
Fine Grained Observability in Distributed Systems

Hugo André Pereira Rita

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor(s): Prof. Miguel Ângelo Marques de Matos

Examination Committee

Chairperson: Prof. Alberto Abad Gareta
Supervisor: Prof. Miguel Ângelo Marques de Matos

Member of the Committee: Prof. Vinícius Vielmo Cogo

October 2024

Declaration

I declare that this document is an original work of my own authorship and that

it fulfills all the requirements of the Code of Conduct and Good Practices of the

Universidade de Lisboa.

Acknowledgments

I am grateful to Instituto Superior Técnico for the resources and academic environment pro-

vided. Special thanks to my advisor, Prof. Miguel Matos, for guidance, and to my dissertation

committee for their feedback.

This work was partially funded by Fundação para a Ciência e Tecnologia (FCT), using

national funds as part of the projects INESC-ID UIDB/50021/2020, Ainur (financed by the

OE with ref. PTDC/CCI COM/4485/2021) and Composable’s bilateral project ScalableCos-

mosConsensus.

I appreciate the collaboration and support from other research colleagues at Instituto Su-

perior Técnico and Universidade do Minho, especially Sebastião Amaro, Prof. João Paulo, and

Tânia Esteves.

A special thank you goes to my friends, Bernardo Castiço, Pedro Pereira and Gonçalo Ro-

drigues. They accompanied me throughout the whole bachelor’s and master’s degree journey,

their support and companionship were a huge factor in all the success I achieved.

Also thank you to my family, their support was essential to complete this academic phase,

finally, I want to thank my girlfriend for her unconditional support, encouragement, and under-

standing throughout this journey, you are the most important people in my life.

iii

iv

Resumo

A necessidade de alcançar observabilidade e desempenho ótimos em sistemas distribúıdos é fun-

damental porque falhas ou ineficiências impactam diretamente a experiência do utilizador e o

uso eficiente de recursos. Atualmente, vários desafios dificultam este objetivo, tornando d́ıficil

identificar e resolver bottlenecks, problemas de latência e erros presentes em vários componentes

interligados. A importância deste problema é salientada pelo papel crucial que os sistemas

distribúıdos desempenham na computação moderna, onde ineficiências afetam diretamente a

experiência do utilizador e a utilização de recursos. Em resposta a estes desafios, várias ferra-

mentas foram desenvolvidas para auxiliar no rastreamento de sistemas distribúıdos, cada uma

com as suas caracteŕısticas e capacidades. Estas ferramentas são concebidas para ajudar a cap-

turar e analisar as interações complexas dentro de ambientes distribúıdos, fornecendo detalhes

cruciais para diagnosticar e resolver problemas de desempenho. No entanto, o grande número

de ferramentas dispońıveis pode ser avassalador, e não existe um estudo sistemático das carac-

teristicas e compromisos das ferramentas existentes. Dada esta realidade, há uma necessidade

cŕıtica de orientações mais claras sobre como estas ferramentas de rastreamento funcionam e

quais os problemas espećıficos que conseguem resolver. Cada ferramenta tem os seus pontos

fortes, e compreender quando e como utilizá-las pode melhorar significativamente o desempenho

e a fiabilidade do sistema. Sem o conhecimento adequado, estas ferramentas podem não ofer-

ecer os benef́ıcios esperados, levando a uma observabilidade subótima e a uma resolução de

problemas prolongada. Assim, é necessária uma abordagem mais estruturada na seleção e uti-

lização das ferramentas de rastreamento distribúıdo. Isso implica compreender as capacidades

técnicas de cada ferramenta e alinhá-las com as necessidades espećıficas do sistema distribúıdo

em questão. Ao fazê-lo, as organizações podem melhorar a sua capacidade de monitorizar e

otimizar os seus sistemas, de modo a obter uma melhoria de desempenho e maior satisfação do

utilizador. Neste trabalho, realizámos uma análise abrangente das frameworks eBPF, fornecendo

uma comparação detalhada em várias dimensões, como desempenho, facilidade de uso, requisi-

tos de implementação e consumo de recursos. Ao avaliar as frameworks BCC, libbpf, Cilium,

Aya, bpftrace e Eunomia, esclarecemos os melhores casos de uso para cada uma e destacámos

os compromissos envolvidos na sua aplicação.

Palavras-chave: Observabilidade, Sistemas Distribúıdos, Rastreamento.

v

vi

Abstract

The need to achieve optimal observability and performance across distributed systems is paramount

because failures or inefficiencies directly impact the user experience and the efficient use of re-

sources. Currently, several challenges impede this goal, it is arduous to identify and address

bottlenecks, latency issues, and errors seamlessly across numerous interconnected components.

The vital role underscores the significance of this problem distributed systems play in contem-

porary computing, where inefficiencies directly impact user experience and resource utilization.

In response to these challenges, various tools have been developed to aid in distributed system

tracing, each with its features and capabilities. These tools are designed to help capture and

analyze the complex interactions within distributed environments, providing crucial insights for

diagnosing and resolving performance issues. However, the large number of available tools can

be overwhelming, and there is no systematic study of the characteristics and commitments of

the existing tools. Given this landscape, there is a critical need for clearer guidance on how

these tracing tools function and what specific problems they are best suited to address. Each

tool has its strengths, and understanding when and how to use them can significantly improve

system performance and reliability. Without proper knowledge, these tools may not deliver the

expected benefits, leading to suboptimal observability and prolonged troubleshooting processes.

Thus, a more structured approach to selecting and using distributed tracing tools is necessary.

This involves understanding the technical capabilities of each tool and aligning them with the

specific needs of the distributed system in question. By doing so, organizations can enhance

their ability to monitor and optimize their systems, ultimately improving performance and user

satisfaction. In this work, we have conducted a comprehensive analysis of eBPF frameworks,

providing a detailed comparison across multiple dimensions such as performance, ease of use, de-

ployment requirements, and resource consumption. By evaluating the frameworks BCC, libbpf,

Cilium, Aya, bpftrace, and Eunomia, we have clarified the best use cases for each and highlighted

the trade-offs involved in their application.

Keywords: Observability, Distributed Systems, Tracing.

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

Nomenclature . 1

Glossary . 1

1 Introduction 1

2 Background 5

2.1 Concepts . 6

2.2 eBPF . 7

2.2.1 Several Scopes . 9

2.3 Types Of Attaching To System Calls . 11

2.4 eBPF Frameworks . 12

2.4.1 BPF Compiler Collection . 12

2.4.2 Cillium . 13

2.4.3 Libbpf . 13

2.4.4 Eunomia-bpf . 14

2.4.5 Aya . 14

2.4.6 Bpftrace . 15

2.5 Related Work . 15

2.5.1 State-of-the-art Descriptions . 15

2.5.2 Tracing System Property Analysis . 20

2.6 Discussion . 24

ix

3 Theorical analysis 27

3.1 Theorical Methodology . 28

3.1.1 Framework Architecture and Implementation Details 28

3.1.2 Use Cases . 29

3.1.3 Deployment Requirements . 30

3.1.4 Code Complexity . 31

3.2 State Of The Art Usage . 32

3.2.1 System Application . 32

3.2.2 eBPF Framework Usage . 33

3.3 Industry Usage . 34

3.4 Framework Analysis . 35

3.4.1 Usage Analysis . 36

3.5 Conclusion . 37

4 Experimental evaluation 39

4.1 Methodology . 39

4.1.1 Distribution Of eBPF Programs . 40

4.1.2 Practical Tests Performed . 41

4.2 Results Discussion . 42

4.2.1 Read Intensive Scenario . 42

4.2.2 Write Intensive Scenario . 52

4.2.3 Discussion . 61

4.3 Conclusion . 64

5 Conclusions 65

5.1 Achievements . 65

5.2 Future Work . 66

Bibliography 67

A eBPF programs 71

x

List of Tables

3.1 Summary of the framework analysis . 38

4.1 Time in a read-intensive scenario measured in miliseconds 44

4.2 Throughput in a read-intensive scenario measured in number of oper-

ations per second . 44

4.3 Latency in a read-intensive scenario measured in microseconds 47

4.4 Percentage of user CPU usage in a read-intensive scenario 50

4.5 Percentage of system CPU usage in a read-intensive scenario 50

4.6 Memory used in a read-intensive scenario measured in kB 51

4.7 Percentage of waiting I/O CPU in a read-intensive scenario 51

4.8 Time in a write-intensive scenario measured in miliseconds 53

4.9 Throughput in a write-intensive scenario measured in number of oper-

ations per second . 54

4.10 Latency in a write-intensive scenario measured in microseconds 56

4.11 Percentage of system CPU usage in a write-intensive scenario 59

4.12 Percentage of system CPU usage in a write-intensive scenario 59

4.13 Memory used in a write-intensive scenario measured in kB 60

4.14 Percentage of waiting I/O CPU in a write-intensive scenario 60

xi

xii

List of Figures

4.1 Time of experiments by framework on a read-intensive scenario in miliseconds . . 43

4.2 Throughput of experiments by framework on a read-intensive scenario in number

of operations per second . 43

4.3 Latency of experiments by framework on a read-intensive scenario in microseconds 46

4.4 Percentage of user CPU usage by framework on a read-intensive scenario 48

4.5 Percentage of system CPU usage by framework on a read-intensive scenario . . . 48

4.6 Percentage of waiting for I/O CPU by framework on a read-intensive scenario . . 49

4.7 Memory used by framework on a read-intensive scenario in KB 49

4.8 Time of experiments by framework on a write-intensive scenario in miliseconds . 52

4.9 Throughput of experiments by framework on a write-intensive scenario in number

of operations per second . 53

4.10 Latency of experiments by framework on a write-intensive scenario in microseconds 55

4.11 Percentage of user CPU usage by framework on a write-intensive scenario 57

4.12 Percentage of system CPU usage by framework on a write-intensive scenario . . . 57

4.13 Percentage of waiting for I/O CPU by framework on a write-intensive scenario . 58

4.14 Memory used by framework on a write-intensive scenario in KB 58

xiii

xiv

Chapter 1

Introduction

Distributed systems involve the coordination and operation of multiple interconnected nodes that

work collaboratively to achieve a common goal. This architectural paradigm has gained immense

popularity due to its ability to enhance scalability, fault tolerance, and resource efficiency. The

shift towards microservices, cloud computing, and decentralized networks has accelerated the

adoption of distributed systems, reflecting a departure from traditional monolithic architectures.

This evolution has introduced a new set of challenges, particularly in the realms of perfor-

mance monitoring and issue diagnosis. The inherent complexity of distributed systems, with

their diverse and dynamic interactions among components, makes it increasingly difficult to

identify bottlenecks, diagnose faults, and optimize performance.

Observability is a cornerstone of effective system management, offering valuable insights

into the internal workings of a system. By closely monitoring performance metrics, deviations

from expected behavior can be quickly identified and addressed, preventing potential service

disruptions. Secondly, observability is essential for effective issue diagnosis. In the event of per-

formance degradation or system failures, insights into the distributed system’s internal workings

are necessary to pinpoint the root causes of the issue.

Moreover, observability is instrumental in optimizing resource utilization. By understanding

how resources are allocated and utilized across the distributed environment, one can more easily

make decisions to enhance efficiency, scale resources as needed, and minimize operational costs.

Finally, in the context of user experience, observability plays a pivotal role. Since it enables

organizations to proactively identify and address issues that may impact the end-user, such

as slow response times, service interruptions, or incorrect system behavior, observability tools

can be useful in ensuring a positive and seamless user experience. This is why observability in

distributed systems is fundamental.

Since the existence of distributed systems, effectively monitoring and diagnosing performance

1

issues has always been a struggle. Traditional tools, often designed for simpler, monolithic ar-

chitectures, struggle to adapt to the decentralized and dynamic nature of distributed systems.

The limitations of traditional tools in distributed systems primarily revolve around their cen-

tralized design, inability to adapt to dynamic environments, challenges in handling complex

interactions, scalability issues, the potential introduction of latency, and a lack of adaptability

to modern distributed technologies.

The nature of distributed systems and the demand for higher levels of performance and relia-

bility necessitate innovative approaches and tools, prompting the development of more advanced

systems capable of overcoming these limitations and addressing the unique challenges posed by

distributed systems. The challenges stem from the difficulty of adapting to the decentralized and

dynamic nature of distributed architectures. Traditional tools, primarily designed for centralized

control and static environments, struggle to handle the interactions and dynamic resource allo-

cations across diverse nodes. As distributed systems scale, conventional tools struggle to manage

the increasing data from multiple nodes, with challenges in handling communication patterns,

dynamic changes, and resource allocations. This highlights the need for more advanced tracing

systems.

One common approach to distributed system tracing was the usage of logging mechanisms,

where applications and services generated log files containing information about their activities.

While it seems like a straightforward approach, this can result in a flood of data that could

be challenging to analyze, due to the large data volume, especially in large-scale distributed

systems.

Another method involved the use of instrumentation, where developers manually inserted

code into their applications to gather specific performance metrics or trace the flow of execution.

While this approach is better than logging, because it allows targeted data collection, it comes

with the drawback of increased code complexity and potential interference with the normal

operation of the system.

For tracing in networked environments, packet tracing tools, such as Wireshark1, can cap-

ture and analyze network traffic, providing insights into communication patterns between nodes.

However, such tools were often too low-level for application-level tracing and had several limi-

tations, as they can generate overwhelming amounts of data in large-scale systems, making it

difficult to trace and analyze traffic across numerous distributed nodes efficiently.

Overall, traditional tracing methods often lacked the agility, scalability, and precision needed

for the complexities of modern distributed systems.

1https://www.wireshark.org/

2

https://www.wireshark.org/

The introduction of eBPF (extended Berkeley Packet Filter)[2] opened new possibilities for

tracing. eBPF allows for the safe and efficient execution of custom programs in the kernel space,

enabling dynamic tracing, monitoring, and networking capabilities. It provides a flexible and

programmable way to capture, filter, and analyze events at various levels within the kernel,

enabling more granular and precise observation of system activities.

Moreover, eBPF allows for real-time visibility into the kernel, its lightweight nature makes

it well-suited for high-performance environments, minimizing runtime overhead and making it

possible to capture detailed information without adversely impacting system performance. This

adaptability proved crucial in the dynamic landscape of distributed systems, where traditional

tracing methods struggled to keep pace with the evolving nature of applications and services.

Despite the significant strides made by eBPF in enhancing tracing capabilities within the

Linux kernel, some challenges persist. While eBPF can capture every event needed to perform

analysis, this behavior alone is not enough, there is still the need to send the traced information

to user space which leads to another challenge: how to effectively send this information to user

space for further analysis without losing precision. Moreover, the eBPF verifier has multiple

requirements a program must comply with to be executed, to ensure safe and secure execution,

minimizing the range of things we can do when tracing a system, more on these restrictions in

§2.2.

Despite these advances, there are still notable challenges encountered in the utilization of

eBPF. While essential for preventing harmful code, the verification process of the eBPF verifier

can result in limitations that impact the flexibility of eBPF programs. Furthermore, the trans-

mission of information from the kernel to user space, a crucial aspect of eBPF-based tracing, is

marred by instances of information loss, especially when sending both the traced content and

context. This transmission bottleneck can compromise the completeness and accuracy of the

traced data.

