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Resumo

A memória persistente (PM, do inglês Persistent Memory) é endereçável ao byte e durável,

com tempos de acesso comparáveis aos de DRAM tradicional. Estas caracteŕısticas permitem

o desenvolvimento de aplicações com estado persistente, sem a utilização de operações de E/S

custosas. No entanto, após uma falha arbitrária, o estado da aplicação pode ficar incoerente

devido à falta de uma cache persistente, e à reordenação e atraso de operações. Os programadores

de aplicações em PM, precisam de ter este facto em consideração, utilizando instruções de

baixo ńıvel próprias e mecanismos de recuperação espećıficos para garantir coerência à falha.

Estes requisitos são complexos, e como tal motivaram a criação de várias ferramentas para a

deteção de erros de PM. No entanto, as poucas ferramentas que procuram ativamente por erros

concorrentes de PM, focam-se em domı́nios espećıficos, como as bases de dados chave-valor, e

necessitam de artefactos complexos próprios para a deteção. Nesta tese, propomos o HawkSet,

uma ferramenta para a deteção de erros concorrentes de PM de forma automática, agnóstica, e

eficiente. O HawkSet, utiliza lockset analysis para detetar erros concorrentes de PM, e introduz

uma heuŕıstica capaz de reduzir os falsos positivos e a utilização de recursos. Os resultados

da nossa avaliação demonstram que o HawkSet é escalável, reportando os mesmos erros que o

estado-da-arte, em menos tempo. Além disso, o HawkSet deteta um novo bug.

Palavras-chave: Memória Persistente, Concorrência, Deteção de Erros
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Abstract

Persistent memory (PM) provides developers with byte-addressable and durable storage, with

performance comparable to that of DRAM. This allows for the development of applications

with persistent state, without employing costly HDD/SSD based IO operations. However, after

a crash, the application state may become inconsistent due to the lack of a persistent cache or

the reordering and stalling of operations. Taking this into consideration, developers must either

prevent or fix inconsistent states, using low-level instructions and specific recovery mechanisms.

Failure to do so can result in data loss or corruption, subsequent crashes or undefined behavior.

These requirements incur a heavy toll on the developer, who must reason about possible inco-

herent application states and how to recover from them. This motivated the creation of several

PM bug detection tools. However, the few tools that actively search for concurrent PM bugs

focus on specific domains, such as key-value stores, and require the development of complex

artifacts for debugging. In this thesis, we propose HawkSet, an automatic, application agnos-

tic, and efficient concurrent PM bug detection tool. HawkSet uses lockset analysis to detect

concurrent PM bugs, and employs a heuristic that is able to reduce false positives and resource

consumption. The results of our evaluation show that HawkSet is scalable, reporting the same

bugs as the state of the art, in less time. On top of that, we were able to detect a novel bug.

Keywords: Persistent Memory, Concurrency, Bug Detection
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Chapter 1

Introduction

Persistent Memory (PM) provides developers with byte-addressable and durable storage, with

performance comparable to that of DRAM. This allows for the development of applications with

persistent state, without employing costly HDD/SSD based IO operations.

Currently, there are a plethora of PM applications, which fall into a wide array of categories.

Some examples are key-value stores [1, 2], hash tables [3, 4, 5], trees [6, 7], caches [8], file

systems [9, 10], and other frameworks [11, 12]. These applications require a specialized design

in order to properly support PM. Data is only persisted once it reaches PM, since the cache is

generally not persisted. In order to guarantee that a particular write is persisted, a developer

must issue a flush instruction, whose job is to move data from the cache to memory at a cache-

line granularity. Modern CPUs create an additional complication, as they can stall writes and

flushes by using a store buffer, and can even reorder them according to specific rules [13]. In

single-threaded volatile applications, these stalls and reorders are completely invisible to the

application, and do not pose a threat to consistency. However, in PM applications, this is not

the case, since stores are only persisted after they reach PM. For example, assume that an

application performs two stores, and it assumes they are executed in that order and therefore

persisted in that order. The CPU may reorder these stores, performing the second one before

the first. In this example, if the application crashes after the second store has been persisted,

but before the first one is, then the post-crash state will be incoherent. Furthermore, in multi-

threaded applications, stalls and reorders may cause other threads to observe incoherent states.

For example, when accessing a shared memory region, even with a mutual exclusion mechanism,

a store to a shared variable may be stalled by the CPU. In this example, when other threads

access this value, they might observe the old value. To solve these problems, applications use

fence instructions, which force the CPU to complete all the pending memory operations, before

continuing, effectively ensuring stores before the fence are not stalled or reordered against those

1



that come after. In the context of multi-threaded applications, most synchronization mechanisms

include memory fences, to ensure stores are visible to other threads. In the context of PM,

developers must also create special procedures, recovery programs, that can detect and correct

incoherent post-crash states that were not mitigated by use of low-level instructions.

Failure to properly use these mechanisms can result in data loss or corruption, subsequent

crashes or undefined behavior. These requirements incur a heavy toll on the developer, who

must reason about possible incoherent application states and how to recover from them. This

motivated the development of a wide range of PM bug detection tools [14, 15, 16, 17, 18, 19, 20,

21, 22, 23].

We can see a parallel between the use of PM and concurrency: when used correctly con-

currency allows for performance gains, however, it can lead to complex bugs, that are hard to

reason about since they may depend on specific thread interleavings. With PM, we observe a

similar scenario: its use enables performance gains, but it also leads to complex bugs. Given its

relevancy, the literature about concurrency bug detection is vast [24].

The parallel between PM and concurrency does not end here, because, in fact, we can combine

both for applications with high performance requirements, however, this combination creates a

new complex programming challenge. To correctly implement a concurrent PM application,

the developer must reason about the persistent state, the stalling and reordering of memory

operations, the synchronization of shared memory accesses, and the impact that different thread

interleavings may have in the correctness of the system. This increased challenge resulted in the

recent proposals for concurrent bug detection in PM applications [22, 23]. However, these tools

have certain limitations, namely, they are not application agnostic, since both focus on key-

value stores (or equivalent applications), nor automatic, because they require the development

of custom artifacts for debugging each application.

To address this, we propose HawkSet, a new tool that uses lockset analysis to detect con-

current PM races, in an automatic and application agnostic fashion. Lockset analysis allows

HawkSet to detect races without needing to observe them, unlike PMRace [23], which needs to

explore the exact interleaving that causes a particular bug, possibly even needing to explore it

several times. We are also able to detect races without prior knowledge of the application, or

any complex artifacts, unlike Durinn [22], which can only analyze key-value stores (or equivalent

applications), and requires a complex driver. Even though lockset analysis is known to scale

poorly for large amounts of memory accesses, our key insight is that the fraction of PM accesses

amongst regular accesses, is small, approximately 4% [25]. Thus making this technique suitable

for PM programs.
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Contributions The work outlined in this thesis constitutes the following contributions:

� A lockset analysis algorithm tailored for race detection in PM applications

� A heuristic capable of addressing commonly faced problems in lockset analysis

� HawkSet, a full implementation of our proposal

� An empiric evaluation of HawkSet’s ability to debug various PM applications

� The report of one previously unknown bug

Publications Part of the work described in this document has been published in João Oliveira,

Miguel Matos and João Gonçalves. (2023). Deteção de Erros de Concorrência em Programas

de Memória Persistente Utilizando Análise de Locksets. INForum.

The rest of this document is structured as follows: Chapter 2 presents vital background

in PM and concurrency. In Chapter 3 we characterize the existing state-of-the-art in PM bug

detection and outline some techniques used for concurrency bug detection. Chapter 4 further

explains the problem, our solution and its implementation details. Chapter 5 describes the

experimental results of our tool and compares it to the state-of-the-art. Finally, Chapter 6

concludes the document.
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Chapter 2

Background

In this chapter, we lay out the main concepts behind our work: persistent memory and concur-

rency, including the specific semantics and bugs related to each discipline.

2.1 Persistent Memory Semantics

PM combines the byte-addressability of memory and the durability of storage while being able to

maintain a performance on-par with traditional DRAM. Commercially available solutions, such

as Intel’s Optane DC memory, have allowed for increased adoption of PM. As is to be expected,

the increased adoption of PM comes with an increased interest in guaranteeing correctness in

PM systems, which in turn, motivates research in PM bug detection. To fully understand how to

detect bugs in PM applications, we must first study its semantics and how to properly develop

such applications.

Some applications, such as Hemem [26], use PM as a cheap extension to DRAM without

taking advantage of its persistency guarantees. Those applications do not use PM to maintain

a persistent state and therefore none of the concerns outlined in this document apply.

To properly maintain a persistent state, an application must guarantee that it is crash-

consistent, in other words, it is able to successfully recover from an arbitrary crash at any point

in the execution [27]. A successful recovery depends on the semantics of the application, but in

general it must return the system to a valid state from which it can continue executing.

When discussing PM applications, it is useful to logically divide the execution in two parts.

The first is the execution that occurs before the crash, the pre-crash execution, and the second

is the one that comes after the crash, the post-crash execution, usually involving some recovery

mechanism. It is also common to talk about the post-crash state, this is the state of the

application after recovering from a crash.

5



The use of PM creates additional implementation difficulties that are generally not thought of

in applications build on top of DRAM. To successfully achieve crash-consistency, PM developers

need to take into account the persistency of stores and the order in which they occur since they

are not guaranteed to execute in program order [13].

Figure 2.1 is a graphical representation of the semantics of PM. We say that stores are per-

sisted, if they are in the persistent domain, in other words, they are guaranteed to be visible to

the post-crash execution and, for the purposes of this document, in persistent memory. Every-

thing else, belongs in the volatile domain, where data is not persisted and can be lost after a

crash (i.e.: power failure), usually stored in the cache or volatile memory.

To control the stalling and reordering of stores in PM programs, hardware vendors provide

several instructions for developers to take advantage of [28]. They can differ in name between

architectures however, there are a few generalizations we can make regarding them:

Stores are commonly used to instruct the CPU to write in memory. Performing writes

is extremely expensive, therefore, stores usually stay in the cache, which may be arbitrarily

written-back to memory depending on the cache policy. However, modern CPUs take this

optimization even farther, and can delay and reorder stores using the store buffer. This means

that a program might have executed one or more store instructions while the cache and memory

remain the same. Over the course of this document we use store and write interchangeably.

Non-temporal stores are a subset of store instructions that bypass the cache, being written

to memory, however they can still be delayed like regular stores.

Flushes instruct the CPU to flush the data from cache to memory with cache-line granu-

larity, however, CPUs may reorder these flushes with respect to other instructions, for example,

another flush. It is important to note that these instructions are not the only way stores can be

persisted, the cache might write-back data to memory depending on the cache eviction policy.

Flushes ensure that data is written-back explicitly instead of arbitrarily.

Fences guarantee that all memory operations before them are visible after their execution,

effectively forcing stalled stores to be executed and prohibiting reorders with respects to in-

structions that come after the fence. For example, 2 flushes separated by a fence instruction

guarantees that the CPU executes the first flush instruction before the second one.

To prevent an inconsistent state after an arbitrary crash the developer must explicitly flush

cache-lines, and order such flushes using fences. This process is not simple to implement, because

it requires a considerable understanding of PM semantics, the cache, and of the application itself.

The incorrect usage of PM can lead to performance and correctness bugs.

To aid in the development of PM applications, programmers can use libraries designed to en-
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Figure 2.1: PM instructions and their effects on the domain of data. Each box denotes a storage
medium. Arrows accompanied by the respective instruction denote the flow of data between
storage mediums and domains.

sure crash-consistency, without requiring the developer to engage directly with low-level instruc-

tions. These libraries use different mechanisms, such as logging, to guarantee crash-consistency,

if used correctly. Ensuring the correct use of such libraries can be as much of a challenge as

ensuring the correct use of PM instructions. Not only that, but the libraries themselves can

have bugs possibly affecting every other application that relies on them.

