it.

4. The configuration file can be further customized by adding new features that help to

precisely identify the distributed systems as well as new types of faults.
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5. ReFI could test their experiments with the more recent version of the systems. This could

mean finding new bugs and enabling not only the correction of these bugs but also a more

automatic approach to test new systems.

6. The isolate property in the configuration file could be generalized for random nodes

instead of a specific one (the leader). This would increase the types of faults that ReFI

enables.
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