While eBPF offers tremendous potential for observability, its complexity makes it difficult to

work with directly. Writing raw eBPF programs often requires deep knowledge of kernel inter-

nals, system architecture, and low-level programming. In addition to the previously mentioned

challenges, the intricacies of compiling, verifying, and deploying eBPF programs add another

layer of difficulty. As a result, eBPF development can become a time-consuming and error-prone

task.

To address these issues, various tools and frameworks have emerged that abstract away many

of the low-level details, making it easier to interact with eBPF. These frameworks streamline

the process of writing, loading, and attaching eBPF programs to kernel hooks, providing higher-

3

level APIs, pre-built tools, and improved debugging capabilities. They allow users to focus

more on the functionality they want to implement rather than the technical complexities of

eBPF itself. However, despite the availability of these tools, a major challenge remains, the

lack of clear guidance on how to use them effectively. Understanding these nuances is crucial

for selecting the right tool that aligns with the unique needs of their distributed systems. The

choice of an eBPF framework involves not only assessing technical features but also considering

trade-offs such as performance impact and ease of integration. Some frameworks may be better

suited for low-latency environments, while others excel in providing detailed security audits

or advanced performance metrics. This gap in best practices and tool selection often leads to

underutilization or misuse of eBPF’s capabilities, preventing its full potential from being realized

in terms of achieving comprehensive observability, networking, and system monitoring.

Furthermore, no definitive benchmarking or comparison is available to help determine which

tool is best suited for specific scenarios. This lack of standardized guidance introduces additional

challenges, especially for newcomers to eBPF, who are left to experiment with different tools

and frameworks to find the best fit for their applications.

The objective of this thesis is to conduct a systematic analysis of eBPF frameworks, providing

insights into their efficiency, usability, and suitability for different use cases. This includes an

exploration of the various tools and frameworks available for working with eBPF, an evaluation

of their strengths and limitations, and the identification of scenarios where each framework is

most appropriate. Additionally, the thesis will examine different types of probing mechanisms,

such as Kprobes, Uprobes, Tracepoints, and XDP, explaining their functionality and offering

guidance on their optimal use cases.

By conducting this analysis, our goal is to address the current lack of information and best

practices regarding eBPF tools, ultimately offering a clearer understanding of how to effectively

utilize eBPF for system observability, networking, and security while avoiding common pitfalls.

Through both theoretical exploration and hands-on experimentation, this thesis aims to create

a practical guide for users seeking to implement eBPF in an optimized, efficient, and reliable

manner.

The remainder of the document is structured as follows. §2 delves into the background,

strictly analyzing the state of the art and contextualizing our approach within existing research.

§3 details the implementation we followed to conduct the results presented in §4, and finally §5

concludes with a summary of findings and reiterates the problem.

4

Chapter 2

Background

In distributed systems, the fundamental need for observability becomes paramount. The catch-

phrase ”You can’t improve what you can’t measure” encapsulates the challenge distributed

systems face. Without comprehensive means to measure, understand, and analyze the behavior

of distributed systems, it becomes akin to navigating uncharted waters in the dark. The sheer

complexity of these systems, with their interactions and dependencies, necessitates a profound

need for observability tools that go beyond mere monitoring. Observability offers a crucial means

to shed light on the performance, bottlenecks, and inefficiencies of distributed architectures.

Tracing in distributed systems involves capturing and analyzing information about the flow of

requests and events across multiple components or services within a distributed architecture. It

aims to provide insights into the performance, latency, and interactions between various system

elements. It is crucial for understanding and troubleshooting complex interactions between

services, identifying bottlenecks, improving overall system performance, and helps in diagnosing

issues such as latency spikes, error propagation, and dependencies between services, contributing

to better observability and operational efficiency in distributed environments.

Tracing systems are designed to provide insights into system performance by capturing func-

tion calls, resource utilization, and runtime behavior. All tracing systems share a core set of

objectives aimed at addressing the challenges inherent in tracing environments. The key prop-

erties of an effective tracing system are: i) low overhead, ensuring minimal impact on system

performance during tracing activities, leading to overall system efficiency; ii) full expressiveness,

essential for capturing a comprehensive range of events and behaviors; iii) extensibility, allowing

adaptability to evolving system architectures and tracing requirements; iv) precision, enabling

accurate and detailed data collection; and v) information representation, which involves pre-

senting traced data clearly. These shared goals ensure that the benefits of tracing are realized

without imposing undue strain on the traced systems or the underlying infrastructure.

5

2.1 Concepts

The eBPF ring buffer1 is a circular data structure that efficiently manages a buffer for com-

munication between eBPF programs and user space. It enables the asynchronous exchange of

data, allowing eBPF programs to produce events and user space applications to consume them

at their own pace. The eBPF ring buffer is a real-time communication mechanism, providing a

data transfer channel between eBPF programs and user space components

eBPF maps2 are structured key-value data structures facilitating communication between

eBPF programs and user space in a scalable manner. They serve as a bridge, allowing user

applications to interact with eBPF programs. eBPF maps can be queried and updated by both

user space and eBPF programs.

Kernel space is where the kernel (i.e., the core of the operating system) executes and provides

its services. It has direct access to hardware resources, executing critical functions like process

scheduling and memory management. Protected from direct user access, interactions occur

through controlled interfaces like system calls.

User space is the non-privileged portion of a computer’s memory where user applications and

their data reside. Operating at a lower privilege level than the kernel, user space has restricted

access to hardware resources. Applications are isolated from each other, and their interaction

with the system is mediated through system calls, providing a secure interface to request services

from the kernel.

Helper functions3 in the kernel were made to generalize the programmability of eBPF. The

reason for such helper functions is that eBPF programs cannot call normal kernel functions

since they will be limited to the kernel version and complicate the programs’ compatibility.

Some of the most used helper functions are random number generators, time, data, and eBPF

map access.

BPF CO-RE4 (Compile Once, Run Everywhere) is a feature introduced in the eBPF ecosys-

tem that enables eBPF programs to be compiled once and run across different kernel versions

without requiring recompilation for each target environment. Traditionally, eBPF programs

were closely tied to the specific kernel version they were compiled against, meaning one had

to recompile them for different kernel versions or distributions, which added complexity and

maintenance overhead. BPF CO-RE solves this by using BPF Type Format (BTF), which pro-

vides metadata about the kernel’s types and structures, allowing the eBPF program to adapt

1https://docs.kernel.org/6.6/bpf/ringbuf.html
2https://docs.kernel.org/bpf/maps.html
3https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
4https://docs.ebpf.io/concepts/core/

6

https://docs.kernel.org/6.6/bpf/ringbuf.html
https://docs.kernel.org/bpf/maps.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://docs.ebpf.io/concepts/core/

at runtime to differences between kernels. This significantly enhances the portability of eBPF

programs, making it easier to deploy and manage them across a wide range of Linux systems,

from development environments to production servers, without compatibility issues.

2.2 eBPF

The extended Berkeley Packet Filter (eBPF)[2] is a technology designed to enhance the Berkeley

Packet Filter (BPF), which originally emerged as a solution for efficient packet inspection. eBPF

allows to write custom programs that can be safely and efficiently executed within the operating

system kernel, particularly in the Linux kernel. Unlike traditional BPF, which was mainly

designed for filtering network packets at the boundary between kernel space and user space,

eBPF extends its functionality far beyond packet filtering. eBPF can attach to almost any part

of the Linux kernel, intercepting system calls, monitoring events, and modifying packet data in

real-time. Its primary advantage lies in its ability to dynamically execute custom code within the

kernel without the need for modifying or recompiling the kernel itself. This provides flexibility

for monitoring, debugging, and enhancing system performance.

The eBPF architecture begins with programs written in user space, typically in C or other

supported languages. These programs are then compiled into eBPF bytecode, which can be

executed within the Linux kernel. Before execution, the bytecode must pass through the eBPF

verifier, which ensures that the program adheres to strict safety rules, such as avoiding loops

and ensuring safe memory access. This prevents the program from crashing or compromising

the system. Once verified, the bytecode undergoes further optimization through the Just-In-

Time (JIT) compiler, which translates it into native machine code for efficient execution. The

bytecode is then executed within a virtual machine (VM) embedded in the Linux kernel, allowing

for dynamic execution without the need for kernel recompilation. eBPF programs can attach to

various kernel subsystems, such as tracing, packet filtering, system calls, and event monitoring,

enabling flexible monitoring and real-time modification of kernel behavior. This architecture

ensures that eBPF programs are both powerful and safe, providing valuable tools for system

tracing, networking, and performance optimization.

Now we will do a more detailed view of each component, first, we will take a look into the

verification stage, the Linux kernel includes an eBPF verifier that checks whether a program is

safe to execute. This stage is crucial because eBPF programs, once loaded into the kernel, run

with high privileges and could potentially crash the system or introduce vulnerabilities if not

properly vetted.

The verifier checks several aspects:

7

• Privileges: Ensures the program has the necessary permissions to run.

• Run to Completion: eBPF programs must terminate, so loops are limited to ensure they

have guaranteed exit conditions.

• Memory Access: Programs are restricted from accessing memory outside of allocated re-

gions.

• Size and Complexity: eBPF programs are subject to size and complexity limitations,

ensuring they are lightweight and efficient, so, programs should have finite execution paths.

• Crash Prevention: The verifier also checks for potential program crashes by simulating

different execution paths.

The verification process ensures that eBPF programs will neither consume excessive kernel

resources nor expose the system to attacks or instability.

After the verification process, eBPF programs are compiled into native machine code using

the Just-in-Time (JIT) compiler5. This step is essential for performance optimization because

kernel space resources are limited. The JIT compiler translates eBPF bytecode into native

instructions that can be executed directly by the CPU, minimizing overhead and improving

runtime efficiency.

At the time eBPF was introduced, it came with many improvements over other tools used

by the state of the art, mainly its flexibility and extensibility, allowing it to attach to various

hooks throughout the kernel, such as network packet handling, system call monitoring, and

event tracing. It enables real-time execution and safety, as eBPF programs can be injected and

executed at runtime without requiring system restarts. Additionally, the kernel verifier ensures

that these programs are safe to execute, preventing system crashes and providing a high level

of reliability. eBPF also offers significant performance optimization over traditional tools. Its

in-kernel execution model eliminates the overhead of context switches between kernel and user

space, while JIT compilation ensures efficient execution, minimizing resource usage and reducing

latency. Another key feature of eBPF is its data structures, known as eBPF maps, which

facilitate the storage and exchange of data between the kernel and user space. Although eBPF

imposes constraints on program size and complexity, mechanisms like tail calls and function calls

allow large programs to be divided into smaller subprograms. This helps manage complexity

and improves performance by reducing unnecessary code execution, promoting scalability and

expandability.

5https://en.wikipedia.org/wiki/Just-in-time_compilation

8

https://en.wikipedia.org/wiki/Just-in-time_compilation

eBPF proves valuable in several key areas. First, in tracing and observability, eBPF excels

by providing real-time monitoring of system events. It can track CPU, memory, and I/O per-

formance metrics, which aids in diagnosing bottlenecks and optimizing resource utilization. In

networking, eBPF offers the ability to intercept and manipulate network packets at different

stages of the network stack, providing fine-grained control over network traffic. This makes it

essential for packet filtering, load balancing, and traffic shaping. Security is another crucial area

where eBPF contributes by detecting and preventing malicious actions, such as unauthorized

system access or abnormal network traffic. It blocks these threats in real time and helps enforce

security policies to ensure safe process execution. In storage, eBPF allows for real-time monitor-

ing of disk I/O operations, helping to identify performance bottlenecks and optimize interactions

with storage systems. It also helps secure storage infrastructure and enforce data integrity. eBPF

has been explored for improving file system performance, reducing I/O latency, and enhancing

storage efficiency through performance tuning. Additionally, eBPF enables offloading tasks like

network packet processing directly to the kernel, reducing the overhead of moving data between

kernel and user space. Finally, in scheduler optimization, eBPF can monitor task execution

times, CPU utilization, and other scheduling metrics to improve task scheduling. It can imple-

ment custom scheduling policies based on real-time metrics, allowing dynamic and intelligent

scheduling tailored to specific workloads.

2.2.1 Several Scopes

The state-of-the-art, further described in §2.5.1 can be split by what each system goal is, those

are tracing of systems, storage, network, security, scheduling, and hardware

The tracing-focused systems can be divided into two scopes of tracing at the application level

and the container level, each with its focus. In application-level tracing, the focus is directed to-

wards understanding and optimizing the performance of individual software applications. These

systems delve into the workings of applications, offering insights into function calls, resource

utilization, and runtime behavior. Within container tracing systems, a focus emerges on the

network dynamics within containerized environments. Container-level tracing systems provide

an understanding of communication patterns and network bottlenecks. We focus on how these

systems contribute to efficiency, security, and observability, particularly in potential bottlenecks

within containerized infrastructures. A limitation arises when tracing must extend beyond the

container layer to span multiple nodes or diverse environments.

In storage systems, the focus is to enhance both the performance and adaptability of storage

subsystems by enabling in-kernel processing of storage-related operations. Traditional storage

9

workflows require data to be moved between user space and kernel space, leading to increased

latency and resource consumption. By executing storage functions directly within the ker-

nel, closer to the hardware, eBPF reduces this overhead, allowing for faster data processing

and more efficient use of system resources. Additionally, eBPF’s flexibility allows for dynamic

modifications and optimizations tailored to specific workloads or hardware capabilities, such

as Non-Volatile Memory Express (NVMe) devices, thus optimizing the performance of modern

storage architectures.

In the realm of networking, eBPF systems aim to significantly improve network management

by providing real-time control over network traffic directly within the kernel. Traditional net-

working stacks can suffer from inefficiencies, especially when dealing with modern data center

demands like high bandwidth and low latency. eBPF allows for dynamic manipulation of net-

work packets, enabling advanced features such as load balancing, traffic filtering, and congestion

control without the need for user-space processing. This results in reduced latency, improved

throughput, and the ability to respond quickly to changing network conditions.

The goal of eBPF systems in security is to empower security mechanisms with the ability

to operate directly within the kernel, providing protection. eBPF can be used to create custom

security policies that monitor system behavior, detect anomalies, and enforce access controls

without the overhead associated with traditional user-space security solutions. By being in-

tegrated with the kernel, eBPF-based security tools can intercept and analyze system calls,

and network traffic. Furthermore, eBPF enables the creation of lightweight, high-performance

security applications that can be easily updated and adapted to new threats, offering robust

protection for both individual systems and large-scale infrastructures.

In terms of scheduling, eBPF systems aim to provide enhanced insights and control over how

tasks are managed and executed within the kernel. The Linux Completely Fair Scheduler (CFS)

and other scheduling mechanisms can be fine-tuned using eBPF to ensure fair distribution of

CPU resources, optimize for specific workload characteristics, and respond to system load in

real-time. This capability is particularly valuable in high-performance computing environments

or real-time systems where the responsiveness and efficiency of task scheduling directly impact

overall system performance. By allowing custom scheduling policies to be implemented at the

kernel level, eBPF helps achieve a better balance between performance, fairness, and resource

utilization.