2.1.1 Note on Intel x86’s Instruction Set

In Intel x86’s instruction set there are three distinct types of flushing instructions [13]: clflushopt

which is comparable to the flush primitive described above, clflush which cannot be reordered

with respect to other flushes, clwb that might not invalidate cache-lines after the write-back.

Over the course of this report we will refrain from using specialized names from a particular

architecture, opting instead to follow the naming conventions described above: store, flush and

fence.

2.1.2 Note on eADR Technology

Intel has released a feature in recent processors, called extended Asynchronous DRAM Refresh

(eADR), that extends the persistent domain to the cache [29], effectively ensuring all stores are

immediately made durable once they reach the cache. However, eADR does not solve all issues

described later in this document: The CPU can stall stores from reaching the cache, which can

cause PM bugs. Furthermore, semantic based violations are still possible even with a persistent

cache (see Section 2.2.2). Not only that, but for the foreseeable future, eADR will likely not be

available in every platform, and applications will not be able to rely on its existence. For these

reasons we believe the study of bug reporting in PM programs will remain useful.

7



2.2 Persistent Memory Bugs

As discussed before, the adoption of persistent memory technology goes hand in hand with the

surfacing of novel bugs. In this section we provide a consolidated bug taxonomy extrapolated

from the state-of-the-art in persistent memory debugging, accompanied by examples.

2.2.1 Persistency Bugs

Missing Flush - these bugs occur when a store is never flushed. There are two possible reasons

for this, either the flush is missing, and the store is not guaranteed to be persisted, therefore it

results in a persistency bug or, the flush is not necessary because it is transient data, therefore

it constitutes a performance bug (this will be discussed later in this section). To the best of our

knowledge, there is no tool in the current state-of-the-art of PM debugging that can confidently

and automatically distinguish between the two.

2.2.2 Semantic Bugs

Semantic bugs include all PM bugs that cause an inconsistent post-crash state after recovery due

to a failure to adhere to the semantic requirements of the applications. In particular ordering

and atomicity between store operations.

Algorithm 2.1: Ordering violation

1 value←VALUE;

2 key←KEY;

3 flush(&value);

4 flush(&key);

5 fence();

Algorithm 2.2: Atomicity violation

1 value←VALUE;

2 flush(&value);

3 fence();

4 key←KEY;

5 flush(&key);

6 fence();

The algorithms described above are examples of semantic bugs in persistent memory pro-

grams. All variables are assumed to be backed by PM.

Algorithm 2.1 represents a typical insertion on a key-value store, in it we can observe a

potential ordering violation when the crash happens between lines 2 and 5. If key has been

written-back to PM, but value has not, the post-crash state will be incoherent, an entry in the

data structure points to a garbage value. This can happen because caches may write-back cache

lines arbitrarily due to their eviction policy. This is an example of an ordering violation, when

an application has a semantic requirement that is not guaranteed.

A simple way to fix this violation is to guarantee an order between both writes (and respective

flushes), Algorithm 2.2 implements this fix. Since the fence instruction only completes when all
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pending memory operations are executed, we guarantee that the second write will only occur

after the first one has been persisted.

Now assume that our key-value store program has a new, stricter requirement, keys and

values must be persisted atomically. The only valid states are ones before and after the insertion

operation.

In Algorithm 2.2 we can observe a potential atomicity violation if the application crashes

between lines 3 and 6. After recovery, the post crash-state will only observe the new value of

key, which is not allowed by the requirement described above.

Algorithm 2.3: Atomic Operation

1 c← 0; flush(&c); fence();

2 backup key value();

3 key← KEY;

4 value← VALUE;

5 flush(&key);

6 flush(&value);

7 fence();

8 c← 1; flush(&c); fence();

Algorithm 2.4: Recovery Procedure

1 if c = 0 then

2 key← OLD KEY;

3 value← OLD VALUE;

To fix the atomicity violation a developer could take a similar approach to the one imple-

mented in Algorithm 2.3, where the variable c (usually called commit variable) tells the recovery

procedure described in Algorithm 2.4 whether the operation was fully completed. In this ex-

ample, when the recovery procedure detects an incomplete operation, it resets the state to the

initial value. Using this technique we can guarantee that, after recovery, no intermediate states

are visible.

2.2.3 Performance Bugs

Transient Data in PM - PM tends to have a higher store latency than volatile memory,

therefore storing data in a slower medium when it is not necessary can decrease performance.

Currently, this bug is detected by finding memory regions in PM that are written to but never

flushed, however, as detailed above, it is not trivial to distinguish this from a missing flush bug.

Extra Flush - flushing the same cache-line without any previous store to that region con-

stitutes a performance bug, as the second flush is not necessary and will have no effect.

Extra Fence - fence instructions guarantee that all previous flushes are executed, if there is

a fence instruction without pending flushes then the fence has no effect and could be removed.

Flush on Volatile Addresses - flushing a volatile memory address, in the context of

persistent memory, is a pointless endeavor since by the end of the flushing operation the data is
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still in the volatile domain.

2.3 Concurrency

Concurrent programs are able to harness more performance from the CPU, by either taking ad-

vantage of parallel execution or using dead time (i.e: waiting for IO) for useful operations. How-

ever, with great power comes great responsibility: a big challenge of concurrent programming

involves the correct use of shared resources, by using several synchronization techniques [30].

Threads - a thread is a logical unit of execution that can run concurrently with other

threads. In practice, programs use threads to achieve concurrency, distributing the workload

among them. A thread has its own local storage and communicates with other threads using

shared memory, it is here that caution must be taken to avoid races.

Races - a race condition occurs when two concurrent executions access shared variables

concurrently and at least one of those accesses is a write.

Critical sections - to avoid data races, enforce atomicity, and ensure ordering between

operations when handling shared variables, it is necessary to make sure that different threads

do not access the same memory region at the same time. These sections of code where shared

memory is accessed is the critical section.

Synchronization - there are several synchronization mechanisms that usually fall into one

of the following categories: A mutex represents exclusivity, ensuring that only one thread may

hold the mutex at any given point. It is commonly used to dictate whether a thread can access a

shared memory region. A semaphore provides the ability to allow access to a particular critical

section to a set number of threads, it maintains an atomic counter that is either incremented

or decremented as threads release or acquire it, if a thread tries to acquire a semaphore whose

counter is 0 it must wait until another thread releases it. A condition variable allows threads

to execute only after some pre-condition is achieved. While a thread is waiting and another

thread signals the condition variable, the waiting thread will awake and continue execution. If

there are multiple threads waiting and another thread broadcasts the condition variable, all the

waiting threads will awake. This synchronization mechanism creates a happens-before relation-

ship from the thread that signals the condition variable to the threads that wait. A barrier

allows the synchronization of threads, when an execution reaches a barrier it stops until all other

threads reach it, at which point all threads are awoken and continue executing. To guarantee

coherency, these synchronization mechanisms are usually implemented using hardware-provided

atomic instructions.
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Figure 2.2: Read-modify-write race

2.4 Concurrency Bugs

In this section we describe three types of concurrency bugs, which are bugs that specifically

occur due to the properties of concurrent programs.

2.4.1 Read-modify-write Race

Races occur when there are two concurrent accesses to a shared variable and at least one of

those accesses is a write.

In Figure 2.2 we can see an example of a race in action. The variable x is a shared variable,

initialized to 0, L1 and L2 are the corresponding local variables for each thread. We can see

in the example that T1 stores the shared value in a local variable then its execution is halted

(this can happen arbitrarily) and T2 resumes reading, incrementing and storing the new value.

At this point the global variable has the new value (1), after that T1 uses its old local copy of

the shared value to calculate the increment and store it. In this example two threads try to

increment a variable initialized to 0 resulting in 1. We would expect the resulting outcome to be

2, however that may not always be the case as expressed by the example above. To fix this issue,

a developer can use a mutex to ensure mutual exclusivity for the entire increment operation.

2.4.2 Semantic Violations

Atomicity violations occur when memory regions that should be updated atomically (with

respect to other updates and reads) are not. In Figure 2.3a we can observe this violation. The

variables x and y are shared variables that should be modified atomically. In this application

each thread is tasked with writing a different value (1 and 2) to x and y, the only acceptable

states by the end of the execution are either both variables with a value of 1 or both variables
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Figure 2.3: Concurrent semantic violations

with a value of 2 (depending on which thread executed last). In this example we can see that

this might not always happen. T1 starts by writing to x and immediately gets swapped with T2

that updates both variables, then T1 finishes its second write operation by writing to y. By the

end of the execution each variable has a different value, which is an indication that atomicity was

broken. One possible way to fix this violation is to employ a mutex around both assignments.

Ordering violations occur when operations happen out of order. It is easy to imagine

how that can occur in a multithreaded environment if the proper synchronization is not imple-

mented. Figure 2.3b provides a simple example of such a violation. Assume that it describes

an application where the shared variable x must be updated before y. In this example, due

to the lack of synchronization, that requirement is not met, and therefore we have an ordering

violation. One possible way to fix this violation is to employ a condition variable between both

assignments.

2.5 Concurrency Bug Detection Techniques

In this section we outline the rationale behind three approaches to concurrency bug detec-

tion [24]. These constitute the techniques we considered while building our proposal.

2.5.1 Delay Injection

This family of approaches attempts to force concurrent bugs by injecting delays in memory

accesses. They can fall between two extremes: totally random where the duration and location

of the delays is randomized, or informed by a multitude of heuristics and other techniques.

RaceFuzzer [31], for example, requires several executions to be able to provide good coverage

since its efficacy is dependent on the interleaving observed in any given run. TSVD [32] focuses
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on large scale testing, and is able to achieve a relatively low overhead. However, to accomplish

this, TSVD is specifically designed to find bugs within the first few runs, sacrificing coverage.

Overall, delay injection increases the probability that a concurrent bug is observed, but still

requires multiple executions if we want to achieve proper coverage of interleavings.

2.5.2 Happens-Before Relation

The happens-before relation was first outlined in [33] as a method to determine a partial order

between events in distributed systems. Each event is ordered based on a logical clock, which is

incremented based on messages, specific events that establish an order between processes. Using

the happens-before relation, shared memory accesses can be analyzed in order to determine

whether they can occur concurrently and subsequently reported. Several works have improved

the technique over time. To the best of our knowledge, it was first described in [34] and further

improved upon in [35, 36].

2.5.3 Lockset Analysis

According to our research, lockset analysis was first introduced in Eraser [37], which attempts

to uncover concurrent accesses to shared memory that are not correctly protected by locks. This

approach assumes all accesses to the same memory region must be consistently protected by the

same lock, and if that is not observed then a race can occur. Each access registered by Eraser

further refines the lockset. To compute this, the locksets of each access to the same variable

are intersected, the result constitutes in the set of locks that protect a given variable. If at any

point of the execution the variable is not consistently protected by at least one lock, it issues a

report. This approach is susceptible to two type of false positive: when variables are correctly

initialized without a lock, because their address has not yet been made public to other threads,

or when a variable is read-only after initialization, therefore does not necessitate protection. To

accommodate for these programming practices Eraser only registers accesses made to a variable

after it is published, which is when it is visible to other threads. However, there is no trivial

way to know when that occurs. To approximate this decision, a heuristic is used, stating that a

variable is published when a second thread performs a write on it. Eraser also reports the use of

annotations to remove specific false positives caused by benign races, private locking mechanisms,

and memory reuse. Lockset analysis is often paired with the aforementioned happens-before

relationship [36]. Overall lockset analysis provides a way to detect concurrent accesses to shared

variables without the need to observe the specific execution where they occur. This removes the

need to run the analysis several times in the hope of exploring different interleavings.
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Figure 2.4: Persistent Race

2.6 Concurrent PM Bugs

Typical concurrent bugs involve the incorrect synchronization of accesses to shared memory

regions, to detect them, we must take into account the possible thread interleavings or synchro-

nization primitives used to protect them. PM bugs are caused by the incorrect use of low-level

instructions, or the lack of recovery mechanisms, and to detect them, we must reason about the

semantics of PM. When using both concurrency and PM, novel bugs are introduced, concur-

rent PM bugs, and, to detect them, both matters must be taken into account. In this section

we describe a taxonomy consisting of three classes of concurrent PM bugs, including how they

correlate to concurrent bugs as well as PM bugs, and what programming errors can cause then.