For hardware, eBPF systems focus on leveraging the capabilities of specialized devices, such

as Network Interface Cards (NICs) and computational storage devices, by offloading specific

tasks from the CPU to the hardware itself. This approach reduces the processing load on

10

the host system, enabling it to handle more complex or concurrent tasks without performance

degradation. By allowing eBPF programs to run directly on hardware components, such as

NICs, the system can achieve faster data processing, lower latency, and more efficient resource

usage. This is particularly useful in environments where high data throughput and low latency

are critical, such as in data centers or edge computing scenarios. Additionally, eBPF’s hardware

offloading capabilities also enable the possibility of implementing custom processing pipelines

and optimizations that are closely aligned with the specific characteristics of the underlying

hardware, resulting in a more efficient and scalable system.

2.3 Types Of Attaching To System Calls

In the Linux operating system, the ability to monitor, trace, and manipulate system behavior

with eBPF programs is achieved through several mechanisms, each with its unique characteristics

and use cases. The main 3 mechanisms are uprobes, kprobes, and tracepoints. Understanding

these mechanisms is crucial, as they offer ways to observe and influence the behavior of both

user-space applications and the kernel itself.

Uprobes (User-space Probes) is a mechanism in the Linux kernel that allows to dynamically

insert probes into user-space applications. Uprobes work by allowing you to set breakpoints

or instrumentation points at specific locations in user-space binaries or libraries. When the

application reaches one of these points, control is transferred to a handler function in the kernel

where the user can examine the state of the application, collect data, or modify behavior. The

switch from user space to the kernel handler adds overhead to the overall process.

Kprobes (Kernel Probes) provide similar functionality to uprobes but are designed for use

within the kernel space. Kprobes allow the dynamic insertion of instrumentation points into the

running kernel, making it possible to monitor or trace kernel functions without needing to modify

the kernel source code or reboot the system. This is particularly valuable for debugging and

monitoring kernel-level operations, such as system calls, interrupt handlers, or other low-level

kernel functions.

Tracepoints6 are predefined static points within the Linux kernel code that provide a way to

hook into specific events or states in the kernel. Unlike uprobes and kprobes, which allow the

dynamic insertion of probes, tracepoints are typically hard-coded into the kernel source and are

designed to be lightweight and efficient. They are intended for use in performance monitoring,

logging, and debugging. When a tracepoint is hit, it can trigger a registered handler or log

event data, enabling detailed tracing of kernel activities. Tracepoints are widely used because

6https://www.kernel.org/doc/Documentation/trace/tracepoints.txt

11

https://www.kernel.org/doc/Documentation/trace/tracepoints.txt

they are efficient and can be enabled or disabled at runtime with minimal overhead. They

provide valuable insights into kernel performance and behavior without the need for custom

instrumentation.

2.4 eBPF Frameworks

Transitioning from the eBPF concepts in the §2.1, our focus now shifts to the practical imple-

mentation of these concepts through eBPF frameworks. These frameworks are essential because

they enable the integration and execution of custom eBPF programs within the Linux kernel, by

providing abstractions and high-level APIs for the development and deployment of eBPF pro-

grams, they simplify the creation of eBPF-based applications. However, their complexity and

sometimes incomplete documentation make them challenging to grasp fully. eBPF frameworks

present trade-offs in terms of ease of use versus functionality, aiming to strike a balance between

complexity and usability, ultimately fostering a more accessible and robust platform for network

and system-level innovations.

Next follows a description of each relevant eBPF framework in the state-of-the-art.

2.4.1 BPF Compiler Collection

BCC (BPF Compiler Collection)7 is a toolkit for creating efficient kernel tracing and manipu-

lation programs using eBPF. It was introduced to simplify the process of writing and running

eBPF programs, particularly for system observability, diagnostics, and performance monitoring

in Linux environments. BCC leverages the capabilities of eBPF, which was first added to Linux

in version 3.15 and provides a higher-level interface for working with eBPF, abstracting much

of the complexity involved in dealing directly with eBPF bytecode.

BCC uses a combination of kernel instrumentation written in C, and a C wrapper around

LLVM, which compiles C code into eBPF bytecode that can be loaded into the kernel. On top

of this low-level foundation, BCC provides a Python and Lua front-end, allowing it to interact

with the kernel more easily. This combination of C and Python allows users to quickly create,

test, and deploy eBPF programs for tasks like tracing system calls, monitoring network traffic,

and profiling system performance. One of BCC’s standout features is its collection of pre-built

tools and examples, these tools are designed for common use cases like measuring CPU usage,

tracking network packets, or diagnosing I/O latency.

BCC abstracts away the complexity of working directly with eBPF, providing a user-friendly

interface that allows one to write more readable, high-level code while still accessing the powerful

7https://github.com/iovisor/bcc

12

https://github.com/iovisor/bcc

capabilities of eBPF. This abstraction, coupled with its extensive tooling and documentation,

has made BCC one of the most popular frameworks for eBPF development.

2.4.2 Cillium

Cilium8 is an open-source, eBPF-powered networking and security framework specifically de-

signed to address the needs of containerized environments, particularly those running on Ku-

bernetes9. By leveraging eBPF, Cilium provides a powerful, high-performance solution for tasks

such as packet filtering, load balancing, and network visibility.

Cilium’s strength lies in its ability to bring eBPF’s flexibility and efficiency to container

workloads, complex networking, and security challenges. Traditional networking solutions of-

ten struggle with microservices architectures, dynamic and highly distributed nature, where

workloads are constantly being spun up or down across multiple nodes. Cilium addresses these

challenges by allowing the definition of custom networking and security policies using eBPF,

ensuring that data flows between containers are handled efficiently and securely, even at scale.

One of the key features of Cilium is its high-level API, which abstracts much of the complexity

of eBPF, enabling users to express complex networking rules without needing in-depth knowledge

of kernel programming. Additionally, Cilium integrates seamlessly with Kubernetes, making it

an attractive choice for organizations deploying microservices in containerized environments.

Cilium is written in Go, providing a pure Go library for interacting with eBPF. By bringing

the advantages of eBPF to Kubernetes and other containerized environments, Cilium provides

a scalable, secure, and efficient solution for modern networking challenges.

2.4.3 Libbpf

Libbpf10 is a C-based library designed to simplify the integration of eBPF programs into the

Linux kernel. Libbpf offers both high-level and low-level APIs for user-space programs. The

high-level APIs abstract away many of the intricate details of eBPF program management,

while the low-level APIs provide more granular control for fine-tuned management of their

eBPF programs. These APIs facilitate the interaction between user-space applications and the

kernel by providing access to essential BPF-side features, such as BPF maps and BPF helpers,

both described in §2.1.

One of libbpf’s standout features is its support for BPF CO-RE (Compile Once, Run Ev-

erywhere), a powerful mechanism that allows to write portable eBPF programs. Traditionally,

8https://github.com/cilium/ebpf
9https://kubernetes.io/

10https://github.com/libbpf/libbpf

13

https://github.com/cilium/ebpf
https://kubernetes.io/
https://github.com/libbpf/libbpf

eBPF programs had to be compiled for specific kernel versions, which created compatibility chal-

lenges across different environments. With BPF CO-RE, users can compile eBPF programs once

and run them on different kernel versions without modification. This portability is a significant

advantage in environments where multiple kernel versions are in use, such as large-scale produc-

tion systems or cloud-based infrastructures, as it simplifies deployment and reduces maintenance

overhead.

2.4.4 Eunomia-bpf

Eunomia-bpf11 is a dynamic loading library and compile toolchain framework designed to build,

deploy, and distribute eBPF programs.

At its core, Eunomia-bpf is built on top of libbpf. However, Eunomia-bpf extends libbpf’s

functionality by simplifying the process of building eBPF tools, allowing one to more easily

package, distribute, and run eBPF programs. One of the standout features of Eunomia-bpf

is its ability to package eBPF programs in JSON format or as WebAssembly (WASM) mod-

ules. This enables to distribute and execute eBPF programs in a highly portable and flexible

manner. Moreover, Eunomia-bpf automatically handles the complexity of exposing kernel data

and facilitating interactions between kernel-space eBPF programs and user-space applications.

Eunomia-bpf also integrates with a WASM runtime, providing an innovative approach for in-

teracting with eBPF programs. This integration allows developers to write eBPF code for the

kernel and expose data to user space using WASM, a lightweight, cross-platform runtime.

2.4.5 Aya

Aya12 is an eBPF library built from the ground up in Rust. Unlike other popular eBPF frame-

works such as libbpf§2.4.3 or BCC§2.4.1, Aya is completely independent of these libraries,

offering a Rust-native approach to eBPF development. By leveraging Rust’s memory safety

guarantees and performance, Aya provides an efficient and secure environment for creating and

deploying eBPF programs.

One of Aya’s advantages is the integration of Rust’s ecosystem, particularly through Cargo,

Rust’s package manager. Cargo streamlines project management, building, testing, and debug-

ging processes, making the development workflow more efficient and developer-friendly. With

Cargo, developers can easily manage dependencies, and automate builds, all while benefiting

from Rust’s compile-time safety checks.

11https://github.com/eunomia-bpf/eunomia-bpf
12https://github.com/aya-rs/aya

14

https://github.com/eunomia-bpf/eunomia-bpf
https://github.com/aya-rs/aya

Aya also supports the Compile-Once, Run-Everywhere (CO-RE) mechanism, this enhances

the portability of Aya-based eBPF programs, simplifying deployment across diverse environ-

ments and making it easier to maintain and distribute these programs.

2.4.6 Bpftrace

bpftrace13 is a high-level tracing language designed specifically for Linux, offering a simplified

interface for leveraging the power of eBPF. By abstracting away much of the complexity associ-

ated with writing eBPF programs, bpftrace makes it easier to create custom, on-the-fly tracing

and diagnostic tools for monitoring system behavior. Its syntax is inspired by familiar lan-

guages such as awk and C, drawing on the legacy of predecessor tracing tools like DTrace[4] and

SystemTap[1], which similarly aim to provide powerful observability capabilities with minimal

effort.

bpftrace uses LLVM as its backend for compiling scripts into eBPF bytecode, which can

then be loaded and executed in the kernel. This compilation step ensures that the scripts are

optimized for performance while still providing the flexibility of high-level scripting. bpftrace

also integrates with libbpf and BCC to interact with the Linux eBPF subsystem. These libraries

provide the necessary infrastructure for managing eBPF programs, attaching them to various

kernel hooks, and collecting data from the kernel.

One of bpftrace’s key strengths is its ability to provide ad-hoc tracing without the need for

complex, pre-compiled programs. Users can write and execute bpftrace scripts on the fly to

trace specific system events.

2.5 Related Work

In the next section, we briefly introduce a set of relevant systems that use eBPF as their main

tool.

2.5.1 State-of-the-art Descriptions

PHOEBE [20] is a fault injection framework for reliability evaluation against system call invoca-

tion errors. The key of PHOEBE [20] is that, after a phase of system tracing, it synthesizes and

injects realistic system call errors, meaning that the injected errors are based on errors that natu-

rally happen, thus contributing to overcoming the most critical problems in the targeted system.

13https://bpftrace.org/

15

https://bpftrace.org/

CAT [7] is a non-intrusive content-aware tracing and analysis framework that, through a

similarity-based approach, can comprehensively trace and correlate the flow of network and

storage requests from applications. The key contribution of CAT [7] is the content-aware trac-

ing system.

DIO [8] is a generic tool for observing I/O interactions between applications and in-kernel

storage systems. It allows us to diagnose potential performance, dependability, and correctness

issues. Through a pipeline that automates the process of tracing, filtering, correlating, and vi-

sualizing system calls, and by enriching the information provided with additional context, DIO

helps users observe I/O issues.

Zpoline [11] is a system call hook mechanism for x86-64 CPUs, that can exhaustively hook

system calls at a low overhead without overwriting instructions that are supposed not to be

modified. It is a practical way of transparently applying non-verified user-space behavior to

system calls.

A protocol-independent container network observability analysis system based on eBPF [13],

further referred to as PICNO, non-intrusively collects user application interaction information

from L7/L4 layer container network protocols in a cloud-native environment. The information

then goes through an analysis phase, the system has a machine learning method used to analyze

and diagnose the performance and problems of the application network, mainly through the

analysis of timestamps and latency.

The terms L7 and L4 refer to different layers in the OSI (Open Systems Interconnection)

model14, which is a conceptual framework used to understand network protocols. In this context,

networking protocols at L7 are high-level application protocols and provide a way for software

applications to communicate over a network. Examples include HTTP, SMTP, and FTP. Mean-

while, L4 protocols are concerned with the underlying transport of data between containers, for

example, TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

Lee et al. [12] further referred to as EPTM is an eBPF-based packet tracing method for

latency measurement in the container overlay network. To efficiently detect the trace context

on an HTTP payload, the trace context position is moved just behind the HTTP request line

using a sidecar proxy. This tracing method gathers HTTP packets that have the trace context

14https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/

16

https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/

and measures the latency using eBPF.

Inspektor Gadget [5] is a toolset tailored for debugging and inspecting Kubernetes15 re-

sources and applications. Functioning as a collection of gadgets, this toolkit streamlines the

debugging process by providing a set of specialized tools designed to address different aspects of

a Kubernetes environment. Its integration with the eBPF technology allows for the packaging,

deployment, and execution of eBPF programs within a Kubernetes cluster, gaining low-level

insights from the Linux kernel.

Using eBPF for Database Workload Tracing [6] is an exploratory study with a focus on

replacing Database management systems, further referred to as DBMS, with eBPF tracing.

Database Management systems have their native implementation to trace requests made to a

database, mainly logging, but this implementation is too cumbersome to the database itself, so

the authors found that eBPF programs were more or equally performant than the DBMS native

implementation.

Nahida [16] is a system designed to trace every HTTP request made by a target applica-

tion, providing detailed insights into the application’s end-to-end flow. Utilizing eBPF, Nahida

intercepts each HTTP request and tags it with a unique ID. By tracking the journey of these

tagged IDs throughout the system, Nahida offers a view of the application’s internal operations,

enabling the identification of the overall behavior of the application from start to finish. This

approach provides real-time, granular visibility into request flows, making it a powerful tool for

monitoring and debugging complex distributed systems.

XRP [21] is a system designed to execute storage operations directly within kernel space,

closer to the NVM (Non-Volatile Memory) device. By bypassing certain kernel system layers,

XRP reduces the overhead associated with these operations, leading to more efficient storage

function execution.

Electrode[23] focuses on optimizing the implementation of the Paxos Protocol 16 by execut-

ing critical operations directly in the kernel. This system addresses the inefficiency where a

significant portion of CPU resources is consumed by user space-kernel transitions and traversing

the kernel’s networking stack during Paxos operations. To mitigate this, Electrode offloads the

following operations to kernel space: message broadcasting, fast acknowledging, and wait-on-

quorums.