2.6.1 Persistent Race

We consider that the persistent race is a logical consequence of introducing PM in concurrent

applications, or vice-versa. To understand its origin we start by analyzing Figure 2.4a, which

represents two different programs. On the left there is a concurrent program that correctly

accesses a shared variable x, using locking primitives on the same lock A. On the right lies a

simple PM application that correctly writes and persists variable x. Both these applications are

correct within their respective contexts, however, when combining both PM and concurrency

on a singular program the developer may make a mistake resulting in the implementation in

Figure 2.4b. In this application, the accesses to the shared variable x is protected by the same

lock A, however, the persistency is not. If the application crashes after the read operation in T2

creates a side effect, then that side effect will be visible in the post-crash state but the original

store it depended on will not. This constitutes a bug. In this relatively simple example, the bug

can be fixed by putting the persistency operation inside the section protected by the lock A.
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2.6.2 Persistent Ordering Race

The persistent ordering race occurs when, due to the concurrent nature of an application, the

order in which data is persisted is not guaranteed. Consider the example applications described

in Figure 2.5a. On the left there is a concurrent application that correctly enforces ordering

between writes using a signal/wait synchronization primitive. On the right we describe a PM

application that correctly employs a strict persistency ordering between writes. Both these

applications are correct within their domains, however, when combining both versions in a

single program, the developer may erroneously produce the implementation in Figure 2.5b. In

this example, despite the write operations being correctly ordered by the signal/wait primitives,

the persistency is not. If the application crashes after the second write, the post-crash may

observe the second write but not the first, breaking that ordering requirement. In this relatively

simple example, the bug can be fixed by putting the persistency operation before the signal.

2.6.3 Persistent Atomicity Race

The third concurrent PM bug is the persistent atomicity race. Figure 2.6a represents two

distinct applications. On the left there is a concurrent application that atomically updates a

set of variables x and y. On the right there is a PM application that uses a commit variable C

to ensure the set of variables is update atomically in case of a crash. Both these applications

are correct, however, merging them can result in the program in Figure 2.6b. Despite the use of

correct synchronization primitives to ensure thread-atomicity, including the persistency of each

write, and the use of commit variables to ensure failure-atomicity, this application can still result

in an error if it crashes after thread T2 persists some side effects from its read operation. After

the crash, the atomic update is rolled back, since the operation was not marked as complete
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Figure 2.6: Persistent Atomicity Violation

with the commit variable, however the side effect is still visible. This constitutes a bug. In this

relatively simple example, the bug can be fixed by ensuring the commit variable updates are

included inside the critical section.

2.7 Summary

To summarize, the combination of PM and concurrency leads to a new set of bugs that requires

specific tools to be detected. In the next chapter we discuss the state-of-the-art of PM bug

detection tools.
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Chapter 3

Related Work

In this chapter we lay out our analysis of the current state-of-the-art for PM bug detection. In

Section 3.1 we report the state-of-the-art in PM bug detection tools. In Section 3.2 we further

analyze the tools that focus on concurrent PM bug detection. Finally, in Section 3.3, we provide

an overview of the state-of-the-art and identify the areas in which we can make our contribution.

3.1 Persistent Memory Bug Detection Tools

Over the course of this section we describe how each tool functions, and characterize them

in terms of being automatic and application agnostic. We define automation as a subjective

measure of the work required to debug a particular PM application using the tool, and define

an application agnostic tool as being able to analyze any type of application. Our interest in

these properties will become evident later.

PM bug detection tools need to decide whether a particular application has a bug, however,

this is not a trivial decision due to the existence of semantic bugs. It is straightforward to decide

whether a missing flush/fence constitutes a bug, but it is a different task to decide whether any

two variables must be persisted in a specific order or atomically. To solve this issue, tools

approximate this decision using oracles, as a way to decide failure. We find that the oracle used

is heavily correlated with how automatic and application agnostic a tool is (although not an

exact match), and based on this observation, decided to group tools depending on the oracle

used.

3.1.1 Recovery/Verification Program

The use of a verification program is one of the first crash state validating techniques presented

in the literature.
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The first tool proposed for PM bug detection is Yat [14], which divides its analysis into

multiple stages: running a workload while generating a trace of memory primitives (store, flush,

and fence) related to persistent memory, computing the set of all states based on the fact that

PM operations can be delayed and reordered, and then, for each state, executing a file system

checker (verification program) reporting a bug in case of a failure. As previously mentioned,

Yat eagerly enumerates all states, whose number grows exponentially with the number of stores.

According to the evaluation presented in the original paper, the analysis of a workload of 54k

stores, 14k flushes and 6k fences would take a theoretical 5.2 years of runtime to complete [14].

To overcome this challenge, Yat proposes a threshold, that limits the number of states explored

for each segment of PM instructions between fences. With an arbitrarily chosen threshold

of 250 combinations per segment it takes 3 days to execute the previous test, reducing the

total number of states from 789M to 1M. This threshold does not take into consideration any

information about the program, arbitrarily pruning the amount of states in the search space.

Although a pioneer of PM bug detection, Yat makes one thing clear, a complete exploration of

all possible crash-states is not a feasible solution for debugging PM programs.

Jaaru [15] improves on this matter by exploring possible states in a lazy fashion. It uses

model checking on top of a persistent memory simulation to realistically infer the possible states

without repetition, considerably pruning the search space. In the best case scenario, the number

of possible crash states grows quadratically with the number of stores, instead of exponentially

like in Yat. Jaaru achieves this by using constraint-refinement, a technique which is very effective

in programs that use commit variables (a common PM technique according to the authors of

the paper, however it is not backed by a formal study). Constraint refinement only enumerates

crash states if a value is read on the post-crash, unlike Yat where even if a variable is never

read on the post-crash it still enumerates all the possible combinations stores to that address.

Jaaru is still exhaustive in its testing, all crash-states pruned by constraint refinement are either

equivalent to another state that is tested or impossible to be observed in a real execution. The

improvement brought by Jaaru constitutes a significant shift in performance of systematic crash

state validation, however its model checking approach does not support certain components

commonly used in applications, such as sockets, without considerable modification.

Yashme [16] builds on Jaaru by introducing a concept they call persistency races, a

particular type of atomicity violation caused by compiler optimizations. Store tearing (when

a store operation is divided into multiple stores) and store inventing (when an extra store

instruction is added to an operation) are techniques implemented by the compiler that, coupled

with PM semantics, have the potential to introduce bugs in the application. For example, the
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compiler may divide the store of an eight byte value, such as a pointer, into two separate store

instructions, which means that under specific circumstances (where only one of the stores is

persisted right before the application crashes) the post-crash state will be inconsistent, resulting

in a failure. It is worth noting, that a program like Yat that does not employ model checking

would be able to catch this type of bug, since it instruments each store separately and should

reorder/delay them to reveal an inconsistent state.

Mumak [38] focuses on achieving scalability, while also maintaining an automatic and appli-

cation agnostic approach. To accomplish this, Mumak foregoes testing all possible post-crash

states, opting instead to evaluate the memory operations in program order. This would obvi-

ously result in missed bugs, however, the authors report that this approach detects 90% of the

bugs detected by the previous tools in the state-of-the-art. Mumak divides its approach in two

distinct phases: fault injection and trace analysis. The fault injection stage injects failures in

PM operations and runs the recovery program, if it fails then a bug is reported. The second

stage, reports several types of PM bugs by analyzing the trace and applying tailor-made pat-

terns. Most importantly, it attempts to compensate for the fact that the previous stage does not

test all possible post-crash states. To do this, it reports any fences that act on more than one

flush. Such occurrences imply that the data is persisted in a non-deterministic order, which can

lead to a PM bug. In short, Mumak’s ability to scale is much greater than previous tools that

rely on the recovery procedure, however, it achieves this by sacrificing completeness. Despite

its black-box approach, Mumak performs a significant optimization to the instrumentation that

requires the application to be deterministic.

Yat provides PM bug detection for file systems, which means it is not application agnostic,

while Jaaru, Yashme, and Mumak support most applications. In practice, Jaaru, and Yashme

are prototypes that make several implementation decisions which hinder their automation and

application agnosticism. Namely, their model checking does not support certain commonly used

features, such as sockets. However, Mumak makes application agnosticism a priority, and puts

considerable weight on its black-box approach. Yat, Jaaru, Yashme, and Mumak are fairly

automatic, because they use the verification/recovery program as an oracle, which most (if not

all) PM applications already have, requiring no extra artifacts for the purpose of debugging.

Furthermore, despite all efforts made to achieve scalability, Yat, Jaaru, and Yashme simply do

not scale as desired. Mumak is able to scale for large workloads, however it only considers the

states in program-order, which leads to missing bugs.

PMRace [23] is a bug detector for concurrent PM applications. It uses the recovery procedure

as its oracle, we will discuss it further in Section 3.2.
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3.1.2 Operation’s Semantic Information

Another type of oracle employed by PM bug detection tools is the semantic information of the

operations, namely, these tools make assumptions regarding on how the application under test

functions.

Witcher [17] is one such tool, it employs likely-correctness conditions, which are heuristics

that are used to find points in the code where if a failure would happen, the chance of it resulting

in an invalid state would be higher. These conditions were created based on commonly used PM

programming patterns, and inferred from a dynamically created graph which contains data and

control dependencies between instructions. Witcher focuses on testing durable linearizability

(preserves linearizability even in the face of arbitrary crashes) at the operation level. To achieve

this, it needs semantic information about each operation in the form of a driver, and requires

the application to have an API equivalent to that of key-value stores (insertion, removal, and

reading). Witcher uses output equivalence checking to test a particular failure point. It runs

the application twice without a failure, once where the operation completes fully, and another

where the operation is skipped, registering both outputs. It then runs the application again,

while injecting a failure in the operation (according to the heuristics mentioned above), and if

the output differs from both of the previously mentioned outputs it means that the applica-

tion did not follow all-or-nothing semantics and does not satisfy durable linearizability. To be

able to successfully compare the output of different executions Witcher requires a deterministic

application (or at least an application whose output is deterministic).

Durinn [22] builds on top of Witcher with concurrency bug support, we will discuss it further

in §3.2.

Vinter [39] is a full system PM debugger that leverages full virtualization with qemu [40]

to debug kernel code by applying instrumentation at the emulation layer. Vinter requires a

specialized program that extracts the semantic information from the post-crash state. Since the

applications evaluated are file systems, the extractor is a file system serializer. Vinter uses hy-

percalls to distinguish between different operations, these calls must be manually inserted by the

developer in the workload between operations. Vinter proposes two types of crash-consistency

guarantees: Single Final State (SFS), where an operation may have several in-between states,

but after returning it must have only one state, and Atomicity, where an operation can only

have one possible state. All operations that satisfy Atomicity also satisfy SFS by definition.