DINT [24] is a system designed to optimize distributed transactions by reducing the overhead

associated with the kernel networking stack, user-kernel context switching, and interrupt han-

15https://kubernetes.io/docs/home/
16https://en.wikipedia.org/wiki/Paxos_(computer_science)

17

https://kubernetes.io/docs/home/
https://en.wikipedia.org/wiki/Paxos_(computer_science)

dling. Traditional approaches to improve performance, such as kernel bypass techniques, often

sacrifice security. DINT, however, leverages eBPF to run transaction processing logic directly

within the early stages of the kernel networking datapath, bypassing much of the kernel stack

and avoiding user-kernel transitions. This approach maintains the security and other benefi-

cial properties of the kernel while significantly enhancing performance in distributed in-memory

transactions.

eHDL [14] is a system focused on optimizing network packet processing by converting software

programs into hardware designs for Network Interface Cards (NICs). As NIC speeds increase,

there is a need for more efficient packet processing that does not overburden the host CPU. eHDL

addresses this by automatically generating tailored hardware designs from eBPF/XDP programs,

allowing software developers to leverage NIC hardware without deep hardware expertise. It

functions as a bytecode-to-source compiler, converting unmodified eBPF bytecode into HDL

(Hardware Description Language) and integrating the generated hardware pipeline into the

NIC.

Delilah [10] is a system focused on enhancing computational storage, specifically within the

context of NVMe devices, by utilizing eBPF. The motivation behind Delilah is to explore the

potential of offloading computational tasks to storage devices, either through statically installed

device-specific functions or dynamically downloadable functions from the host at runtime. The

primary goal is to offload eBPF code onto actual computational storage devices, allowing for

the evaluation of the overhead associated with eBPF function execution and the exploration

of different design options. By doing so, Delilah aims to establish a foundation for future

research and development in leveraging eBPF to improve the capabilities and performance of

computational storage devices.

EXTFUSE [3] addresses the significant performance penalties associated with user file sys-

tems primarily caused by frameworks like FUSE, which rely on a minimal interposition layer

in the kernel to forward all low-level requests to user space. This design results in frequent

kernel-user context switching and data copying, leading to degraded performance, particularly

in high I/O throughput or low latency scenarios such as databases. The motivation behind

this framework is to overcome the performance limitations of existing solutions, which are too

general-purpose and do not cater to the specific needs of file systems. The goal is to introduce

EXTFUSE, a framework that enables the development of extensible user file systems by allowing

applications to register specialized request handlers directly in the kernel. This reduces the need

for frequent context switching and data copying by allowing fast path (kernel-side) and slow

path (user-side) logic to coexist, thus improving performance while maintaining the flexibility

18

and advantages of user file systems without requiring significant changes to their design.

Zhe Yang et al.[17] is a system focused on optimizing data processing by addressing the

significant overhead of transferring large volumes of data from storage devices to host systems

for processing in data-intensive applications. The motivation stems from the inefficiencies of

traditional approaches, where excessive data movement leads to performance bottlenecks. Com-

putational storage devices offer a solution by allowing computation to occur directly on the

storage device, minimizing the need for data transfer. The goal of [17] is to introduce a unified

I/O stack that efficiently manages both computational and storage resources across hosts and

devices, thereby significantly improving the performance of data processing tasks by reducing

the overhead of data movement and optimizing resource utilization.

bpfbox [9] is focused on improving security through process confinement. The motivation

behind bpfbox arises from the complexity and inflexibility of existing Linux process confinement

mechanisms, which rely on a mix of security primitives that are not specifically designed for

this purpose. The goal of bpfbox is to demonstrate that eBPF can provide a simpler, more

efficient, and flexible solution for process confinement. Process confinement is critical for enforc-

ing the principle of least privilege, isolating applications, and preventing unauthorized access

or interference between processes, particularly in multi-tenant or cloud environments. As a

proof-of-concept application, bpfbox utilizes eBPF to implement confinement with a minimal

codebase, offering multiple levels of confinement through a straightforward policy language. By

restricting the actions and capabilities of processes, bpfbox aims to enhance the security of the

system by containing potential damage from compromised or malicious processes.

Durian [18] focuses on monitoring and analyzing the fairness of the Linux Completely Fair

Scheduler (CFS), under the assumption that the scheduler may not always be fair. The goal

is to introduce Durian, an eBPF-based system designed to track task states within CFS and

analyze their fairness. Durian decouples the data collection process from the analysis process,

allowing for flexible and generic analysis methods. It collects and exports scheduling statistics

to an external store, enabling independent analysis by multiple processes without impacting the

scheduler’s performance or safety. By comparing the theoretical and actual fair share of CPU

time allocated to tasks, Durian helps identify discrepancies and provides insights that can be

used to fine-tune system behavior, either to minimize or maximize the time quantum a task

receives, depending on the desired outcome.

Poster [15] aims to automatically generate and apply patches to real-time embedded devices

without requiring a reboot or system halt. This approach enhances the security of critical devices

used in sectors like healthcare, automotive, and industrial control by enabling swift and efficient

19

vulnerability fixes. The poster presents itself currently as only a theoretical concept that could

be implemented using eBPF.

NCScope [22] is a tool designed to enhance the analysis of native code within Android

applications. By leveraging hardware assistance and eBPF, NCScope collects execution traces

and memory data with minimal overhead, surpassing the limitations of existing dynamic analysis

tools. The primary goal is to make native code analysis more effective in detecting complex

behaviors, such as self-protection mechanisms, anti-analysis techniques, memory corruption,

and performance anomalies. NCScope contributes to improved security and efficiency in app

development and malware detection, offering a more robust solution for analyzing native code

in Android environments.

Augmenter [19] focuses on enhancing network tracing in data center environments, which

are evolving with higher bandwidth-delay products and a shift towards nano-services architec-

ture characterized by many small flows. The traditional TCP/IP stack faces challenges in this

context, such as accurately estimating network state due to the short duration of many flows

and a lack of flexibility in adjusting parameters like the initial congestion window (IW) for

TCP connections. To address these issues, the work introduces Augmenter a framework that

enhances the TCP/IP stack’s visibility and flexibility using eBPF. Augmenter collects real-time

state information from ongoing flows and uses it to dynamically adjust the initial congestion

window and optimize the management of current and future flows. This approach aims to im-

prove application performance by making the networking stack more responsive and adaptable,

addressing the limitations of the traditional TCP/IP stack in modern data center networks while

enabling more intelligent flow management and optimization.

2.5.2 Tracing System Property Analysis

This analysis will focus on the tracing system properties of seven previously presented systems:

PHOEBE [20], CAT [7], DIO [8], Zpoline [11], A protocol-independent container network ob-

servability analysis system based on eBPF [13], Enhancing Packet Tracing of Microservices in

Container Overlay Networks using eBPF [12] and Inspektor Gadget [5].

Information Visualization

One of the key properties of distributed system tracing is representing information to the user.

As tracing systems capture a wealth of information about system behavior, application inter-

actions, and performance metrics, visual representations are indispensable for discerning trends,

identifying bottlenecks, and making informed decisions. Neglecting investment in system visual-

20

ization entails several potential downsides: not understanding complex patterns, dependencies,

and anomalies within traced data becomes arduous making it harder to identify performance

bottlenecks, recognize trends, and make informed decisions.

From this set of relevant systems, PHOEBE [20] was the first system to engage in a visual

representation of the traced data, since its main focus is to identify which system calls break

the system, it opts for a tabular format to present the information captured (every system call

within the traced period), leaving room for improvement. CAT [7] provides a new feature in

the form of a space-time diagram that offers a visualization strategy that captures temporal

dynamics and establishes relationships between system calls. This approach enriches the traced

data with a visual narrative.

Next came DIO [8], with the use of Kibana’s dashboards, which also introduced custom

dashboards and filters for a type of event, which matches its goal to allow custom visualization

of data. As Zpoline ’s [11] objective is to introduce custom behavior into system calls, it does

not opt for any information visualization.

In contrast to application-level tracing systems that often leverage intricate visualization

strategies, container observability systems opt for simplicity in their approach. Since the output

information here is more simplistic, it can be helpful to facilitate the visualization process.

PICNO [13] was the first system to present data visually through the utilization of graphs,

metrics such as pod connection and pod connection latency can be graphically visualized. Next

EPTM [12] opted for the most basic data visualization: presenting values in the console, this is

due to its innovation not being on the visualization part.

Lastly, Inspektor Gadget [5] offers a unique feature, the ability to filter information directly

within the command line. This capability allows users to focus on specific metrics or events

of interest. While committing to this visualization approach, Inspektor Gadget’s capacity for

dynamic filtering adds a layer of customization.

Coupled with this feature, the ability to relate system calls to each other is pivotal to under-

standing application behavior. Understanding the relationships between system calls enhances

observability. CAT [7] stands out as the only system to relate events by using a color scheme in

the space-time diagram, where events marked with the same color are related or similar.

Enrich Traced Data

For these systems to have meaningful data to visualize, another fundamental piece of them is

to enhance traced data with additional information. Enriching traced data with details such

21

as process identifiers, timestamps, and relevant metadata facilitates further analysis and trou-

bleshooting. Failure to do this can lead to notable downsides: deciphering the meaning and

relevance of raw data can be challenging, leading to missed opportunities for insightful analysis.

In essence, neglecting the enhancement of traced data limits the depth of analysis, obstructs ef-

fective troubleshooting, and diminishes the overall value derived from the tracing process within

complex computing environments.

PHOEBE [20] set the standard by enhancing traced data with additional context, CAT [7]

stands out for its content-aware system, a feature that captures the context and the content of

traced events. This mechanism involves sending context and content through a ring buffer and

kernel Maps, respectively. However, the approach introduces a noteworthy consideration, it may

lead to the truncation of events. This truncation is a trade-off that facilitates the transmission

of data but comes with the potential drawback of a miss relation between events. The risk

of events being truncated and consequently, correlating unrelated events, stands as a challenge

within CAT’s content-aware system, thus leaving room for further improvement.

DIO [8] matched the state of the art by also enhancing traced data with additional context.

These tracing systems incorporate extra details such as process identifiers, timestamps, and

comprehensive metadata.

On the container tracing systems side, all three, PICNO [13], EPTM [12], and Inspektor

Gadget [5], meet the standards for the state of the art by enhancing traced data with additional

context.

Expressiveness

The third property every tracing system aims to achieve is full expressiveness.

Full expressiveness means tracing every possible scenario, for example, wanting to trace every

system call x from pid y to pid z and being able to do so. This entails a goal that every tracing

system should aim for, the ability to capture all the system calls scenarios within a given period.

When a system lacks full expressiveness, it may lose important system call scenarios during the

tracing process, which can result in an incomplete and potentially misleading representation of

application behavior. Overall, the downsides of limited expressiveness underscore why tracing

systems aim to provide a detailed and exhaustive account of system calls.

Since Phoebe’s [20] goal is to detect which system calls can corrupt the system state, it can

capture the full range of information about system calls, thus achieving full expressiveness.

CAT [7] has the downside of potentially losing information, either by truncating events within

22

its content-aware system or by losing some event information due to constraints within the ring

buffer, so it does not achieve full expressiveness. Since DIO [8] does not include content in its

tracing enhancing phase, it improves upon what CAT built by not having truncated events, but

it also has the downside of potentially losing events due to constraints within the ring buffer,

these constraints are due to its limited space, and the user space not being able to keep up with

the amount of events gathered.

Finally, since Zpoline [11] redirects every system call to a user-defined function, it can capture

the full range of information about system calls.

On the container tracing side, PICNO [13], EPTM [12], and Inspektor Gadget [5] fail to

capture every network request that is made in the containerized environment, EPTM [12] reduces

it search space only to requests with the HTTP header, for PICNO [13] and Inspektor Gadget [5],

it is not specified which requests are missed, only that full expressiveness is not achieved.

Behaviour introduced Verified

The struggle with the eBPF verifier is something that most systems face in terms of what behav-

ior can be added to systems calls, so Zpoline’s [11] capacity to introduce non-verified behavior

into kernel functions seems to stand as a groundbreaking feature. Zpoline’s [11] achieves this by

redirecting system calls into a function defined in user space, so the behavior of the function is

not verified by the eBPF verifier, but it is crucial to acknowledge the practical limitations asso-

ciated with this flexibility. The potential to customize behavior confronts the challenge that, in

practice, this capability is more constrained than initially envisioned. The practical implications

of Zpoline’s flexibility become apparent when evaluating the extent of modifications that can

be effectively applied, comparing this with CAT [7], DIO [8] and PHOEBE [20], the complexity

introduced by Zpoline [11] is not valuable for the gains observed.

Latency Measurement

Measuring latency on the container network is fundamental, latency, representing the time taken

for data to travel between two points in the network, serves as a critical metric for assessing the

efficiency of containerized applications.

First and foremost, latency directly impacts the responsiveness of applications, and elevated

latency levels mean network congestion, inefficient communication, or other performance bot-

tlenecks. These systems can pinpoint specific areas of the network that may be contributing

to delays. Moreover, observing latency in real-time enables rapid detection and resolution of

issues that could otherwise impact the user experience and the performance of containerized

23

applications.

Measuring latency on the container network within observability systems is a crucial feature

in optimizing performance and maintaining a responsive and efficient containerized infrastruc-

ture. PICNO [13], EPTM [12], and Inspektor Gadget [5] take a similar approach to this latency

measurement. All three operating within Kubernetes (k8s) clusters on worker nodes, share sim-

ilarities in their approach to information collection with their utilization of the helper function

bpf-ktime-get-ns()17 to acquire precise timestamps, latency can then be deduced. This func-

tion becomes a linchpin in the systems’ ability to perform latency analysis, offering a granular

understanding of the time taken for various operations within containerized environments.

Extra Features

Finally, while Inspektor Gadget [5] shares the commonality of measuring latency within Ku-

bernetes clusters, it stands out for all its other functionalities. Inspektor Gadget provides an

array of built-in gadgets (eBPF programs that can be deployed) that extend its capabilities.

These functionalities range from observing and recommending system configurations to audit-

ing specific subsystems within the cluster. Moreover, Inspektor Gadget can dynamically report

the current captured scenario during the tracing activities. This real-time reporting feature

provides instant insights into ongoing system behavior.

2.6 Discussion

Across the state-of-the-art systems studied, there is a clear emphasis on improving observability,

troubleshooting efficiency, and overall system performance. These systems, though targeting

different areas, such as storage, networking, security, scheduling, and hardware, utilize eBPF in

various ways to enhance performance. Common strategies include offloading computation to the

kernel to reduce overhead, enabling detailed performance monitoring directly in the kernel, and

allowing real-time analysis and optimization. This unified approach allows systems to maximize

resource efficiency, improve responsiveness, and provide deeper insights into system behavior.

In conclusion, all the systems analyzed contribute to advancing eBPF technology, playing a

pivotal role in optimizing performance and facilitating efficient troubleshooting. Address issues

or limitations in several Linux components.

Despite the widespread use of eBPF frameworks in these subsystems, there is often no clear

explanation of why a particular framework is chosen or what its specific advantages are. Our

study focuses on six eBPF frameworks, BCC, libbpf, Cilium, Aya, bpftrace, and Eunomia,

17https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

24

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

providing clarity on their best use cases. We compare these frameworks across several criteria,

including ease of use, performance, dependencies, and deployment requirements, highlighting

their strengths and limitations in different contexts. A deeper exploration of these aspects is

presented in §3 and §4, where we offer both theoretical and practical analysis.

25

26

Chapter 3

Theorical analysis

The decentralized nature of distributed systems makes traditional monitoring tools inadequate

and new ones are not yet capable of solving this issue to its fullest, hindering our ability to

understand and optimize system performance.