Vinter reports an operation’s failure to adhere to either guarantee, and the user must manually

decide which reports are useful, resulting in a very large number of potential bugs reported and

increasing the burden on the tool’s users. Overall Vinter’s biggest strength is the support for

20



kernel-side code, its claims of testing full systems fall short in practice since full systems tend to

be more complex than file systems and their operations might not be trivially mapped to either

of the proposed guarantees.

Witcher, Durinn, and Vinter make heavy assumptions about the application under test,

and require extra artifacts to be created specifically for the purpose of the debugging process.

Namely, Witcher and Durinn support key-value stores or equivalent applications and require

complex drivers that map the applications operations to each tool, while Vinter supports file-

systems whose operations must follow specific guarantees and requires a program that extracts

the semantic information of a post-crash state.

3.1.3 Annotations

Annotation based oracles require the programmer to define the intended semantics in the pro-

gram itself.

PMTest [18] uses assert-like annotations in the code to transmit ordering and atomicity

information. There are two basic annotations (low-level checkers), isPersist, that checks

whether a particular store is persisted, and isOrderedBefore, that checks whether write A is

persisted before write B. PMTest computes the flushing and persistence intervals at any given

point using PM semantics, and when the checking engine finds an annotation it tests it and, if

it is not true, reports a bug. These low-level checkers are enough to ensure correct ordering and

atomicity between writes, however they can be very repetitive to write and error-prone. With

this in mind, the authors propose a series of high-level checkers, that are automatically inserted

in PMDK transactions and check whether variables have been correctly persisted. The use of

annotations in PMTest requires deep knowledge of the application’s semantics as well as PM

semantics, incurring a great cognitive load on the programmer. On top of that, the misuse of

annotations can lead to false positives, as well as false negatives.

XFDetector [20] leverages the commit variable PM programming pattern to infer the con-

sistency of memory regions. The programmer registers commit variables, and what memory

regions are controlled by each variable, then XFDetector keeps track of each memory region’s

consistency and persistency state. The persistency state is obtained via tracing, by instrument-

ing store, flush and fence operations, and the consistency state is obtained from updates to the

registered commit variable for that memory region. When a read happens on the post-crash exe-

cution and the location read is not persisted or not consistent XFDetector reports bugs. Commit

variables are meant to be read whether they were successfully persisted or not. To avoid false

positives, XFDetector ignores these accesses when reporting bugs. XFDetector also allows the
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annotation of start and ending of regions of interest, which are the slices of execution that get

analyzed. The annotation based approach leads to a similar problem as PMTest, although the

burden can be considered smaller, since only commit variables need to be annotated. However,

it can still lead to misuse of annotations.

PMDebugger [19] implements a novel way to organize the bookkeeping metadata based on

a study of PM programs that yielded the following patterns: (1) most stores are persisted

by the nearest fence, (2) multiple writes to a particular cache line are persisted by a single

flush instruction, and (3) store instructions are more frequent than flush or fence. With these

patterns in mind, PMDebugger uses two data structures: an array, for the most recent stores,

that capitalizes on the first pattern due to its fast insertion/removal, and an AVL-tree for longer

lived stores, that takes longer to insert/remove, but it is amortized in faster searching. The

second pattern is used to guide the structure of the metadata itself, persistency information can

and should be maintained per cache line. The third pattern also justifies the array for storing the

most recent store operations since insertion is faster and store instruction constitute an insertion.

Unlike PMTest or XFDetector that use inline annotations, PMDebugger’s paper describes a

configuration file, external to the application used to define ordering constraints. We believe

this detachment between annotations and code can be counterproductive and lead to more

mismatches between annotation and implementation due to forcing the developer to maintain

two different locations while changing the code. In reality, PMDebugger’s implementation uses

inline annotations for ordering information.

Overall the disadvantage of annotations is not just error proneness, it is also the effort

required of the programmer, their use requires that developers spend a considerable amount

of time creating specific artifacts for debugging, unlike some previous examples that use the

recovery/validation program, where any time spent creating a recovery program contributes

towards debugging and production. It is clear that annotations hinder the level of automation

provided by these tools, however, when it comes to application agnosticism, the approaches of

PMTest, XFDetector, and PMDebugger should provide support to any application, although

the high level checkers in PMTest only support PMDK transactions.

3.1.4 Persistency Model

The tools discussed in this section take advantage of clear-cut persistency models to guide their

debugging process. There are three proposed models for persistency: strict, epoch, and strand.

The strict persistency model dictates all stores are sequential and synchronous and must be

followed by a flush and a fence. The epoch persistency model slightly relaxes these restrictions.
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It divides the execution in epochs and all stores within an epoch can be reordered with each

other, however, stores in different epochs cannot be reordered with respect to each other. The

last persistency model is strand persistence. A strand is an interval of execution (similar to an

epoch), where stores can be reordered with respect to other strands but not the same strand.

DeepMC [41] uses static analysis to determine whether an application follows the intended

persistency model. It generates a data structure graph (DSG) using data structure analysis,

and then it uses the DSG together with a trace to ensure the program follows the persistency

model.

Another tool that has been mentioned above, PMDebugger, uses the persistency model to

test for bugs, particularly the ones that do not involve ordering or atomicity.

Both of these tools have one major drawback, most applications, including simple synthetic

benchmarks, follow a mixed persistency model, neither fully strict, epoch, nor strand persistency

model, which leads to a lot of false positives. Similarly to Yashme and Jaaru, DeepMC’s ap-

proach is automatic and application agnostic on paper, however, in practice, the static analysis

implementation may not support all features of an application, but it should be extendable.

3.1.5 Symbolic Oracles

Agamotto [21] builds the symbolic state of persistent memory variables by driving the execution

towards regions of code with higher number of PM-modifying instructions, which are therefore

more likely to contain PM bugs. Agamotto supplies symbolic oracles for trivially identifiable PM

bugs. These oracles receive the symbolic state at key points of the execution (flush, fence and

end of the execution), and decide whether it constitutes a bug. However, it requires the creation

of custom oracles for semantic bug detection, pushing that burden to the developers who need

to reason about their program’s semantics in the context of persistent memory and a symbolic

state, which is not a trivial task. Symbolic execution is oblivious to the implementation details

of a compiled program, meaning that any bug caused by compiler optimizations or architecture

cannot be checked by the oracles in the current state of the tool. Agamotto is not automatic

since it requires the creation of custom oracles that check for semantic bugs in the symbolic

state, nor application agnostic since these oracles cannot be reused between applications. On

top of that, commonly used programming constructs (i.e: sockets) may not be supported by the

underlying symbolic execution engine, requiring modification.
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3.2 Concurrent PM Bug Detection

We now characterize the state-of-the-art in terms of its ability to deal with concurrent programs

and discover concurrent PM bugs. We define a concurrent PM bug as a PM bug that manifests

due to concurrency and divide the state-of-the-art in a tool’s ability to search for such bugs,

passively and actively.

Agamotto uses a symbolic execution engine which is known to not handle concurrency [42],

for this reason, it is left out of this discussion.

3.2.1 Passive Search

Tools that do not explore different thread interleavings but support concurrent programs can,

by chance, discover concurrent PM bugs. Yat, Jaaru, Yashme, Mumak, Witcher, PMTest,

PMDebugger, and XFDetector’s techniques are, in principle, thread safe, therefore if a particular

execution sees a race between 2 threads which causes a PM bug these tools should be able to

detect it. However, these tools do not make an active effort to search for these bugs, and would

not be able to distinguish them from regular PM bugs.

3.2.2 Active Search

Tools that actively explore interleavings are better equipped to detect concurrency PM bugs.

PMRace [23] detects what it calls PM inter-thread inconsistencies, when a thread persists

side effects based on non-persisted data from another thread. If the program crashes after this,

there will be persisted data that depends on data that was lost. These side effects are therefore

considered tainted and, if not overwritten by the recovery, constitute a bug in the application.

PMRace defines two ways in which these side effects may occur, the persisted data was read

from a non-persisted write, or, the target address of the persisted data was read from a non-

persisted write. This taint analysis approach is not foolproof and can fall short under specific

circumstances: First, even overwritten data may still be inconsistent if the new value depends on

another tainted value, leading to a false negative (i.e.: the recovery program increments a tainted

memory region). Second, there can be regions marked as tainted by the end of the recovery

that do not actually constitute a bug (i.e.: a recovery program that works in a lazy fashion).

PMRace attempts to force persistent side effects based on unpersisted data, essentially, it needs

to observe a store and a read to the same address executing concurrently. To achieve this, it

injects waits between writes and reads, these waits are properly engineered to avoid deadlocks,

and reduce wasted time, but still constitute a noticeable slowdown. These waits are targeted

to shared PM variables with a focus on the most accessed addresses. The authors introduce
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Figure 3.1: Detection of concurrent PM bugs with Durinn (Source: [22])

fuzzing to generate workloads in order to increase coverage. PMRace’s approach to fuzzing

encompasses a series of strategies that target the workload based on a seed, performing mutations

to operation’s parameters, adding or deleting operations, and shuffling the operations. These

strategies prioritize similar keys in order to increase the likelihood of concurrent accesses. If the

strategies fail to increase coverage, PMRace populates the workload with insertion operations

in order to trigger resizing mechanisms that usually involve a lot of PM operations that can

potentially contain bugs. Finally, PMRace also swaps out seeds if the above strategies are not

fruitful. The approach adopted by PMRace for concurrent PM detection should, in theory, be

fairly automatic and application agnostic. The fuzzing engine is made with key-value store (or

equivalent) applications in mind and requires non-trivial artifacts be created specifically for the

debugging process. The authors claim that coverage is an orthogonal problem, however, it is not

clear if the approach would even be feasible without the use of the fuzzing engine. Therefore,

we believe that PMRace is not automatic nor application agnostic.

Durinn describes linearization points (LP) as points in the program where data becomes

visible to other threads and durability points (DP) as points in the program where data is

persisted. Concurrent PM bugs occur when the crash happens between these points. For ex-

ample, let’s say thread A performs a store that is visible to other threads (after LP), while

thread B reads and returns that new value and the application crashes before thread A per-

sists the store (before DP). After recovery, reading from the memory region may yield the old

value, breaking linearizability. DPs are flush/fence instructions, therefore, are easy to find and

instrument. To infer LPs Durinn exploits 3 common programming practices: (1) Atomic in-

structions, used to perform atomic operations, (2) guarded-protection, which is the use of guard

variables to ensure that non-atomic operations are only visible after they are completed, and

(3) publish-after-initialization, used for atomic allocation and initialization, where the pointer

to a newly allocated memory region only becomes visible to other threads after the initializa-
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tion is complete. Atomic instructions are trivially inferred from the binary and guard variables

are inferred based on read patterns in conditional branch instructions, which are used to find

likely LPs for further analysis. Publish-after-initialization allows Durinn to ignore allocation

and initialization as LPs, pruning the total number of LPs without missing possible bugs. After

inferring likely-LPs and DPs, Durinn takes a 3-step approach described in Figure 3.1. First, it

generates a synchronous trace of the application under test and finds pairs of potentially racy

operations, that write-write or write-read on a synchronization variable (from likely-LPs). Each

pair of operations is not necessarily racy when ran in parallel, that is because they might not

have the same prefix of operations. To mitigate this, the second step of Durinn’s bug finding

strategy is to rerun the application, while reordering the operations to make sure they both have

the same prefix. If the operations remain racy, then it is time for the third and final step of

Durinn’s strategy, it executes both operations concurrently (with the required prefixes), forcing

a concurrent execution of the racy instructions and crashing the application before the DP is

reached. Durinn achieves this by controlling the interleaving of both threads using breakpoints,

setting them on the racy operations. First thread A runs until it reaches the breakpoint, second

thread B runs until it reaches its breakpoint and then continues until the end of the operation

where the application crashes. After recovery, Durinn executes application specific validation

operations that check whether the state is consistent and reports a bug if it is not. Just like

Witcher, Durinn makes assumptions about the application under test and requires a complex

driver and application specific validation operations which heavily reduce its automation and

application agnosticism.