Furthermore, eBPF frameworks are crucial for integrating and executing custom eBPF pro-

grams within the Linux kernel, offering abstractions and high-level APIs that simplify the devel-

opment of eBPF-based applications. While they make eBPF more accessible, their complexity

and incomplete documentation can pose challenges for developers. These frameworks balance

ease of use with functionality, aiming to create a more accessible and powerful platform for

network and system-level innovations.

Our work will focus on analyzing the eBPF frameworks across several criteria, divided into

two parts. The first is the theoretical part of the ebpf framework analysis done in this chapter,

this will provide better insights into how the frameworks differ from each other. The second

one is the practical analysis described in §4. So in the next two chapters, we aim to answer the

following questions:

• Which eBPF framework is most used by the state-of-the-art and for what purpose?

• Which eBPF frameworks are used in the industry and for what purpose?

• Which eBPF framework is faster according to our implementation?

Besides these questions we also aim to provide clearer insights into every ebpf framework

studied regarding the following criteria:

• Architecture and implementation details.

• Use cases.

27

• Deployment requirements.

• Code complexity.

3.1 Theorical Methodology

Our theoretical analysis will focus on the six ebpf frameworks studied, focusing on various

aspects to provide a better understanding of their capabilities and trade-offs. This analysis will

cover key dimensions, including the design and architecture of each framework, focusing on how

the framework is structured and how it interacts with the system kernel and user space.

We will also examine the range of eBPF use cases each framework supports (e.g., tracing,

networking, security). Furthermore, the analysis will explore the implementation details, such

as the programming languages used (e.g., C, Python, or Go) and how these choices impact

overall accessibility and runtime efficiency. Another aspect of the analysis is the examination of

each framework’s dependencies and deployment requirements, such as the need for specific kernel

versions, libraries, or toolchains. These factors can significantly affect the ease of integration and

compatibility with various system environments. Finally, we will evaluate the code complexity

of each framework, considering how difficult or straightforward it is for developers to implement

and maintain eBPF programs within each framework.

3.1.1 Framework Architecture and Implementation Details

BCC is built as a high-level abstraction over the complexities of eBPF programming. It sim-

plifies the creation of eBPF programs by allowing to write them in Python1. BCC handles

the compilation and loading of eBPF programs into the kernel, making it easier to work with.

This abstraction reduces complexity for users but adds overhead with its reliance on external

dependencies like LLVM.

libbpf offers a more direct, low-level C library for interacting with eBPF, providing fine-

grained control over critical tasks such as the compilation of eBPF bytecode, loading programs

into the kernel, and attaching them to specific kernel hooks. Its architecture is designed to

be lightweight and closely integrated with the Linux kernel, providing minimal overhead. This

closer interaction with the kernel allows for highly optimized eBPF usage, but it comes at the

cost of increased complexity, as libbpf does not provide the high-level abstractions found in other

eBPF frameworks.

Eunomia-bpf prioritizes simplicity and ease of use in eBPF development and deployment.

1https://www.python.org/

28

https://www.python.org/

By allowing eBPF programs to be packaged as WebAssembly (WASM) modules2, Eunomia-bpf

streamlines the process of running pre-compiled eBPF programs, making it easier to deploy

these programs across different environments without needing to recompile or handle complex

kernel dependencies. However, it also limits the level of customization available. Since programs

are pre-compiled and packaged in WASM or JSON formats, it provides less flexibility to modify

or fine-tune eBPF code at runtime.

bpftrace is designed with a scripting-based architecture that simplifies eBPF programming,

making it accessible to users with minimal kernel or eBPF expertise. It uses a high-level language

inspired by awk3 and C, allowing users to write concise scripts for system diagnostics and tracing

tasks. bpftrace compiles these scripts into eBPF bytecode using LLVM4, which is then injected

into the Linux kernel via libbpf and BCC, enabling real-time tracing through kernel-level and

user-level hooks like kprobes, uprobes, and tracepoints. bpftrace simplifies tracing tasks, but it

is mostly limited to system diagnostics.

Aya, built entirely in Rust5, bypasses traditional C-based libraries like libbpf and instead

leverages Rust’s toolchains for direct access to eBPF. By using Rust’s ecosystem, Aya integrates

seamlessly with tools like Cargo6 for managing dependencies, building, and testing, streamlin-

ing the development workflow for eBPF applications. Aya’s support for Compile Once, Run

Everywhere (CO-RE) also enhances portability, allowing eBPF programs to run across different

Linux kernel versions without modification.

Cilium’s architecture is optimized for high-performance networking and security in cloud-

native environments, with a particular focus on Kubernetes7. It integrates deeply with Ku-

bernetes to provide seamless service discovery, network observability, and the enforcement of

security policies, making it highly suitable for large-scale microservices deployments. This ar-

chitecture allows Cilium to handle the dynamic, distributed nature of containerized workloads,

ensuring secure and efficient communication between services. Cilium’s architecture is built

using Go8, which it uses to manage the loading of eBPF programs into the Linux kernel.

3.1.2 Use Cases

BCC is ideal for system monitoring, performance tuning, and security auditing. Its high-level

abstractions and its set of pre-built tools make it accessible to rapidly create and deploy eBPF

2https://webassembly.github.io/spec/core/syntax/modules.html
3https://www.awk.dev/
4https://llvm.org/
5https://www.rust-lang.org/
6https://doc.rust-lang.org/cargo/
7https://kubernetes.io/
8https://go.dev/

29

https://webassembly.github.io/spec/core/syntax/modules.html
https://www.awk.dev/
https://llvm.org/
https://www.rust-lang.org/
https://doc.rust-lang.org/cargo/
https://kubernetes.io/
https://go.dev/

programs for tracing and diagnostics, without requiring deep kernel expertise. BCC is especially

suited for real-time observability and troubleshooting, offering tools for gaining insights into

system performance and behavior with minimal development effort.

libbpf is best suited for production environments in which performance, efficiency, and low

overhead are critical. It provides low-level access to the eBPF subsystem, making it ideal if

control to build custom eBPF solutions tailored for networking, security, or system monitoring

is required. Its lightweight nature and close integration with the kernel allow for highly optimized

eBPF programs, ensuring minimal resource consumption and maximum performance.

Eunomia-bpf excels in lightweight, cross-platform environments such as cloud and container-

ized infrastructures. Its zero-dependency approach using pre-compiled eBPF programs packaged

as WebAssembly (WASM) modules makes it perfect for scenarios that prioritize ease of deploy-

ment, portability, and minimal resource consumption.

bpftrace is designed for real-time, interactive system diagnostics. Its simple, high-level lan-

guage allows one to write tracing scripts without the complexity of writing full eBPF programs.

bpftrace is ideal for quick, ad-hoc tracing and performance analysis, making it an excellent tool

to gather immediate insights into system behavior.

Aya is the go-to framework for Rust-based applications, providing a safe, efficient, and native

eBPF integration with Rust. Aya is ideal for high-performance tracing and monitoring, making

it perfect for building robust and performant eBPF applications in Rust.

Cilium is optimized for cloud-native networking, especially in Kubernetes environments.

It uses eBPF to provide advanced networking features such as load balancing, network policy

enforcement, and deep observability. Cilium is essential for managing large-scale, distributed mi-

croservices architectures, offering transparent service discovery and security for modern, dynamic

environments. Its deep integration with Kubernetes makes it a natural choice for organizations

prioritizing scalability, security, and performance in cloud-native deployments.

3.1.3 Deployment Requirements

BCC relies on external tools like LLVM/Clang9 for compiling eBPF programs and uses Python

libraries for writing and interacting with eBPF code. This increases its overall dependency

footprint, requiring both the LLVM/Clang toolchain and Python to be installed. Additionally,

it demands a more recent Linux kernel (version 4.1+ for most features), making it more suited

for environments where these dependencies can be easily managed.

libbpf has minimal dependencies, only requiring a Linux kernel with version 4.9+ for full fea-

9https://clang.llvm.org/

30

https://clang.llvm.org/

ture support. As a low-level C library, libbpf does not need external toolchains like LLVM/Clang.

Eunomia-bpf follows a “zero-dependency” approach, eliminating the need for compilation

tools like LLVM/Clang by using pre-compiled eBPF programs packaged as WASM modules.

This makes it a lightweight solution with very few external dependencies.

bpftrace requires the LLVM/Clang toolchain to compile its high-level tracing programs into

eBPF bytecode and demands a Linux kernel of version 4.9+ or higher. While it simplifies tracing

tasks, its dependency on external compilation tools increases setup complexity.

Aya requires the Rust toolchain and a Linux kernel version 5.4+ for full feature support.

Its integration with Rust makes it well-suited for Rust-based environments, but it requires

familiarity with the Rust ecosystem, including tools like Cargo for managing dependencies and

builds.

Cilium relies on libbpf as its underlying layer for interacting with eBPF. It also depends

on Kubernetes for full functionality, given its deep integration into cloud-native environments.

Cilium requires a modern Linux kernel of version 4.9+, and while its setup might be more

complex due to its dependencies, its scalability and deep integration with containerized systems

make it perfect for large-scale, distributed environments.

3.1.4 Code Complexity

BCC simplifies the complexity involved in eBPF programming by abstracting away low-level

details. However, the framework itself is quite large, as it includes dependencies such as LLVM

and Python bindings. Writing eBPF programs using BCC is relatively straightforward, requiring

only knowledge of Python, which lowers the entry barrier for developers.

libbpf, on the other hand, offers a more direct, low-level interface to eBPF, providing de-

velopers with greater control over program execution and performance. However, this comes at

the cost of increased code complexity. To effectively use libbpf, developers must be proficient in

C and have a solid understanding of kernel internals.

Eunomia-bpf takes a different approach by minimizing code complexity through pre-compiled

WASM modules for eBPF programs. This significantly simplifies both the writing and deploy-

ment processes. Still, it limits the flexibility and customization options compared to frameworks

that allow direct interaction with eBPF code, making it less suitable for complex, tailored use

cases.

bpftrace greatly reduces the complexity of eBPF programming by offering a high-level script-

ing interface. It is particularly well-suited for quick, interactive tracing tasks and requires very

little programming knowledge, as simple commands can handle many tasks. However, bpftrace’s

31

flexibility is limited, as it is primarily focused on quick simple tracing, rather than more complex

or varied eBPF applications.

Aya leverages Rust’s memory safety and modern programming paradigms to simplify the

development process, reducing common errors like memory leaks or unsafe pointer access. While

Aya offers more control than higher-level frameworks, it requires deep knowledge of both Rust

and C for effective use, which increases the learning curve.

Cilium abstracts much of the complexity involved in networking and security tasks, providing

a high-level interface for managing network policies and observability in Kubernetes environ-

ments. However, its deep integration with Kubernetes adds to the overall complexity, and

developers need a good understanding of Go for deploying and extending Cilium, which can be

a barrier for those unfamiliar with the Go ecosystem.

3.2 State Of The Art Usage

In this section, we will analyze which and what eBPF frameworks are used by the state-of-the-art

works that were discussed in §2.5.1.

3.2.1 System Application

In terms of system application, tracing is the most frequent use of eBPF frameworks, appearing

in 11 instances, mainly EPTM[12], CAT[7], DIO[8], Container Network Observability [13], in-

spektor Gadget [5], Nahida [16] and PHOEBE[20]. Tracing allows developers to monitor system

events and behavior in real time, making it highly valuable for performance tuning, debugging,

and observing kernel or user-space activities. Storage systems show 4 instances where eBPF is

used IO[17], EFFSUS[3], Delilah[10] and XRP[21]. In these cases, eBPF is applied to monitor

I/O performance, track storage-related events, and optimize file system operations. Offload-

ing tasks to the kernel is observed in 2 instances, primarily in the networking domain. Here,

eBPF is used to offload packet processing and filtering tasks directly to the kernel, significantly

improving performance and reducing latency for high-throughput networking environments.

Security applications for eBPF are documented in 2 cases, Poster[15] and bpfBox[9]. In these

cases, eBPF is used to enforce security policies, monitor suspicious activities, or control traffic

between services. In scheduling, there is one instance where eBPF is applied, in Durian[18].

eBPF is used here to optimize task scheduling by monitoring and adjusting resource allocation

at the kernel level. This allows for more efficient process management and system performance

improvements in environments where workload balancing is crucial. Lastly, the usage of eBPF

to improve hardware is mentioned in 1 case, eHDL[14]. In this instance, eBPF is employed to

32

interact with hardware components. It demonstrates the versatility of eBPF but also highlights

that its primary strength lies in software system monitoring and optimization.

3.2.2 eBPF Framework Usage

In terms of eBPF framework usage, libbpf is the most widely used eBPF framework, appearing

in the implementation of [16], [21], [24], [3], [17] and [19]. It is favored for tasks that require

direct access to the eBPF subsystem with minimal overhead, such as high-performance storage

monitoring, networking, and low-level system tracing, with this being the reason authors say

they chose libbpf over other frameworks. BCC is used in four cases, primarily for tracing

and monitoring tasks, the systems that use BCC are NCScope[22], bpfBox[9], DIO[8], and

PHOEBE[20].

bpftrace is not used in the state of the art, as expected. While bpftrace is known for simpli-

fying eBPF program writing with a high-level scripting interface, making it suitable for quick,

interactive tracing of kernel and user-space events, it is not widely used in distributed systems.

This is largely due to bpftrace not scaling well for distributed environments and also does not

cover specific cases that are needed because its high-level abstractions and dynamic scripting

model introduce more computational overhead, making it less efficient for the continuous, large-

scale data processing required in distributed systems. Its ad-hoc, real-time tracing approach is

more suitable for local diagnostics and system monitoring, where ease of use and fast deployment

are priorities, but it becomes less effective in handling the complexity and scale of distributed

systems.

Cilium appears in zero use cases in the state-of-the-art, but is it commonly utilized in the

industry, as we will discuss in §3.3.

Eunomia and Aya are less frequently mentioned in the state-of-the-art, which suggests that

these frameworks are still emerging. Both Eunomia and Aya represent newer, specialized ap-

proaches to eBPF development, and while they offer specific advantages, their current limited

mention in the state-of-the-art reflects their ongoing development and emerging adoption.

While not an ebpf framework, XDP10 is mentioned in 2 cases for offloading networking tasks

to the kernel. XDP is designed for high-performance packet processing, allowing networking

operations to be handled with minimal latency directly in the kernel, the systems that use XDP

are eHDL[14] and Electrode[23].

Unfortunately, in the state-of-the-art analysis, there are 9 instances where the specific eBPF

framework used is unknown or is based on a custom implementation without the usage of any

10https://en.wikipedia.org/wiki/Express_Data_Path

33

https://en.wikipedia.org/wiki/Express_Data_Path

framework.

3.3 Industry Usage

eBPF is also used in the industry, where many major tech companies are utilizing ebpf for a wide

range of applications across networking, security, and observability, some of the main companies

are Meta11 uses ebpf extensively in its data centers for load balancing and packet processing,

which significantly improves throughput and scheduler efficiency, Shopify12 and Apple integrate

ebpf via Falco13, which is built on libbpf, for kernel security monitoring, Google14 employs

ebpf for runtime security and observability, processing most data center traffic through ebpf.