3.3 Discussion

The state-of-the-art of persistent memory debugging provides us with several oracles with dif-

fering advantages and drawbacks. Annotations increase the programmer’s burden since they

require artifacts that can only be used for testing but generally require a single execution of the

application. Symbolic oracles suffer from similar problems as annotations requiring users to be

able to develop custom oracles. The persistency model provides a great degree of confidence

in the debugging if and only if the applications strictly follow a single model, which is usually

not the case. Semantic information of operations require a design heavily dependent on the

targeted application (key-value stores or file systems) and the creation of a complex artifact for

debugging. Recovery/validation programs are able to automatically enumerate and test a large

amount of states which can take a lot of time, however, the artifact required for the debugging

process is useful for production.
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Tool Oracle Automation
Application
Agnostic

Supports
Concurrency

Actively Searches
for Concurrent

PM Bugs

Yat [14] RVP High No Yes No
Jaaru [15] RVP High No* Yes No
Yashme [16] RVP High No* Yes No
Mumak [16] RVP High Yes� Yes No
Witcher [17] OSI Medium No Yes No
Durinn [22] OSI Medium No Yes Yes
Vinter [39] OSI Medium No Yes No
PMTest [18] A Low Yes Yes No
XFDetector [20] A Low Yes Yes No
PMDebugger [19] A / PMod Low Yes Yes No
DeepMC [41] PMod High Yes Yes No
PMRace [23] RVP Medium� No� Yes Yes
Agamotto [21] SO Low No* No No

HawkSet High Yes Yes Yes

Table 3.1: Summary of key characteristics for each PM debugging tool in the state-of-the-art.
We use the following notation: RVP: Recovery/Validation Program OSI: Operation’s Seman-
tic Information A: Annotations PMod: Persistency Model SO: Symbolic Oracles *: Not appli-
cation agnostic due to implementation details �: Heavily optimized for key value stores �: Re-
quires deterministic execution

On the concurrency side of the state-of-the-art there is much less variety. PMRace explores

multiple executions while fuzzing the inputs in the hopes of increasing its coverage of useful

interleavings. Durinn actively tries to create scenarios where the initially flagged interleavings

are executed.

Table 3.1 summarizes the key aspects of each tools in the state-of-the-art for bug detection

in PM applications. We categorize these tools in terms of the degree of automation, and on

whether they are application application agnostic. Finally, we characterize the tools in their

ability to analyze concurrent applications and whether they actively search for concurrency PM

bugs.

The level of automation is given based on the steps required to set up the tool to debug a

particular application. We can see that the type of oracle used, roughly correlates with the degree

of automation of the tool. Tools that rely on the recovery procedure are highly automatic since

that procedure already exists, while tools that rely on annotations or symbolic oracles require

the creation of extra artifacts for debugging.

Application agnostic tools are the ones that can effectively debug any PM application. Jaaru,

Yashme and Agamotto do not support any arbitrary application because their implementation

relies on techniques like model checking and symbolic execution. Durinn, Vinter and Witcher

do not support arbitrary applications because their approach is made with a particular type of
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application in mind.

PMRace is application agnostic, however, for performance reasons, the fuzzing algorithm

is optimized for key-value stores and without this optimization, the tool might not be usable

in a production environment. Also, due this optimization, PMRace requires that a driver be

provided, meaning it is not highly automatic.

When it comes to actively searching for concurrent PM bugs, there is a significant drop in

variety compared to PM bug detection in general. Only two tools in the state-of-the-art analyzed

for this document satisfy this condition. However, none of these tools guarantee an automatic

and application agnostic approach.

In the following section we present HawkSet, an automatic and application agnostic tool,

that actively searches for concurrent PM bugs in a useful amount of time.
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Chapter 4

Approach

Developing PM applications is a difficult endeavor. In order to correctly prevent an invalid post-

crash state, low level instructions and various abstractions can be employed, accompanied by

a recovery program that detects and corrects invalid states, such as corrupted or missing data.

Adding to this problem, concurrent applications that use PM, also require the synchronization

of accesses to shared PM regions. Finding bugs in these applications is a complex challenge

even for experienced engineers. They must reason about the impact of an arbitrary crash at

any point of the execution, how the stalling and reordering of memory operations can affect

the post-crash state, and how the different shared memory accesses may impact the correctness

of the system. To alleviate this pressure, we propose HawkSet, an automatic and application

agnostic tool for systematic concurrent PM bug detection.

4.1 Revisiting The Problem

In Section 2.6 we outline three distinct concurrent PM bugs: i) The persistent race, which

consists of two racing accesses to unpersisted data; ii) the persistent ordering race, which occurs

when persistency ordering guarantees are not respected due to faulty orchestration of threads;

and iii) the persistent atomicity race, which comprises a racy PM access to persisted data

protected by a commit variable that is then rolled back after a crash. Our solution focuses on

persistent races, and we leave the detection of other concurrent PM bugs as future work.

After the careful analysis of the state-of-the-art in Chapter 3, we adopted additional con-

straints into our approach. Namely, our tool must be automatic, application agnostic and effi-

cient. This is a complex challenge because these goals can, at times, be diametrically opposed.

On one hand, an application agnostic tool must make no assumptions about the application un-

der test, and an automatic tool cannot request any additional information or code artifacts from
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the user. On the other hand, making assumptions about the application and requesting addi-

tional artifacts from the user can allow for specific optimizations. For example, some annotation

based tools, request information about the persistent state of the application and therefore don

not need to compute all possible post crash states, allowing for much faster testing.

4.2 HawkSet

HawkSet is our proposal for an automatic, application agnostic and efficient tool for concurrent

PM bug detection. It leverages a lockset analysis technique, tailored for PM applications, to

detect persistent races, and applies a heuristic capable of ignoring common false positives often

found with lockset analysis. Furthermore, application agnosticism and automation are key

aspects of our implementation. We do not require any annotations, drivers, or similar artifacts

for debugging and support any application in binary form.

Lockset analysis allows the detection of races without actually observing them in real-time,

since we can instead infer where their occurrence is possible, assuming the workload provided

has sufficient coverage. This eliminates the need to execute the application several times in order

to explore all possible interleavings, which drastically reduces execution time. Lockset analysis

is known to scale poorly when dealing with large amounts of memory accesses, however, the

key insight that allows for its use in PM applications, is that the ratio of memory accesses to

PM is very small, 4% [25]. Thus allowing an otherwise expensive technique to scale well in PM

programs.

4.3 Architecture

To detect the previously outlined concurrent PM races, we want to be able to report pairs of

PM accesses, that are not correctly synchronized by a lock. To do this, we need to monitor

synchronization primitives and PM accesses, apply our heuristic, and finally use lockset analysis

to detect persistent races.

HawkSet is logically divided into three stages, represented in Figure 4.1. The first stage,

which we collectively call instrumentation 1 , is responsible for collecting information about the

execution. The second stage applies the initialization removal heuristic 2 to detect race likely

points (RLPs). Finally, the analysis stage 3 applies our lockset analysis algorithm aided by a

happens-before analysis.

Although these stages are logically distinct, in practice, the heuristic is applied during in-

strumentation.
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Figure 4.1: HawkSet’s pipeline

4.3.1 1st Stage: Instrumentation

The first stage of HawkSet has three different responsibilities. The memory simulation A

determines in which points of the execution data is persisted and registers important events. To

this end, we maintain the state of the cache, simulating the execution of write, flush, and fence

instructions. In the case of HawkSet, we are particularly interested in knowing the moment

when data is guaranteed to be persisted. To achieve this, we simulate a worst-case cache that

only persists a cache-line if a flush is issued and where all stores are delayed until a fence (or

equivalent instruction) is executed. PM accesses are stored alongside the current lockset and

vector clock given by the lockset B and vector-clock C algorithms (described below).

4.3.2 2nd Stage: Heuristic

Before HawkSet analyzes each PM access for potential races, it is important to select the ones

that are likely to reveal races (RLPs), as we do not want to report false positives or spend time

analyzing accesses that cannot result in a race.

The first intuition would be to compare every PM access, flagging those that are not cor-

rectly synchronized by a common lock. However, in concurrent applications, it is correct, and

generally more performant, to initialize freshly allocated variables without holding a lock, since

the memory region has not yet been made public to other threads. To avoid the incorrect report

of these accesses as a persistent race, we extend the heuristic provided in Eraser [37] to PM

applications. We call this the initialization removal heuristic. It aims to ignore memory accesses

to memory regions that have not yet been made public. For PM applications we must extend it

to take persistency into account. For example, if a thread allocates and initializes a PM region,

publishes the pointer, and only then persists the data, the original heuristic will discard those
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stores. However, if a second thread comes along and accesses that memory region, the original

store has been discarded and therefore no persistent race is reported. To fix this problem, we

must extend the definition to include persistency, ignoring all stores whose persistency occurs

before the variable is public.

4.3.3 3rd Stage: Lockset Analysis & Happens-Before

In this section we will incrementally build our solution, describing how a traditional lockset

analysis algorithm can be extended in order to detect concurrent PM races, starting with a

possible lockset analysis outlined in Algorithm 4.1.

PM-unaware Lockset Analysis

Remember that a lockset is a set of all locks acquired at any given point of the execution, namely,

the lockset of a memory access is the set of all locks acquired when the access took place. The

result of intersecting two locksets is all the locks that were acquired when both accesses were

executed.

Algorithm 4.1 works by comparing the lockset of each write to the locksets of each read to

the same memory region, and reports a bug if the resulting set is empty. This algorithm does not

take into account the moment when a store is persisted. We have not been able to find instances

of write-write races resulting in malign side effects in the context of PM. Although traditional

lockset analysis algorithms can and do check for write-write races, we did not represent it in

Algorithm 4.1 since we plan on expanding it towards persistent races.

Algorithm 4.1: PM-unaware Lockset Analysis

input: writes - The set of all writes
reads - The set of all reads

1 foreach address ∈ writes do
/* tid - thread ID */

2 foreach (tid, write) ∈ writes[address] do
3 foreach (tid’, read) ∈ reads[address] where tid ̸= tid’ do
4 if write.lockset ∩ read.lockset = ∅ then
5 report(write, read)
6 end

7 end

8 end

9 end
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Figure 4.2: Locksets extended for PM accesses. The first column represents each operation
executed. The second column represents the lockset of each PM access. Finally, the third
column corresponds the effective lockset of the write operation.

PM-Aware Lockset Analysis

As previously hinted at, the first extension required for the accurate report of concurrent PM

races, is to take into account the persistency of the store. We want to check whether the write

and the respective persistency are protected by the same lock. To achieve this, we compute

the intersection of locksets for the write and persistency, which we call the effective lockset. It

represents the locks that protect both instructions. Figure 4.2a demonstrates this extension, the

write operation is inside the critical section, however the persistency is not. Under the original

lockset analysis algorithm we would not be able to detect these bugs however, if we compute

the effective lockset then it correctly tells us there is no common lock protecting the write and

the persistency.

This extension can discover a good chunk of persistent races, however, if the lock is released

and reacquired between the write and the persistency, there is room for a racy access that is

not detected. Figure 4.2b demonstrates this problem. The effective lockset is not empty even

though we can intuitively observe that a race is possible. To account for this situation, we

extend the locksets with a per thread logical clock that is incremented when a lock is acquired.

This allows us to guarantee that the lock protecting the write and the persistency were acquired

at the same time. We can see how this correctly computes the effective lockset by looking

at Figure 4.3b. In this example, both the write and the persistency are protected by lock A,

however, this synchronization is incorrect, because the lock is released and reacquired between

both operations. The introduction of logical clock, correctly results in an empty effective lockset.