Netflix15 relies on ebpf for performance monitoring and analysis, enhancing troubleshooting and

visibility across its production servers, Android16 leverages ebpf for network usage, power, and

memory profiling, demonstrating its utility in mobile OS performance monitoring, Cloudflare17

uses ebpf (specifically XDP) for network security and observability, helping manage and secure

its traffic, Microsoft18 improves observability in Kubernetes environments with ebpf, using tools

like Inspektor Gadget[5] for process inspection. Sky19 and Capital One20 both utilize Cilium

for cloud networking, with Sky highlighting its ability to replace iptables and enhance DNS and

HTTP connectivity while conducting functional and non-functional testing through Cilium’s

provided test suite, Ikea21 also leverages ebpf through Cilium for networking and load balancing

in their private cloud. By using Cilium, Ikea optimizes its cloud infrastructure, enhancing

network performance and ensuring efficient load balancing across its services and LinkedIn22

utilizes ebpf for observability, allowing the company to collect valuable data points with minimal

overhead. This use of eBPF provides LinkedIn with deep insights into system performance while

maintaining efficiency.

Besides these companies, many others make use of ebpf to optimize their systems, they can

be found in the ebpf official website23.

11https://business.facebook.com/latest/home?nav_ref=bm_home_redirect&asset_id=270061450382723
12https://www.shopify.com/uk/plus/solutions/retail-and-point-of-sale
13https://falco.org/tags/ebpf/
14https://www.google.pt/?hl=pt-PT
15https://www.netflix.com/pt
16https://www.android.com/intl/pt_pt/
17https://www.cloudflare.com/
18https://www.microsoft.com/pt-pt
19https://www.sky.com/
20https://www.capitalone.com/
21https://www.ikea.com/pt/pt/
22https://www.linkedin.com/home?originalSubdomain=pt
23https://ebpf.io/case-studies/

34

https://business.facebook.com/latest/home?nav_ref=bm_home_redirect&asset_id=270061450382723
https://www.shopify.com/uk/plus/solutions/retail-and-point-of-sale
https://falco.org/tags/ebpf/
https://www.google.pt/?hl=pt-PT
https://www.netflix.com/pt
https://www.android.com/intl/pt_pt/
https://www.cloudflare.com/
https://www.microsoft.com/pt-pt
https://www.sky.com/
https://www.capitalone.com/
https://www.ikea.com/pt/pt/
https://www.linkedin.com/home?originalSubdomain=pt
https://ebpf.io/case-studies/

3.4 Framework Analysis

When analyzing the eBPF frameworks, it becomes clear that each framework is designed with

specific use cases, trade-offs, and strengths. The key factors that influence the choice of frame-

work include ease of use, performance, system requirements, code complexity, and the target

environment. The following analysis will base itself on the properties studied, stating what the

theoretical framework choice should be if we want to maximize that property.

Regarding ease of use and abstraction BCC is by far the most user-friendly framework

for eBPF programming, especially for those who prefer high-level programming languages like

Python. The framework abstracts away most of the complexities involved in interacting with

the kernel, providing a clear API. bpftrace also prioritizes ease of use, but it focuses on fast,

interactive tracing. Its high-level scripting approach makes it the easiest to use. However, its

scope is more limited than BCC, as it does not offer much flexibility outside of quick and simple

tracing. These frameworks, especially BCC, should be the best for those who want to quickly

implement tracing, monitoring, or diagnostics without deep kernel knowledge, but they lack in

terms of resource efficiency and flexibility across several use cases.

Regarding performance and low-level control over eBPF, libbpf provides the most granular

control over eBPF, allowing developers to interact directly with kernel hooks and optimize per-

formance. Its minimal dependencies and closer integration with the kernel make it a lightweight,

high-performance option. However, this framework requires in-depth knowledge of C and kernel

internals, it should be the choice if the target is a production environment requiring high per-

formance, fine-tuned control, and minimal overhead. Aya, a Rust-based framework, is another

excellent option for low-level control with added benefits like memory safety, thanks to Rust’s

programming paradigms. Aya bypasses C-based libraries like libbpf, however, Aya requires fa-

miliarity with the Rust ecosystem, which is a steep learning curve for developers not familiar

with the language, and it should be the go-to for developers looking for low-level control with

the safety guarantees of Rust, particularly in performance-critical environments. Both these

systems require deep knowledge of the kernel works and programming languages, C and Rust,

respectively.

Eunomia-bpf is the best for simplicity as it offers a minimalist approach by using pre-compiled

eBPF programs. This simplifies deployment and reduces the complexity of working with eBPF.

However, it trades flexibility for simplicity, and optimizing the eBPF programs is limited com-

pared to more full-featured frameworks like libbpf or BCC. Its main use case is for cross-platform

environments like cloud and containerized applications, where simplicity, ease of deployment,

and portability are critical.

35

Cilium is highly specialized in framework integration and specialization for cloud-native

environments, especially Kubernetes. It uses eBPF to provide advanced networking and security

features such as load balancing, network policy enforcement, and observability. By integrating

deeply with Kubernetes, Cilium offers networking solutions at scale. However, this specialization

comes with added complexity, as users must be familiar with both Go (for extending Cilium) and

Kubernetes for optimal usage. It is best for large-scale, distributed environments that focus on

microservices, especially in Kubernetes clusters, it isn’t ideal for non-cloud-native environments

or smaller-scale applications where Kubernetes overhead might be unnecessary.

Finally, on code Complexity and Developer Expertise BCC significantly reduces code com-

plexity by providing Python bindings and abstracting low-level details, making it an excellent

choice for developers uncomfortable with kernel internals or C programming. libbpf requires

advanced knowledge of kernel internals and C programming, resulting in more complex code

but also offering full control over the eBPF interaction layer. This makes it ideal for high-

performance applications, but the complexity may be a hurdle for teams without specialized

expertise. Aya offers a middle ground, with the control and efficiency of low-level frameworks

like libbpf. However, the learning curve of Rust will be a barrier for those unfamiliar with the

language.

3.4.1 Usage Analysis

Crosschecking information between the system application and framework used, we can see

that libbpf is the most widely used framework in the state-of-the-art, especially for tracing and

high-performance tasks. For example, Nahida [16] leverages libbpf for tracing, highlighting its

capability to offer low-overhead system monitoring in real time. Similarly, XRP[21] and IO[17]

use libbpf in storage systems to optimize I/O performance and monitor storage-related events.

The choice of libbpf in these cases demonstrates that it is particularly well-suited for scenarios

where fine control over the kernel is required without sacrificing performance. Its frequent use in

DINT[24] and EFFSUS[3] further reinforces libbpf’s reputation as an excellent tool for low-level

system tracing and monitoring in performance-critical environments. From these examples, we

can conclude that libbpf is the preferred framework for tracing tasks where performance and

kernel efficiency are paramount.

In the state-of-the-art, BCC is used in several systems, including NCScope[22], bpfBox[9],

and PHOEBE[20], which further solidifies its role as a reliable framework for tracing and moni-

toring tasks, especially when ease of use is a priority.

In the industry, eBPF has proven to be a versatile and powerful tool across various sectors of

36

the tech industry, with widespread adoption for tasks such as observability, security, networking,

and performance monitoring. Companies like Meta, Google, Netflix, and Cloudflare use eBPF to

enhance throughput, improve visibility, and optimize system performance, while organizations

like Apple and Microsoft rely on it for kernel-level security monitoring and process inspection

in cloud environments.

Although Cilium was not prominent in the state-of-the-art research, its strong presence in the

industry, used by companies such as Ikea, Sky, and Capital One, demonstrates its effectiveness in

cloud networking and load balancings. This indicates that while academic research may focus on

other frameworks, Cilium has become a go-to solution for networking and security in large-scale,

cloud-native environments within the industry.

3.5 Conclusion

In the context of eBPF framework selection, libbpf stands out as the preferred choice for high-

performance and low-overhead tracing tasks, particularly in performance-critical systems and

state-of-the-art research. Its widespread adoption in storage systems and real-time monitoring

applications demonstrates its capability to provide fine-grained control over kernel operations.

BCC, while less efficient than libbpf theoretically, is often used in environments where ease of use

and quick deployment are prioritized, especially in academic systems for tracing and monitoring.

In industry settings, eBPF has seen substantial adoption across sectors for observability, secu-

rity, and performance tasks, with frameworks like Cilium playing a pivotal role in cloud-native

networking and load balancing, especially within Kubernetes environments.

Ultimately, the choice of framework depends on the specific requirements of the task at hand,

whether it be ease of development, performance optimization, or deep kernel-level control.

To end this section, Table 3.1 summarizes the conclusions that we bring out of it, the first

column represents the property or use case desired, the second column, the best framework to

achieve the desired property, and the last one, an explanation of why it is the best suited.

37

Property Best Framework Explanation

Ease of Use & Ab-
straction

BCC, bpftrace BCC simplifies eBPF programming with high-
level Python bindings; bpftrace is excellent for
quick, interactive tracing, though limited in
scope.

Performance & Low-
level Control

libbpf, Aya, Cillium libbpf offers fine control and minimal overhead,
ideal for production environments; Aya and Cil-
lium provide similar performances.

Simplicity Eunomia-bpf, bpf-
Trace

Eunomia offers pre-compiled eBPF programs,
simplifying deployment, though it lacks flexibil-
ity for custom optimizations. bpftrace priori-
tizes ease of use, allowing users to quickly create
and deploy eBPF programs with just one com-
mand.

Cloud-native Spe-
cialization

Cilium Deeply integrates with Kubernetes for advanced
networking and security, ideal for large-scale,
cloud-native environments.

Code Complexity &
Developer Expertise

libbpf, Aya and Cil-
lium

libbpf requires deep C knowledge; Aya requires
Rust deep knowledge and Cillium requires Go
knowledge

Table 3.1: Summary of the framework analysis

38

Chapter 4

Experimental evaluation

In this chapter, we will focus on the practical analysis of the six eBPF frameworks studied, with

the goal of providing better insights into the burden a framework brings into the target system,

mainly focusing on overhead introduced into the system.

To achieve this goal, we developed five eBPF programs, implemented across all the selected

frameworks, ensuring that each implementation was as consistent and comparable as possible.

These programs were designed to cover four key Linux subsystems: File, Network, Process

Management, and Memory Management.

4.1 Methodology

We will gather three primary quantitative metrics: throughput expressed in operations per

second (Ops/s), which reflects the framework’s ability to handle large amounts of traffic with-

out degrading performance. For instance, eBPF frameworks designed for packet filtering must

maintain high throughput to keep up with real-time traffic without introducing bottlenecks.

When throughput is high, the system can efficiently handle tasks like load balancing, tracing,

or intrusion detection, which are critical in environments where every millisecond of delay could

translate into performance losses or security vulnerabilities. The second quantitative metric

is the time of each experiment, measured in milliseconds and finally, we will measure latency,

expressed in microseconds, this metric allows us to assess how efficiently each eBPF framework

handles micro-level timing, which is crucial in performance-sensitive scenarios like tracing or

network traffic filtering, the units for all metrics are the ones used in the YCSB output, thus

the difference. We will express all metrics’ mean across every experiment, along with the stan-

dard deviation. The mean provides a central tendency of the data, allowing us to understand

the average performance of each eBPF framework. By averaging the results, we can reduce

39

the influence of outliers. The standard deviation is equally important, as it measures the vari-

ability or dispersion of the data. A low standard deviation indicates that the metric values

are clustered closely around the mean, suggesting consistent performance across different runs.

Contrarily, a high standard deviation indicates more variability, signaling that the framework’s

performance might fluctuate under different conditions or workloads. Together, the mean and

standard deviation provide a comprehensive view of the typical performance and the stability

of each framework.

In addition to these three metrics, we will capture resource usage metrics to provide a more

comprehensive analysis of system performance, which are:

• User CPU usage (%) reflects how much CPU time is spent on user-space tasks across the

frameworks.

• System CPU usage (%), measures the percentage of CPU time spent on kernel-level tasks.

• Waiting for I/O CPU (%), reflects how much CPU time is spent waiting for I/O operations

to complete, which is crucial in write-intensive scenarios.

• Memory used (KB), which captures the total memory consumption during the experiments,

this is critical in evaluating how each framework impacts system resources, especially in

memory-intensive tasks like writing.

4.1.1 Distribution Of eBPF Programs

The eBPF programs are distributed across the Linux components as follows:

Two of the five eBPF programs developed focus on the store subsystem. The first program

monitors the number of files the system opens, capturing key information such as the process

ID (PID) responsible for opening the files. This data is then relayed to user space using eBPF

maps for further analysis. The second program traces every read-and-write operation performed

by the system, recording details such as the process ID, thread ID (TID), and the name of the

program (comm) responsible for the operation. This information is efficiently transferred to user

space using a ring buffer.

The network eBPF program is attached to the traffic control (TC) hook to trace every TCP

request in the network subsystem. Since filtering by process ID was not possible at that stage,

the program filters network activity based on the network interface instead. It stores the last

1,024 requests, capturing essential details such as the source IP, destination IP, and a portion

of the packet payload. This data is shared with user space through an eBPF map.

40

For the process management subsystem, the eBPF program tracks every process spawned

by a target process ID, capturing both the newly created process ID and the parent process ID.

Additional relevant metadata is also collected, with all the information sent to user space via

eBPF maps for tracking.

Lastly, in the memory subsystem, the eBPF program monitors memory access patterns by

counting cache hits and misses associated with a target process ID. This performance data is

similarly shared with user space using eBPF maps.

The five programs we selected are representative for our evaluation because they cover key

Linux subsystems, store, network, process management, and memory Management, which are

fundamental to the performance and observability of distributed systems. These subsystems

are critical areas where eBPF frameworks can provide valuable insights and optimizations. By

targeting these diverse operations, our programs allow us to evaluate how well each framework

handles a range of typical system tasks, providing a comprehensive view of their strengths,

weaknesses, and overall efficiency across different types of workloads. This variety ensures that

the evaluation reflects real-world usage scenarios where distributed systems rely on efficient

handling of these core operations.

4.1.2 Practical Tests Performed

For the practical evaluation, two sets of performance tests were conducted on eBPF frameworks

using the YCSB (Yahoo! Cloud Serving Benchmark) with the version 0.17.01 tool, a standard

benchmarking tool widely used for database performance evaluation. Each framework was tested

across two workloads: write-intensive (95 percent writes) and read-intensive (95 percent reads).

For each workload, a set of nine runs was performed, ensuring a robust dataset for analysis.

The tests were conducted on MongoDB2 v7.0.14 with two nodes, MongoDB was chosen be-

cause it is a database designed to handle large-scale, distributed workloads, which makes it a

representative system for real-world scenarios in distributed environments. MongoDB’s architec-

ture involves intensive use of disk I/O, networking, memory management, and process handling,

which align with the subsystems covered by our eBPF programs. Additionally, MongoDB is

known for its flexible data models and horizontal scalability, which introduce varying levels of

resource consumption and system interaction. Two workloads were used, designed to stress

both the system’s write and read capacities. They were carried out in a controlled environment

using a cluster setup with 1GB of memory and 2 CPU cores running Ubuntu 22.04. To gather

1https://github.com/brianfrankcooper/YCSB
2https://www.mongodb.com/pt-br

41

https://github.com/brianfrankcooper/YCSB
https://www.mongodb.com/pt-br

resource consumption metrics dstat3 was used. Vagrant was utilized to ensure root access for

eBPF operations, providing the necessary privileges for monitoring and tracking.