Figure 4.3a is the extension of Figure 4.2a with the logical clock, we can see that it does not

affect this already working example.

Finally, we intersect the effective lockset of the write operation with the lockset of the read

operation. The logical clock associated with each lock in the effective lockset is discarded for this
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Figure 4.3: Locksets extended for PM accesses with the logical clock. The first column represents
the logical clock.

intersection since it is meaningless among accesses from different threads. As per the original

algorithm, if the intersection corresponds to an empty set we report a concurrent PM race.

Happens-Before Analysis

The final extension reduces the number of false positives by leveraging the happens-before rela-

tion of events between threads. Figure 4.4a represents the execution of a multithreaded applica-

tion, it performs several memory accesses that can be analyzed using our algorithm. However,

some of these pairs of accesses can never run concurrently. For example, the unprotected write

in T1, can never run concurrently with the read in T2, because T2 is only created after the first

access is performed. The write on T3 can in fact be executed concurrently with the read on T2.

Even thought we can assess this intuitively, we need a systematic way to approach this problem.

We can solve it by using vector clocks. Given two operations with their respective vector clocks

V1 and V2, the operations are concurrent if there is at least one index i where V1[i] < V2[i]

and another index j where V1[j] > V2[j]. Figure 4.4b represents the computations required

to check the previous definition. On the left side, we compare the vector clocks of the write by

T1, VW1, with the vector clock associated with the read by T2, VR2. There is no index where VW1

> VR2 therefore these operations are not concurrent. However, for VW3 (the vector clock for the

write performed by T3) and VR2, we can see that the condition is true, which implies that these

operations execute concurrently, and thus we can apply lockset analysis. We can see that this

definition follows our previously stated intuitions for each pair of accesses.

Summary

Algorithm 4.2 is the result of the previously outlined extensions to a PM-unaware lockset anal-

ysis algorithm. It starts by pairing every RLP (store instructions that pass the initialization
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Figure 4.4: Multithreaded execution, accompanied by the respective vector clocks of each event

removal heuristic), with every read operation from a different thread that can occur concurrently

according to the happens-before relation. This is represented by lines 2 and 3 of the algorithm,

and the happens-before analysis described above is represented by the isConcurrent function.

Then, in line 4, we compute the effective lockset for the store operation by intersecting the

locksets of both the store and the persistency, while using the logical clock to ensure atomicity

between both. The logical clocks are per thread, and therefor are subsequently ignored when the

effective lockset is intersected with the read lockset in line 5. This is because the read is executed

in a different thread than the store, and intersecting said logical clocks would be meaningless.

Finally, in line 6, if the aforementioned intersection is an empty set, a race is reported.

Algorithm 4.2: PM-aware Lockset Analysis, with happens-before relation

input: RLPs - The set of RLP
reads - The set of all reads

1 foreach address ∈ writes do
/* tid - thread ID */

2 foreach (tid, write, persist) ∈ RLPs[address] do
3 foreach (tid’, read) ∈ reads[address] ∧ isConcurrent(tid, write, tid’, read) do
4 efective lockset ← write.lockset ∩ persist.lockset;

// The logical clock is ignored for the final intersection

5 if efective lockset.locks ∩ read.lockset = ∅ then
6 report(write, read)
7 end

8 end

9 end

10 end
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4.4 Implementation

In this section we discuss the implementation details of HawkSet, our automatic, application

agnostic and efficient tool for concurrent PM bug detection.

HawkSet is implemented in C++ as a PIN tool, a binary instrumentation framework [43].

Using PIN’s infrastructure, we inject instrumentation for PM instructions (stores, reads, flushes,

fences and read-modify-write). To differentiate between PM accesses and regular accesses we

record calls to mmap for PM files, and then compare the target address of the operation with the

previously recorded PM regions. To achieve this, the PM files paths are required as a command

line argument.

Our instrumentation requires that the application uses the pthread library’s synchronization

primitives, or provides an extremely simple configuration file with its custom version. HawkSet

accepts one or more configuration files as a command line argument. These configuration files

have a simple YAML structure and only need to supply the name of the synchronization primitive

and, in the case of try locks, must supply the value correlated with a successful acquisition.

We believe this does not break our initial goal of automation for the following reasons: (1) most

applications already use pthread, or build their abstractions on top of pthread’s primitives, and

(2) unlike other tools that require a driver that exposes the semantics of the application, which

can be constantly changing and must be maintained, HawkSet only requires simple information

about the synchronization primitives, which constitute a small set of functions, that have been

solidified over years of research and do not change nearly as often. For example, during the

evaluation of our tool, we analyzed an application that used pmemobj’s version of synchronization

primitives. After a few minutes, we produced a configuration file that is now usable for all

applications that use pmemobj’s locking mechanisms.

Over the course of this chapter, we talked about accesses to memory regions. In Algo-

rithm 4.2, the base address of each access is used as an identifier for each memory region.

However, in reality, there can be two accesses to different base addresses that still access the

same memory region, or at least, part of it. For example, an eight byte access to the ad-

dress 0x1000, should be compared against another access in address 0x1004, since these regions

overlap partially. If we use the base address has the identifier of the access, we would ignore

the previous example. Our implementation takes this into account by breaking each access in

byte sized chunks, ensuring that accesses to the same memory region, but with different base

addresses, are still analyzed as expected.
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(a) Write

(b) Flush

(c) Read

Figure 4.5: Write, Flush, and Read responsible for a persistent race

4.4.1 Ergonomics

The ergonomics of a debugging tool is always an important aspect of its development. Although

we consider this an orthogonal problem, some considerations have been made when it comes to

ergonomics in HawkSet. Namely, we output reports grouped in a fashion that we believe is easier

to use, although no formal study was conducted. The output itself is also cleaned for better

readability, although its efficacy may vary depending on the language in which the application

was written. Figure 4.5 displays a report for the Montage framework, we present the backtrace

for both the write and flush responsible for the persistent race in question. Alongside it, we

present a list of all backtraces where a read operation can concurrently access the store. We

believe that the backtrace information is crucial when fixing and verifying certain hard to reach

bugs. Finally, it is containerized using Docker, which allows for an easy setup.
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4.5 Summary

HawkSet is an automatic, application agnostic, and efficient concurrent PM bug detector. It

leverages lockset analysis, the happens-before relation, and a specific heuristic, to detect per-

sistent races. Even thought lockset analysis and happens-before relations based techniques are

known to not scale well, we are able to rely on them because PM accesses constitute a small

fraction of all memory accesses. All features described in this chapter are currently implemented

as a PIN tool in C++, fully containerized using Docker.

In the next chapter, we present our experimental evaluation of HawkSet.
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Chapter 5

Evaluation

In this chapter we discuss the experimental results of our evaluation of HawkSet. We evaluate

its resource footprint, bug finding ability, its limitations, and compare it to the state-of-the-art.

Finally, we discuss its applicability in a real software development environment.

5.1 Research Questions

HawkSet’s evaluation focuses on three areas, namely: (1) automation and application agnosti-

cism, (2) resource usage, and (3) coverage. To evaluate HawkSet we must answer the following

research questions:

� How automatic is HawkSet?

� How application agnostic is HawkSet?

� What is the resource consumption of HawkSet?

� What persistent races can be detected by HawkSet?

� What is the impact of our heuristic in the races reported?

� What is the impact of our heuristic in resource consumption?

� How does HawkSet compare to the state-of-the-art?

5.2 Experimental Setup

To answer these questions we performed a series of experiments in a machine with an Intel(R)

Xeon(R) Gold 6338N CPU @ 2.20GHz, 256 GB of RAM and 128 cores, on top of a 1 TB Intel

DCPMM in App Direct mode.
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Application Version Synchronization Method
Supported by

Durinn PMRace

Fast-Fair [6] 0f047e8 Lock/Lock-Free Yes Yes
P-CLHT [4] 70bf21c Lock Yes Yes
TurboHash [3] 2d7d7b3 Lock/Lock-Free Yes Yes
Montage-Queue [11] 3384e50 Lock Yes Yes
Montage-HashTable [11] 3384e50 Lock Yes Yes
Montage-Graph [11] 3384e50 Lock No No
MadFS [9] 7514a78 Lock-Free No No

Table 5.1: PM applications tested using HawkSet

5.2.1 Target Applications

We evaluated a total of 5 PM applications, outlined in Table 5.1. The first column contains

the name of the application, the second column contains the git version used for our analysis,

the third column depicts the locking mechanisms used by the applications. Finally, the last

two columns say whether the applications could be debugged using either Durinn or PMRace.

To better understand the results discussed in this chapter, we offer a short description of each

application:

Fast-Fair is a PM backed B+-Tree. It leverages the cache-line ordering constraints of PM

to perform atomic insertions without the need for a recovery process that fixes inconsistencies.

Fast-Fair’s synchronization methods are complex. It mixes lock-based concurrency control with

lock-free methods to synchronize its shared PM accesses. Insertions and deletions performed

on the leaf nodes of the tree are protected by a lock, while the same operations occur freely

for internal nodes. This makes Fast-Fair an interesting challenge to debug using our lockset

based approach. Fast-Fair has multiple implementations (some of which do not use real PM),

for the purpose of our analysis, we used the concurrent version that uses real PM, supported by

PMDK.

P-CLHT [4], and TurboHash [3] are PM backed hash tables. P-CLHT restricts the size

of each bucket to that of a cache-line, as this guarantees that updates to each bucket can be

persisted atomically. It uses bucket-specific locks to synchronize insertions and updates, and a

global lock for rehashing. Read operations occur in a lock free manner. TurboHash brings forth

improvements in different areas: it performs efficient out-of-place updates, it minimizes long-

distance linear probing, and exploits hardware features, such as Intel’s AVX registers. TurboHash

has three different implementations. For the purpose of our analysis, we used the version that

uses real PM, supported by PMDK.

Montage [11] is a PM framework that provides support for building buffered persistent

data structures. The framework does not provide linearization guarantees to the persistent data
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structures on its own, only the building blocks to achieve it. We tested three different data

structures, provided by the authors of Montage, namely: a queue, a hash table, and a graph.

Our application agnostic analysis covered both the framework and the structures built on top

of it.

MadFS [9] is a PM backed file system. It maintains a mapping of all virtual blocks it

manages, via a compact, crash-consistent log, where entries are 8 bytes long and therefore

updated atomically. It manages some file metadata in user-space, in the form of a log, updated

atomically and delegates security related operations to the kernel’s underlying file system.

5.2.2 Workloads

Due to the variety of the applications evaluated, we are not able to use a single benchmark. In

turn, we divide our evaluation in three groups: (1) key-value stores or equivalent, (2) Montage,

and (3) MadFS. All experiments were run with 8 threads.

Key-Value Stores

P-CLHT, Fast-Fair, and TurboHash support similar operations (insert, update, get, and delete),

and as such, we use the same workload to better compare their results. To measure the scalability

of HawkSet, we ran four separate experiments for each of these applications. Each workload was

generated using YCSB [44] with an initial load phase of 1k insertions, followed by 1k, 5k, 10k,

or 50k operations comprised of 30% insertions, 30% updates, 30% gets, and 10% deletes.

Montage

Montage’s internal benchmarks run for a fixed amount of time, instead of executing a set number

of operations. Each implementation, (queue, hash table, and graph) was executed four times

with an increasing amount of time, namely 10, 100, and 600 seconds. Before each experiment

there is a single-threaded load phase. In the case of Montage-Queue and Montage-HashTable

this comprised of 1k enqueues and insertions, respectively, whilst in the case of Montage-Graph

this comprised creating 5k vertices, each with an average of 5 edges.