In each run of the performance tests, all eBPF programs were activated for each framework

to evaluate their full impact on system performance under the workloads. This approach ensured

that the analysis captured the overhead and effects of the eBPF programs in real-world scenarios.

It is important to mention, that because of framework limitations, the eBPF program that is

attached to the traffic control (TC) was not run in the framework bpfTrace, as the framework

currently does not support the attachment of eBPF programs to TC. Additionally, a baseline was

established by running the same workloads without any eBPF programs enabled. This baseline

allowed for a clear comparison, making it possible to determine the overhead and performance

effects introduced by each eBPF framework.

This experimental setup allowed for a point of comparison between the eBPF frameworks

under both write-heavy and read-heavy scenarios, providing valuable insights into their perfor-

mance under different types of system loads. The results will serve as a basis for evaluating the

efficiency and suitability of each framework for various types of workloads. We will discuss the

results next on §4.2.

4.2 Results Discussion

We will first analyze the results in the read-intensive scenario and then move on to the write-

intensive scenario.

4.2.1 Read Intensive Scenario

The results from the read-intensive scenario are expressed in Figures 4.1, 4.2, 4.3, 4.5, 4.4, 4.6,

and 4.7.

The following tables describe the results of the experiences performed, Table 4.1 represents

the time it took to perform each experiment measured in milliseconds (ms), and Table 4.2 the

throughput achieved in each experiment, measured in the number of operations per second

(Ops/s). The tables can be read in the same way, each line indicates the framework being tested

and each column indicates the test number, and the last 2 columns represent the mean and the

standard deviation regarding the nine runs performed, respectively.

In this read-intensive scenario, we analyze both time and throughput together, as they

are inherently related. A decrease in time reflects an increase in throughput, and vice versa.

This relationship allows us to understand how each eBPF framework impacts overall system

3https://linux.die.net/man/1/dstat

42

https://linux.die.net/man/1/dstat

Figure 4.1: Time of experiments by framework on a read-intensive scenario in miliseconds

Figure 4.2: Throughput of experiments by framework on a read-intensive scenario in number of
operations per second

performance. We will explore how each framework handles the workload, considering both its

ability to maintain high throughput and the amount of time required to process the operations.

In the absence of tracing, our baseline, the system achieves the best possible performance

43

Framework Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Mean Standard
Devia-
tion

libbpf 407697 405453 401216 402241 406736 407914 409747 413646 402686 406371 3978

bcc 409985 402990 426696 406479 401042 429617 410169 409621 412743 412149 9820

cillium 368956 345011 337825 351948 356067 341336 348946 371395 350141 352402 11483

aya 341139 345441 341202 331171 337196 333456 337342 341174 341805 338880 4491

bpfTrace 364455 463812 461590 353618 471510 487232 440398 404441 461360 434268 48542

Eunomia 446241 413841 416214 415121 412954 418821 423446 424339 441934 423656 12283

No trac-
ing

354771 335731 33232 338546 326336 316728 318315 336340 337708 332977 11569

Table 4.1: Time in a read-intensive scenario measured in miliseconds

Framework Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Mean Standard
Devia-
tion

libbpf 2452 2466 2492 2486 2459 2451 2440 2417 2483 2461 24

bcc 2439 2481 2343 2460 2493 2327 2438 2441 2422 2427 56

cillium 2710 2898 2960 2841 2808 2929 2865 2692 2855 2840 91

aya 2931 2894 2930 3019 2965 2998 2964 2931 2925 2951 39

bpfTrace 2743 2156 2166 2827 2120 2052 2270 2472 2167 2102 282

Eunomia 2240 2416 2402 2408 2421 2387 2361 2356 2262 2362 66

No trac-
ing

3209 2978 3009 2953 3064 3157 3141 2973 2961 3049 97

Table 4.2: Throughput in a read-intensive scenario measured in number of operations
per second

as expected, with a mean time of 332977 ms in execution time and a mean throughput of 3049

Ops/s. This scenario represents the ideal condition, where no additional overhead from eBPF

frameworks is present, and the system can operate at its maximum efficiency. All the eBPF

frameworks introduce some level of overhead, causing an increase in time and a corresponding

decrease in throughput compared to this baseline.

Among the eBPF frameworks, Aya stands out as the best performer. It has a mean time of

338880 ms and a mean throughput of 2951 Ops/s, reflecting a very minor drop in performance

compared to the no-tracing baseline. Aya’s low standard deviation in both time (4491 ms)

and throughput (39 Ops/s) indicates consistent and reliable performance across different runs.

44

Aya’s ability to maintain high throughput and low time overhead shows that it introduces

minimal interference with the system’s normal operations. This makes Aya an excellent choice

for environments where performance is critical, such as high-throughput, real-time systems.

The tight coupling between time and throughput here highlights that Aya’s low time overhead

translates directly into its ability to process more operations per second efficiently.

Cilium has a mean time of 352402 ms and a mean throughput of 2840 Ops/s. While it

introduces slightly more overhead than Aya, it still performs impressively in terms of throughput

and time. The moderate standard deviation in time (11483 ms) and throughput (91 Ops/s)

suggest some variability in performance, but it remains within an acceptable range for most use

cases. As explained in §3, Cilium specializes in networking tasks likely contributes to its strong

performance. In networking-intensive environments, Cilium’s overhead is minimal enough to

maintain high throughput, ensuring that packet processing and network tasks do not introduce

significant delays.

Surprisingly, libbpf and BCC show similar performance profiles, it is surprising because libbpf

is designed for low-level control and efficiency, whereas BCC includes higher-level abstractions

that typically, introduce more overhead, so a larger performance gap was expected. libbpf

records a mean time of 406371 ms and a mean throughput of 2461 Ops/s, while BCC shows a

mean time of 412149 ms and a mean throughput of 2427 Ops/s. The standard deviation for

libbpf in time (3978 ms) and throughput (24 Ops/s) indicates consistent performance, making it

a stable option for scenarios where fine-grained control over eBPF programs is necessary. BCC

shows slightly higher variability, with a standard deviation of 9820 ms for time and 56 Ops/s

for throughput.

Contrary to the expected behavior explained in §3 where we expected libbpf to be more

performant than BCC, it is not in this scenario, the fact that we are in a read-intensive scenario

can explain this fact, as it is a less computational scenario. Nevertheless, for now, we have no

clear reason to explain the underperformance of libbpf compared to Aya and Cillium.

As expected, Eunomia and bpftrace are the worst performers among the frameworks as

they prioritize ease of use and simplicity, relying on higher-level abstractions, which introduce

more overhead and limit their efficiency in performance-critical environments. Eunomia with

a mean time of 423656 ms and a mean throughput of 2362 Ops/s, and bpftrace with a mean

time of 434268 ms and a mean throughput of 2102 Ops/s. The standard deviation for Eunomia

(12283 ms in time and 66 Ops/s in throughput) reflects moderate variability, suggesting that

its performance is not stable enough. bpftrace has a standard deviation of 48542 ms in time

and 282 Ops/s in throughput, suggesting considerable inconsistency in its performance across

45

different runs. Eunomia provides a good balance between simplicity and overhead, making it

suitable for less critical tasks where absolute performance is not the primary concern. However,

in high-performance environments, the extra overhead introduced by Eunomia can become a

limiting factor, especially in scenarios requiring low latency or high throughput.

Similarly, bpftrace prioritizes ease of use and rapid development, making it a valuable tool

for ad-hoc tracing and diagnostics. However, its design introduces significant overhead and

variability, making it less reliable for high-performance environments that demand consistent

low latency and high throughput. While useful for quick troubleshooting, bpftrace is not ideal

for workloads requiring strict performance standards.

Figure 4.3: Latency of experiments by framework on a read-intensive scenario in microseconds

The following table 4.3 describes the latency measured in microseconds. Each line indicates

the framework being tested and each column indicates the test number, the last 2 columns

represent the mean and the standard deviation regarding the three runs performed, respectively.

Looking at the latency results, a lower latency means the system responds faster, while a

higher latency indicates possible performance overhead introduced by the framework. Starting

with No Tracing, the mean latency is 395 µs, with a minimal standard deviation of 2 µs. This

poses as the baseline for optimal system performance without any eBPF framework overhead.

Aya exhibits the best performance among the frameworks, with a mean latency of 322.94

µs with a standard deviation of 10.63 µs. Aya introduces the least amount of overhead in the

read-intensive scenario, and its tight control over variability across different runs suggests that

46

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 394 393 400 396 4

bcc 402 402 405 403 2

cillium 334 340 333 335 4

aya 310 328 329 322 10

bpfTrace 430 452 393 425 27

Eunomia 415 416 433 422 10

No trac-
ing

398 393 397 396 2

Table 4.3: Latency in a read-intensive scenario measured in microseconds

it offers stable and consistent performance.

Cilium has a mean latency of 335,87 µs and a relatively low standard deviation of 3.9 µs.

Although Cillium introduces more latency than Aya, its performance is still relatively strong.

libbpf introduces more overhead in this read-intensive scenario than expected, with a mean

latency of 396.35 µs and a low standard deviation of 3.65 µs. While libbpf is typically known for

its efficiency, its performance here suggests that it introduces more latency in read-heavy tasks

compared to other frameworks like Cilium and Aya. The low standard deviation indicates con-

sistent performance, but the higher mean latency suggests that libbpf may not be as optimized

for read-intensive workloads as for write-heavy ones.

BCC exhibits similar behavior to libbpf, with a mean latency of 403.51 µs and a very low

standard deviation of 1.76 µs.

Eunomia follows BCC with a mean of 422.21 µs and a standard deviation of 10.15 µs. This

places Eunomia as one of the worst frameworks in terms of latency in this scenario. Eunomia

introduces substantial overhead and variability.

Finally, bpftrace shows the highest latency, with a mean of 425.46 µs and a higher standard

deviation of 29.73 µs. Similar to Eunomia, bpf trace is the least suitable framework for latency-

sensitive, read-intensive workloads.

In the resource usage results, first, we have the percentage of user CPU usage in Table 4.4,

and the percentage of system CPU usage, in Table 4.5. The next two represent the percentage

of Wait I/O CPU in 4.7 and memory used in KB in 4.6.

Regarding the resource consumption metrics, in user CPU usage, the runs without tracing

provide the baseline at 26.77%, which is significantly lower than any of the frameworks that

introduce tracing. libbpf, BCC, Cilium, Eunomia, and Aya exhibit similar user CPU usage,

47

Figure 4.4: Percentage of user CPU usage by framework on a read-intensive scenario

Figure 4.5: Percentage of system CPU usage by framework on a read-intensive scenario

ranging from 32.39%-33.59%, showing consistent behavior with moderate increases in user-space

processing demands. These frameworks have relatively low standard deviations, indicating stable

performance across runs. bpftrace has the highest user CPU usage at 40.26%, with a standard

48

Figure 4.6: Percentage of waiting for I/O CPU by framework on a read-intensive scenario

Figure 4.7: Memory used by framework on a read-intensive scenario in KB

deviation of 2.56%, showing that it requires significantly more CPU time for user-space tasks,

possibly due to its higher-level abstractions and ease-of-use design.

Again, no tracing shows a baseline in system CPU usage of 11.49%, serving as the reference

49

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 38.2 32.94 32.08 32.60 0.46

bcc 32.94 35.15 31.6 33.23 1.79

cillium 33.74 32.09 31.35 32.39 1.22

aya 33.6 32.22 31.44 32.42 1.09

bpfTrace 42.71 40.47 37.61 40.26 2.56

Eunomia 33.39 32.97 34.41 33.59 0.74

No trac-
ing

29.59 29.17 21.56 26.77 4.52

Table 4.4: Percentage of user CPU usage in a read-intensive scenario

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 12.78 13.18 12.57 12.84 0.3

bcc 12.62 11,84 13.21 12.56 0.69

cillium 13.57 13.05 11.2 12.61 1.25

aya 12,63 13.71 11.77 12.70 0.97

bpfTrace 30.98 50.9 57.61 46.50 13.85

Eunomia 12.31 12.99 13.59 12.96 0.64

No trac-
ing

12.34 14.22 7.91 11.49 3.24

Table 4.5: Percentage of system CPU usage in a read-intensive scenario

for evaluating the additional overhead introduced by each framework. libbpf, BCC, Cilium,

Eunomia and Aya have relatively close system CPU usage percentages ranging between 12.56%-

12.96%, indicating that these frameworks introduce moderate kernel-level overhead. Their stan-

dard deviations are also low, indicating consistent behavior in kernel-space operations. bpftrace

again stands out with 46.49% system CPU usage, with a large standard deviation of 13.85%,

showing that it incurs a significant system overhead and exhibits substantial variability between

runs.

No tracing shows a baseline of 0.11% for wait I/O CPU. libbpf, BCC, bpftrace, and Aya all

exhibit shallow I/O wait times, ranging from 0.05% to 0.09%, indicating that these frameworks

do not introduce significant delays in I/O operations, even under read-heavy conditions. Their

low standard deviations show that they handle I/O consistently across runs. Cilium shows

50

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 480564 477627 479343 479178 1475

bcc 624238 629277 630547 628021 3337

cillium 48124 476478 530066 495929 29659

aya 462377 505368 555229 507658 46468

bpfTrace 477127 539846 595621 537531 59280

Eunomia 417374 418055 419932 418454 1324

No trac-
ing

414239 405791 383206 401079 16044

Table 4.6: Memory used in a read-intensive scenario measured in kB

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 0.14 0.06 0.07 0.09 0.044

bcc 0.1 0.08 0.1 0.093 0.012

cillium 0.19 2.26 0.47 0.973 1.123

aya 0.06 0.08 0.06 0.067 0.012

bpfTrace 0.05 0.07 0.03 0.05 0.02

Eunomia 0.46 0.2 0.06 0.24 0.203

No trac-
ing

0.09 0.05 0.18 0.107 0.067

Table 4.7: Percentage of waiting I/O CPU in a read-intensive scenario

a higher 0.97% wait I/O CPU usage, with a higher standard deviation of 1.12%, suggesting

that it introduces more variability in I/O operations and may incur additional I/O overhead in

certain runs. Eunomia also shows an increased wait I/O CPU at 0.24%, but its higher standard

deviation of 0.20% indicates variability, though still not as extreme as Cilium.

Finally, for memory usage, no tracing shows the baseline memory usage at 401079 KB. libbpf

and Cilium show moderate memory usage at 479178 KB and 495929 KB respectively, with

libbpf demonstrating the lowest standard deviation (1475 KB), suggesting very stable memory

consumption. BCC stands out with the highest memory usage at 628021 KB, with a standard

deviation of 3337 KB, indicating that its higher-level abstractions consume more memory, even

though its performance remains consistent. Aya also shows relatively high memory consumption

at 507658 KB, with a larger standard deviation of 46468 KB, indicating variability in memory

51

usage across runs. bpftrace uses 537531 KB, and the 59280 KB standard deviation indicates

substantial variability in memory consumption, further reflecting its inconsistency. Eunomia

shows the lowest memory consumption among the frameworks at 418454 KB, with a standard

deviation of 1324 KB, indicating consistent performance with efficient memory use.