MadFS

MadFS provides some benchmarks out-of-the box. The benchmark used performs 4kb write op-

erations in a 1Mb shared file among all threads. The target offset of the operation is randomized

and follows a zipfian distribution. We ran the benchmark four times, with increasing workload,

with 1k, 5k, 10k, and 50k operations.
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5.3 Automation and Application Agnosticism

As described in Chapter 3, automation and application agnosticism constitute an important

aspect in the design of HawkSet and, as such, evaluating these characteristics is fundamental.

Given the nature of these metrics, the evaluation is qualitative and not quantitative.

5.3.1 Automation

To evaluate automation, we want to outline the impact that our tool has on its users, in terms

of modifications to the source code, creating artifacts for the debugging process, and other hin-

drances. Our tool requires the instrumentation of synchronization primitives and, as expected,

the only alterations made to the original applications were aimed at extracting this informa-

tion. We support pthread and pmemobj’s synchronization primitives out of the box, and any

configuration file built for one particular library can be reused.

P-CLHT implements its concurrency control in-place, using CAS instructions directly in the

source code. To instrument these operations, we extracted the concurrency controls, by hand, to

functions, and subsequently created a configuration file that covers them. Overall the extraction

process took less than an hour, and the configuration file was created in a few minutes. We

believe that for the developers of P-CLHT, this process would take much less time, since they

would be familiar with the source code.

TurboHash uses custom concurrency control primitives, we created a configuration file to

instrument them. Overall, there were 3 primitives, which took a few minutes to find and

enumerate.

For MadFS, Montage’s data structures, and Fast-Fair, no modifications were required for

debugging under HawkSet. This is because MadFS does not use synchronization primitives, and

Montage and Fast-Fair use pthread’s synchronization libraries, which we support implicitly.

Overall, we believe HawkSet is extremely automatic, providing concurrent PM debugging

whilst requiring minimal effort from the user.

5.3.2 Application Agnosticism

We measure application agnosticism by the variety of PM applications the tool can debug. We

were able to evaluate HawkSet using key-value stores, a framework for persistent data structures,

including a graph, and a file system. Furthermore, HawkSet does not require a specific version of

PMDK, or even that PMDK is used at all. When it comes to application agnosticism, HawkSet

provides very ample support. As it does not make any assumptions about the semantics of the

system under testing during the analysis.
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Figure 5.1: Time elapsed and peak memory usage for P-CLHT, Fast-Fair, and TurboHash. Note
that the x-axis is logarithmic
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Figure 5.2: PM instructions processed by HawkSet while analyzing P-CLHT, Fast-Fair, and
TurboHash. Note that both axes are logarithmic

5.4 Resource Consumption

Resource consumption is an important metric when deciding which tools to use, and when

to use them. To determine HawkSet’s time and memory footprints we conducted a series of

experiments whose results are represented in Figure 5.1 for the key-value stores, Figure 5.3 for

Montage’s implementations, and Figure 5.4 for MadFS.

5.4.1 Key-Value Stores

Figure 5.1a shows the duration of HawkSet’s analysis for P-CLHT, Fast-Fair, and TurboHash.

The duration of the analysis grows linearly with the number of operations. We observe an

initial cost for P-CLHT, for all workloads. We believe this is due to initialization performed by

the application. To justify this belief, we counted the instructions processed by HawkSet during
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the analysis, Figure 5.2 contains the results. We can see that for P-CLHT there is a significant

amount of PM stores, even for the smallest work. This correlates to the initialization of the PM

pool, that P-CLHT memsets to zero. All of these instructions are instrumented which increases

the duration of the analysis. We can also see a jump in PM load operations between the 5K

and 10K workloads. This is most likely caused by a rehashing operation that must copy the

old hash table into the newer, bigger hash table. We believe this is the cause for the small

bump in analysis time between the same workloads. For the other applications, Fast-Fair and

TurboHash, the instructions grow linearly, without irregularities, following the same trend as

the analysis time.

Figure 5.1b depicts the maximum resident memory usage while debugging the key-value

stores. This demonstrates that peak memory usage grows linearly, although with a considerably

high initial cost (approximately 0.6 GB).

Although we are not sure of the reason for it, we believe that it is caused by a combination

of the following factors: (1) PIN’s library , (2) the injected instrumentation, and (3) registering

PM accesses of the initial initialization (i.e: pool allocation, initial memsets, etc...) and prefill

phase. We leave as future work studying the concrete sources of this behavior and finding ways

to optimize it.

5.4.2 Montage

Figure 5.3a shows the number of operations that could be completed within a set amount of

time for Montage’s different data structures. We can see that the number of operations increases

linearly with the benchmark duration. It is interesting to note that, even though these applica-

tions were built on top of the same framework, they appear to have varying performance. For
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Figure 5.4: Resource usage in the analysis of MadFS. Note that the x-axis is logarithmic

example, Montage-HashTable performs around 5 times more operations than Montage-Queue

on the same amount of time, which in turn performs around 4 times more operations than

Montage-Graph. Due to time constraints no further experiments were conducted to understand

this behavior, but we believe this to be due to a combination of the following factors: (1)

Montage-HashTable is more paralelizable than it’s counterparts, since it is synchronized at the

bucket level, which allows for multiple operations on different buckets, and (2) the implementa-

tion of Montage-Queue’s operations are much simpler than that of the other data structures.

Figure 5.3b depicts the peak memory usage of HawkSet during the analysis of Montage. For

Montage-Queue and Montage-Graph, the memory usage follows a similar trend to that of the

previously mentioned key-value stores. However, Montage-HashTable does not, and appears to

grow super-linearly. We are not sure as to why, and while no further experiments were conducted

due to time constraints, our suspicion is that some expensive rehashing operation is being run

which leads to a super-linear growth in PM operations that HawkSet must process.

5.4.3 MadFS

Figure 5.4a shows the duration of HawkSet’s analysis of MadFS. Similarly to the results presented

for the key-value stores, the growth appears to be linear, which is a strong indicator of HawkSet’s

scalability.

Figure 5.4b represents the peak memory usage of HawkSet during the analysis. As with

previous applications, we can see a large initial memory cost, after that, memory usage grows

linearly.
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5.4.4 Discussion

Overall, we see three patterns in HawkSet’s resource consumption: (1) analysis time grows

linearly with the size of the workload, (2) there is a considerable initial memory cost, and (3)

memory usage increases linearly.

Analysis time grows linearly with the size of the workload because we only observe the

execution once, instrumenting each PM related instruction along the way. In the context of

PM debugging, it is common to see tools whose analysis time grows quadratically or even

exponentially. This is a strong indication of the efficiency of HawkSet, and its ability to scale

for larger workloads.

Figure 5.2 outlines PM store and load instructions processed by HawkSet for the key-value

stores. We can see these instructions grow linearly as the workload increases. We believe that

memory usage increases linearly because HawkSet keeps most of the PM accesses registered

throughout the execution until the end, when it finally analyzes them for persistent races. This

means that the memory footprint grows with the PM accesses, which, as we saw previously, tend

to grow linearly with the size of the workload. A garbage collection mechanism could remedy

this situation, however, deciding which accesses can be discarded, merged, or otherwise reduced

is not trivial. We leave studying the feasibility of such a mechanism for future work.

In short, HawkSet provides a very scalable approach to concurrent PM bug detection. It

is able to scale for large workloads, both in time and memory usage, which grow linearly with

respect to the size of the workload.

5.5 Persistent Races

In this section we discuss the persistent races reported by HawkSet, argue their validity, and

present some interesting examples. We divide reports into three distinct categories, namely:

� Malign Persistent Races - Pairs of PM accesses that can execute concurrently and can

cause an adverse effect in the system

� Benign Persistent Races - Pairs of PM accesses that can execute concurrently, but the

application is designed to tolerate them

� False Positives - Pairs of PM accesses that can never execute concurrently
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5.5.1 False Positives

In this section, we provide an example of a false positive. We define false positives, as pairs of

accesses, (write-read), that can never execute concurrently.

One such example is the case when variables are initialized. In general, applications want

to protect their shared accesses using locks, in order to prevent races. However, this constitutes

an expensive overhead and, there are situations when such synchronization is not necessary.

During initialization, the thread that allocates a certain memory region is the only one who

has access to it, since the pointer as not yet been made visible to the other threads. This

means that applications do not need to worry about protecting these accesses with expensive

synchronization primitives. Reporting these accesses as a persistent race would constitute a false

positive, since they can never execute concurrently.

5.5.2 Benign Races

Benign races are a class of persistent race, where the accesses can execute concurrently, but the

design of the application tolerates or corrects the side effects. As far as we know, there is no way

to differentiate between benign and malign races using lockset analysis, specially in the context

of PM, where the recovery program can mitigate the effects of some races. In this section we

describe two such races detected by HawkSet in TurboHash and MadFS.

TurboHash uses a snapshot mechanism to ensure thread-safety for lock-free get operations.

It first finds the bucket associated with the entry and saves a local copy of the metadata of

the bucket. This metadata contains, among other things, a version number that is incremented

when the bucket is changed. It then traverses the bucket until it finds the specific entry and, if

the version number remains the same, then there has been no concurrent update to the bucket,

which means it can return the found value. If the version number has changed, it restarts

the whole process. Reading the bucket and entry is clearly a race, since no synchronization

primitives protect these accesses. However, this race cannot result in an incoherent state, which

makes it benign.

MadFS uses CAS operations to update its block allocation log atomically. This update is

executed without holding a lock which means accesses made to the log are reported as a race

by HawkSet. If thread A performs an IO write call that forces MadFS to allocate a block, the

metadata written with that CAS is not guaranteed to be persisted until flushed. MadFS flushes

its log when fsync calls are issued by the application. This means that, if thread B reads

from the memory region just written by thread A before it calls fsync, we have a persistent

race. However, a file system has different thread-safety requirements than that of a general PM
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Figure 5.5: Fast-Fair insertion crash. Boxes represent entries in each node of the B+-Tree, while
arrows represent pointers. A red arrow represents an unpersisted pointer.

application. Namely, writes to a file are only guaranteed to be flushed to storage after a fsync

call. Which means, even though there is a persistent race, it does not violate the requirements of

MadFS. Instead, it would be an error of the application built on top of MadFS to not synchronize

its accesses to the file. In the context of MadFS, this constitutes a benign persistent race.

5.5.3 Malign Persistent Races

HawkSet detected 3 malign races: one in Fast-Fair and another in P-CLHT that were previously

reported by the state of the art, and one in TurboHash which, to the best of our knowledge,

constitutes a new bug.

Fast-Fair

The bug detected in Fast-Fair occurs whenever the tree grows. In Fast-Fair, the internal

nodes of the tree are accessed in a lock-free manner, while the leaf nodes are locked. Take into

consideration the example provided in Figure 5.5. We start with a B+-Tree, where one of its leaf

nodes is full (1). Assume that a new entry is about to be inserted. When attempting to insert

a new entry in a full node, a sibling node is created (2), which carries with it the new entry

which did not fit in the previously full node. Then, the sibling node is inserted in the parent

node (3), which is not protected, since the parent node is internal. At this moment, the new

entry is visible to all threads, however, the pointer from the parent node to the new child node

is not persisted. If the application crashes, after recovery, the new node will not be visible, and

its data would have been lost (4). This alone, does not constitute a bug, since if an operation

crashes before terminating, the data created by that operation can be lost. However, assume

that a different thread accesses the new entry between the insertion of the new sibling node and
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Figure 5.6: P-CLHT persistent race. Boxes represent entries in each node of the B+-Tree, while
arrows represent pointers. A red arrow represents an unpersisted pointer.

the crash, and then performs a side effect. If this happens, after the crash, the side effect will

be visible, however the original entry that caused it will not. This constitutes a malign race.

P-CLHT

The bug detected in P-CLHT is caused by a rehashing operation. Figure 5.6 provides a visual

representation of the persistent race in action. P-CLHT atomically rehashes its hash table by

locking it, copying all the entries to a new hash table (1). Then it atomically swaps the root

pointer to the new hash table (2). Before the root pointer is persisted, a different thread inserts

a new entry into the new hash table (3). This insertion is able to acquire the lock of the new

hash table, because only the old hash table was locked during rehashing. If the application

crashes after the insertion, but before the rehashing operation fully completes, then the data

inserted by the new thread is lost (4). This constitutes a malign race. It is important to note

that the persistent race occurs between the write that swaps the root pointer, and the read in

the insertion operation that accesses the root pointer.
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Figure 5.7: Breakdown of HawkSet’s reporting of Fast-Fair. Note that the x-axis is logarithmic

TurboHash

TurboHash’s insertion operation writes an entry into the bucket, and it then performs some

metadata manipulation, and flushes it. This operation is protected by a lock, meaning no

persistent race should be possible. However, TurboHash’s buckets are larger than a cache-line,

and therefore, when the entry is too far from the metadata, such that it falls on a different

cache-line, the update is not persisted. HawkSet is able to detect this bug because the update is

eventually persisted by the delete operation on a different entry in the same cache-line. In this

case, the store and the persistence are not protected by a common lock and therefore HawkSet

reports it as a persistent race. Although it is caused by a missing flush, it is still a persistent

race, because a thread can read the newly inserted entry and perform some side effects. If

the application crashes before the original entry is persisted, the side effects that depend on

that entry will be present after the crash, but the original entry will not. This bug can only be

detected as the buckets start to fill, which means it requires larger workloads to detect. HawkSet

was only able to report it with the biggest workload we evaluated. This is a strong indicator

that HawkSet’s ability to debug large workloads is important when detecting concurrent PM

bugs. This persistent race is caused by a missing flush, which means, it should be detected by

tools that do not focus on current PM bugs.

5.6 Initialization Removal Heuristic

In this section we study the impact of the initialization removal heuristic, in resource consump-

tion and bug reporting. To evaluate the heuristic, we ran an experiment on Fast-Fair. It is

equivalent to the one described in Section 5.2.2, except that we ran it twice, with and without

the initialization removal heuristic.
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Figure 5.8: Impact of the initialization removal heuristic in resource consumption

Figure 5.7 summarizes the results of this analysis. False positives, benign races, and malign

races were classified manually. Figure 5.7a represents a breakdown of all the persistent races

reported by HawkSet when analyzing Fast-Fair without the heuristic, while Figure 5.7b rep-

resents the reports while using the heuristic. The line represents all reports by HawkSet,

the ▼ line represents all races that can execute concurrently, and the ■ line represents malign

races. Logically, the dashed pink area represents the false positives, and the filled light blue

area represents the benign persistent races. For Fast-Fair, the initialization removal heuristic

is able to detect and discard all false positives reported by HawkSet without the heuristic. This

constitutes an extremely positive result. With that being said, the heuristic is not foolproof,

since there are certain uncommon cases where false positives can still be reported. For example,

if two threads perform the initialization, then part of those accesses will not be discarded, and

therefore will show up as false positives on the report. Due to time constraints we were not able

to fully analyze all reports from P-CLHT, however, we were able to detect at least one report that

suffers from this issue. We attempted to fix this issue by generalizing the heuristic for N threads,

but this did not improve our results. We leave the study of these and other false positives, and

how to mitigate them, as future work.

Figure 5.8 displays the impact of the initialization removal heuristic in the resource usage of

HawkSet. Remember that the initialization removal heuristic is responsible for discarding PM

accesses that are commonly associated with the initialization of unpublished memory regions,

which might induce false positives.

When it comes to the duration of the analysis, represented in Figure 5.8a, we see that the

initialization removal heuristic has a very small impact, (a reduction of approximately 1% for

the largest workload). The heuristic is able to reduce the accesses that must be processed with

lockset analysis algorithm, which greatly reduces the duration of that final analysis step. How-
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ever, most of the cost of HawkSet’s execution consists of instrumenting PM accesses, simulating

the cache, and registering accesses, while only small portion is spent performing the lockset

analysis algorithm itself.

In the case of peak memory usage, we can see a considerable improvement, (approximately

10%). This is because PM accesses are discarded by the heuristic and are never registered, which

reduces the memory footprint of HawkSet.

Overall, the initialization removal heuristic performs a great job at removing false positives.

5.7 State-of-the-art

In this section we outline the results of a comparative evaluation of HawkSet with the state-of-

the-art in concurrent PM bug detection.

5.7.1 Automation and Application Agnosticism

To compare HawkSet to the state-of-the-art, when it comes to automation, we provide examples

of two applications that were debugged by all three tools: Durinn, PMRace, and HawkSet.

Fast-Fair was evaluated both by Durinn, PMRace, and HawkSet, which provides a very

useful comparison among all three tools. Durinn’s evaluation required the creation of a specific

test driver written in C++, consisting of 191 LOC. For the evaluation of PMRace, complex

changes to the Makefile and test driver were made, 329 lines according to git’s diff tool. The

Makefile was completely overhauled to support PMRace’s fuzzing driver, and its custom instru-

mented libraries. The test driver was modified to support the fuzzing engine. It is important to

note that if the semantics of the application change at any point of the development cycle, these

artifacts would need to be remade. HawkSet requires no modification to the original source

code, and no additional artifacts, to debug Fast-Fair.

Another application that is evaluated by all three tools is P-CLHT. As expected, Durinn

required a complex driver consisting of 181 LOC, the manual removal of non-deterministic

behaviors, and the extraction of inline synchronization primitives into functions. PMRace also

required a specialized driver with 189 LOC. Unlike with Fast-Fair, HawkSet requires some

minor modifications, similarly to Durinn, synchronization primitives must be extracted into

separate functions. Even then, we believe HawkSet offers a much higher degree of automation,

since extracting synchronization primitives can be considered a trivial task compared to creating

a specialized driver.

Regarding application agnosticism, HawkSet is able to analyze all types of applications.

According to Table 5.1, HawkSet can analyze two applications that the state-of-the-art cannot:

52



Montage-Graph and MadFS, because they do not follow the semantics of key-value stores or

equivalent. Furthermore, Durinn and PMRace assume the usage of PMDK for the development

of PM applications, while HawkSet does not.

In short, when it comes to automation and application agnosticism, HawkSet contrasts with

Durinn and PMRace, as it requires minimal to no modification of the original applications it

debugs and supports a wide range of application types.

5.7.2 Effectiveness

In this section we compare HawkSet to PMRace, in their ability to find bugs effectively. We

would have liked to compare HawkSet to Durinn, however due to time constraints it was not

possible. We performed this evaluation with Fast-Fair as our target application, since it can

be evaluated by both PMRace and HawkSet.

To reiterate, PMRace’s approach is divided into two separate stages. The first one uses

fuzzing and specialized delay injection to find races in PM applications. The second stage uses

the recovery program to check whether those side effects were resolved.

In this evaluation we are interested in the first phase of PMRace, since HawkSet shares the

same end goal. However, these tools work in very different ways and, as such, they cannot be

directly compared.

PMRace starts off with a small workload, which it calls the seed, and then executes the

application. On subsequent executions it mutates the original seed, and executes again. This

process only stops when PMRace decides that a seed is not worth exploring anymore, and at that

time, it gets a new seed and starts the process all over again. This way, PMRace’s evaluation

theoretically never ends. In practice, the authors provide 240 different seeds for Fast-Fair,

which means that the analysis ends eventually.

HawkSet, runs an application, extracts all the PM accesses, and reports all the possible races

within the execution it observed. As long as the target application terminates, so does HawkSet.

The design differences imply that we cannot directly compare the results of these tools. To

remedy this situation, we executed PMRace for 10 minutes, with a set seed, and extracted all

the mutated workloads it ran during that time. We chose 10 minutes with a specific seed because

that is the setup recommended by the authors to replicate their analysis of Fast-Fair.

This resulted in 76 different workloads, each with an average of 549 operations, with varying

distributions. We then executed HawkSet 76 different times, each time with a different workload.

PMRace was able to find the previously described persistent race with three of the 76 work-

loads. HawkSet was able to find the race in all 76 workloads. With an average analysis of
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approximately 9 seconds for each workload. It took a total of 12 minutes. This is an extremely

positive result, that demonstrates that HawkSet is very consistent in its persistent race finding

abilities.

Even though coverage is an orthogonal problem in concurrent PM bug detection, this result

shows that PMRace’s success is much more sensitive to the workload, than HawkSet’s. The

delay injection analysis not only requires that the workload provides sufficient code coverage,

which lockset analysis also requires, but it must provide good interleaving coverage as well. For

example, if a workload consists of 1000 operations, where the first and last are racy, PMRace

will most likely never find the bug, because it would require massive waits that considerably

degrade the performance of the system. In the case of HawkSet, as long as it observes these

accesses in different threads, it reports the race.

To further test this hypothesis we ran each of the 240 seeds provided by the authors of

PMRace in separate, and only 9 were able to detect the persistent race in Fast-Fair within 10

minutes. This result shows that PMRace is very sensitive to the workload provided.

5.8 Discussion

To conclude this section, HawkSet presents a promising approach to concurrent PM bug detec-

tion. It is able to provide an automatic and application agnostic approach, supporting most

applications with minimal or no modifications. It detects persistent races, with relatively small

workloads, such as the persistent race in Fast-Fair reported in approximately 18 seconds. The

initialization removal heuristic, despite not being foolproof, was able to remove all false pos-

itives when analyzing Fast-Fair. HawkSet is able to detect the same bugs detected by the

state-of-the-art in the applications we evaluated, and it also found a new, previously unreported

bug in TurboHash. When compared to PMRace’s analysis of Fast-Fair, HawkSet is able to

detect the persistency race much faster and more consistently. HawkSet is effective at finding

persistent races with small workloads, able to scale for larger workloads, which increases cov-

erage and allows detecting harder to reach bugs. This means that HawkSet can be used in a

day-to-day production environment, possibly constituting a short build step, as well as part of

more in-depth ”overnight” bug detection efforts.

54



Chapter 6

Conclusion

Current state-of-the-art concurrent PM bug detection tools focus on specific types of applica-

tions, such as key-value stores or equivalent. They are not automatic, because they require

additional complex artifacts for debugging and modifications to the original source code. Addi-

tionally, they cannot support the full range of PM applications, current and future, since they

focus on key-value stores.

In this thesis we present HawkSet, an automatic, application agnostic, and efficient concur-

rent PM bug detector. It leverages lockset analysis, the happens-before relation, and an ini-

tialization removal heuristic to detect persistent races. We expanded a traditional PM-unaware

lockset analysis algorithm in order to detect concurrent accesses to PM. The results of our eval-

uation demonstrate that HawkSet is effective at finding persistent races. We believe it can be a

useful tool in all aspects of debugging.

Alongside our main contribution, we present a streamlined description of PM semantics and

PM bug taxonomy, concurrency, and a concurrent PM bug taxonomy. Furthermore, we provide

an in-depth analysis of the state-of-the-art of PM debugging, which impacted HawkSet’s design

goals.

6.1 Limitations and Future Work

Even though HawkSet is able to detect the same bugs as the state-of-the-art, in less time and

more consistently, our approach does not contemplate a strong verification of each bug reported.

This can increase the burden on the developer, that must process them by hand, in order to

filter out benign races. As future work, we want to research automatic and application agnostic

techniques that are able to confirm persistent races, comparable to PMRace’s verification phase.
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