4.2.2 Write Intensive Scenario

In a write-intensive scenario, both time and throughput metrics provide insight into how effi-

ciently each eBPF framework manages tasks. Write-heavy workloads typically introduce higher

system demands, and the relationship between time and throughput helps us understand the

performance impact of using different frameworks. This analysis considers both the mean and

standard deviation for time, throughput and latency to evaluate consistency and efficiency, re-

flected in both 4.8, 4.9, and 4.10.

Figure 4.8: Time of experiments by framework on a write-intensive scenario in miliseconds

The following tables describe the results of the experiences performed, Table 4.8 represents

the time it took to perform each experiment measured in milliseconds (ms), and Table 4.9 the

throughput achieved in each experiment, measured in the number of operations per second

(Ops/s).

Again, without any eBPF tracing enabled, the system performs with the lowest mean time

of 361228 ms and the highest throughput of 2769 Ops/s. This reflects the maximum system

efficiency, as no additional tracing overhead impacts performance. The low standard deviation

52

Figure 4.9: Throughput of experiments by framework on a write-intensive scenario in number
of operations per second

Framework Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Mean Standard
Devia-
tion

libbpf 352093 368836 356321 359472 367738 366571 372445 366453 363822 363750 6538

bcc 441773 456400 456328 455780 451675 445705 449582 452102 461212 452284 5986

cillium 377561 373389 374080 356352 360872 370596 373034 365512 375223 369624 7164

aya 368783 366029 366661 375630 379091 384839 384834 374435 365476 373975 7753

bpfTrace 382679 371418 362812 468599 483965 379844 396805 476317 395421 413095 48700

Eunomia 459238 452961 443029 460705 460912 454839 536012 469067 458383 466127 27135

No trac-
ing

367077 357227 362706 360967 372582 363594 354218 359412 353272 361228 6151

Table 4.8: Time in a write-intensive scenario measured in miliseconds

for both time (6151 ms) and throughput (46 Ops/s) also confirms that the system behaves con-

sistently in this baseline scenario. This sets the benchmark for comparing how each framework

introduces overhead and affects performance.

libbpf offers strong performance in this write-intensive scenario, with a mean time of 363750

ms and a throughput of 2749 Ops/s, closely mirroring the baseline performance. The low

standard deviation in time (6538 ms) and throughput (49 Ops/s) show that libbpf provides stable

53

Framework Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Mean Standard
Devia-
tion

libbpf 2840 2711 2806 2781 2719 2727 2684 2728 2748 2749 49

bcc 2263 2191 2191 2194 2213 2243 2224 2211 2168 2211 29

cillium 2648 2678 2673 2806 2771 2698 2680 2735 2665 2706 53

aya 2711 2732 2727 2662 2637 2598 2598 2670 2736 2674 55

bpfTrace 2613 2692 2756 2134 2066 2632 2520 2099 2528 2449 272

Eunomia 2177 2207 2257 2170 2169 2198 1865 2131 2181 2151 112

No trac-
ing

2724 2799 2757 2770 2683 2750 2823 2782 2830 2769 46

Table 4.9: Throughput in a write-intensive scenario measured in number of opera-
tions per second

and consistent results across multiple runs. The marginal increase in time and a corresponding

slight decrease in throughput compared to the no-tracing baseline indicates that libbpf introduces

minimal overhead, making it an efficient choice for write-intensive tasks.

Cilium also performs well in this scenario, with a mean time of 369624 ms and a throughput

of 2706 Ops/s. The moderate standard deviation in time (7164 ms) and throughput (53 Ops/s)

shows reasonable consistency.

Aya records a mean time of 373975 ms and a throughput of 2674 Ops/s, placing it slightly

behind libbpf and Cilium. The moderate standard deviation in time (7753 ms) and throughput

(55 Ops/s) indicates consistent performance.

Surprisingly, bpfTrace demonstrates a quite low overhead regarding the expectations, record-

ing a mean time of 413095 ms and a throughput of 2449 Ops/s. This is unexpected given bpf-

Trace high-level abstractions, which typically introduce significant performance overhead, but

in this case, it manages to perform more efficiently than anticipated in handling write-heavy

tasks. The large standard deviations in time (48700 ms) and throughput (272 Ops/s) reflect

its inconsistency, a result of its focus on ease of use and rapid development. Despite its perfor-

mance in mean values, its high standard deviations confirm that bpftrace is not well-suited for

high-performance, write-intensive workloads, where more efficient and consistent processing is

necessary.

As expected, BCC introduces more overhead than the other frameworks analyzed thus far,

with a mean time of 452284 ms and a throughput of 2175 Ops/s. This represents a significant

drop in throughput compared to the no-tracing scenario, as well as increased time overhead.

54

The moderate standard deviation in time (10242 ms) and throughput (45 Ops/s) shows that

BCC delivers consistent performance, though at a cost of higher overhead. This is likely due to

BCC’s higher-level abstractions, which simplify development but introduce additional processing

demands.

As expected, Eunomia exhibits higher overhead and more variability in write-intensive sce-

narios, confirming its limitations in such demanding environments.

Eunomia, with a mean time of 466127 ms and a throughput of 2151 Ops/s, shows the most

significant overhead. The high standard deviation in time (27135 ms) and throughput (112

Ops/s) further highlights the variability across different runs. Eunomia’s focus on simplicity

and ease of deployment contributes to this performance trade-off, making it less ideal for high-

throughput, write-heavy tasks, though it may still be suitable for less critical environments.

Figure 4.10: Latency of experiments by framework on a write-intensive scenario in microseconds

The following table 4.10 describes the latency measured in microseconds. Each line indicates

the framework being tested and each column indicates the test number, and the last 2 columns

represent the mean and the standard deviation regarding the three runs performed, respectively.

Looking at the latency results, and starting with No Tracing, which serves as the baseline for

system performance, we observe a mean latency of 357.55 µs, with a low standard deviation of

6.04 µs. This represents the system’s optimal performance without the overhead introduced by

any eBPF framework. It sets the reference for how much overhead each framework adds when

applied in this write-intensive environment.

55

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 374 367 360 367 7

bcc 439 462 458 453 12

cillium 373 367 377 372 5

aya 326 380 365 357 28

bpfTrace 475 329 393 399 73

Eunomia 448 468 463 460 10

No trac-
ing

358 362 351 357 6

Table 4.10: Latency in a write-intensive scenario measured in microseconds

Aya, with a mean latency of 357.55 µs, matches the no-tracing scenario. The fact that Aya

introduces almost no additional latency in this workload confirms its efficient design. Its stan-

dard deviation, at 27.78 µs, is slightly higher, indicating some variability in performance across

different runs. However, this variability remains relatively small, showing that Aya maintains

consistent low-latency performance even in write-heavy environments.

libbpf also performs well, with a mean latency of 367.69 µs. Its standard deviation of 6.69

µs is very low, indicating that libbpf delivers stable and predictable performance across multiple

runs.

Cilium performs almost equally to libbpf, with a mean latency of 372.90 µs. Its standard

deviation of 5.26 µs is the lowest among all frameworks, showing that Cilium delivers highly

consistent performance with minimal variation across runs. This low variability is a significant

strength, as it ensures that Cilium provides predictable latency.

Moving to bpftrace, we see a mean latency of 399.37 µs, higher than the previously discussed

frameworks. The standard deviation of 72.90 µs is also significantly larger, indicating consider-

able variability in its performance across runs. The large variation in latency makes bpftrace less

reliable in performance-sensitive environments, as it cannot consistently maintain low-latency

execution.

BCC follows with a mean latency of 453.26 µs, the increase in latency is expected given BCC’s

higher-level abstractions. The standard deviation of 12.33 µs indicates that BCC’s performance

is relatively stable, though the mean latency is considerably higher than the more optimized

frameworks.

Finally, Eunomia shows the highest latency, with a mean of 460.19 µs, this suggests that

Eunomia introduces overhead in write-intensive environments, making it the least efficient frame-

56

work for such tasks. The standard deviation of 10.45 µs indicates low variability, showing that

while Eunomia’s performance is somewhat stable, its higher latency consistently places it at the

bottom regarding efficiency.

Figure 4.11: Percentage of user CPU usage by framework on a write-intensive scenario

Figure 4.12: Percentage of system CPU usage by framework on a write-intensive scenario

57

Figure 4.13: Percentage of waiting for I/O CPU by framework on a write-intensive scenario

Figure 4.14: Memory used by framework on a write-intensive scenario in KB

In the resource usage results, first, we have the percentage of user CPU usage in Table 4.11,

and the percentage of system CPU usage, in Table 4.12. The next two represent the percentage

of Wait I/O CPU in 4.14 and memory used in KB in 4.13.

58

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 31.96 30.61 33.09 31.89 1.24

bcc 31.8 32.14 31.26 31.74 0.45

cillium 31.89 32.09 31.35 31.78 0.38

aya 41.08 32.45 31.23 34.92 5.37

bpfTrace 44.91 43.16 41.65 43.24 1.63

Eunomia 31.89 31.31 32.93 32.04 0.82

No trac-
ing

27.07 27.14 26.87 27.03 0.14

Table 4.11: Percentage of system CPU usage in a write-intensive scenario

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 12.26 12.21 12.46 12.31 0.13

bcc 11.93 11.79 13.23 12.32 0.79

cillium 11.61 13.05 11.2 11.95 0.97

aya 18.72 12.13 12.14 14.33 3.80

bpfTrace 33 40.39 48.27 40.55 7.64

Eunomia 13 13.06 13.91 13.32 0.51

No trac-
ing

11.56 11.33 10.84 11.24 0.37

Table 4.12: Percentage of system CPU usage in a write-intensive scenario

Still in the write-intensive scenario, regarding the resource consumption metrics, the baseline

with no tracing has the lowest user CPU usage at 27.03% with very low variability, serving as a

reference for the additional overhead introduced by the eBPF frameworks. libbpf, BCC, Cilium,

and Eunomia perform similarly, showing user CPU usage around 31.74%-32.04%, with minimal

variability across runs. This indicates a moderate increase in user CPU usage compared to the

no-tracing baseline, which is expected due to the tracing overhead. Aya shows a higher user

CPU usage at 34.92%, with a higher standard deviation of 5.37%, indicating some inconsistency

across runs and slightly more resource demand in user-space tasks. bpftrace stands out with the

highest user CPU usage at 43.24%, which significantly exceeds the other frameworks, indicating

that it demands more CPU resources for user-space processing.

In the metric system CPU usage, again, no tracing provides the baseline with 11.24% sys-

59

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 422170 430647 428459 427092 4400

bcc 632067 642214 650472 641584 9218

cillium 473283 476478 530066 493276 31901

aya 595527 567707 549861 571032 23014

bpfTrace 481496 502194 529081 504257 23859

Eunomia 431797 430600 451731 438043 11869

No trac-
ing

450291 454222 456353 453622 3075

Table 4.13: Memory used in a write-intensive scenario measured in kB

Framework Run
1

Run
2

Run
3

Mean Standard
Deviation

libbpf 1.01 0.14 1.73 0.96 0.80

bcc 0.56 0.26 0.27 0.36 0.17

cillium 0.3 2.26 0.47 1.01 1.09

aya 4.04 0.22 0.1 1.45 2.24

bpfTrace 0.03 0.09 0.1 0.07 0.038

Eunomia 0.09 0.12 0.12 0.11 0.02

No trac-
ing

0.19 0.2 0.19 0.19 0.01

Table 4.14: Percentage of waiting I/O CPU in a write-intensive scenario

tem CPU usage, representing the optimal case with no eBPF overhead. Also again, libbpf,

BCC, and Cilium exhibit similar performance, with system CPU usage around 11.95%-12.32%,

indicating minimal overhead for kernel-level operations. This suggests that these frameworks

efficiently manage system resources. Aya and Eunomia show slightly higher system CPU usage

at 13.32%-14.33%, with Aya showing a higher standard deviation of 3.80%, reflecting more vari-

ability. bpftrace shows significantly higher system CPU usage at 40.55%, with a large standard

deviation of 7.64%, indicating that it demands far more kernel-level processing time and exhibits

substantial variability in performance across different runs.

No tracing again serves as the baseline with 0.19% CPU waiting for I/O. libbpf, BCC,

and Cilium show relatively low values, with 0.36%-1.01%, indicating that these frameworks

introduce minimal waiting time for I/O operations, suggesting they handle I/O efficiently even

60

under write-heavy loads. Aya has the highest wait I/O CPU at 1.45%, with a high standard

deviation of 2.24%, indicating more inconsistency and potentially longer waits for I/O during

certain runs, which could impact overall performance. bpftrace shows very low wait I/O CPU

usage at 0.07%, though its significantly higher user and system CPU usage suggests that this

framework introduces overhead elsewhere, compensating for minimal I/O delays. Eunomia also

has low wait I/O usage at 0.11%, with minimal variability, indicating consistent performance in

terms of I/O wait times.

Finally, the runs without tracing result in 453,622 KB of memory used, representing the

baseline memory consumption. libbpf, Cilium, and Eunomia show moderate memory usage

between 427,092 KB and 493,276 KB, with Cilium exhibiting higher variability (standard de-

viation of 31,901 KB). These frameworks demonstrate efficient memory management without

significant memory overhead. bpftrace uses 504,257 KB of memory, showing that despite its

higher CPU usage, its memory footprint remains relatively moderate. BCC stands out with

the highest memory usage at 641,584 KB, suggesting that its higher-level abstractions result in

more memory consumption. Aya also consumes a considerable amount of memory at 571,032

KB, with a standard deviation of 23,014 KB.

4.2.3 Discussion

One of the notable inconsistencies observed in the analysis is the performance of libbpf in read-

intensive scenarios. Contrary to expectations, libbpf performs similarly to BCC in this case,

with both frameworks showing a significant amount of overhead compared to Aya and Cilium.

Given that libbpf is known for its low-level control and efficiency, it was expected to perform

better in read-intensive tasks, but the results indicate that it introduces more overhead than

anticipated in this context. It is important to note that libbpf’s latency in the read scenario

was higher than expected, this might indicate that libbpf struggles with higher read frequencies

although it still maintains relatively low-latency processing in these operations. In the write-

intensive scenario, libbpf performs much better, offering near-baseline performance and standing

out as one of the top frameworks alongside Cilium. This inconsistency suggests that libbpf’s

efficiency may be more workload-dependent, excelling in write-heavy tasks but not so much in

read-heavy environments. It could also be due to several other factors that remain unclear.

Another unexpected result was bpftrace’s higher performance in the write-intensive scenario

than in the read-intensive tasks. Given bpftrace’s design, which prioritizes ease of use and

high-level scripting over raw performance, it was expected to introduce significant overhead

in both scenarios. However, in the write-intensive workload, bpftrace performed better than

61

anticipated, showing reduced overhead and higher throughput compared to the read-intensive

scenario. Nevertheless, bpftrace introduces a significant amount of overhead in system CPU

usage.

The resource consumption analysis reveals that while BCC and bpftrace are powerful frame-

works for eBPF development, their performance is significantly hindered by resource ineffi-

ciencies. BCC’s high memory usage across both read and write-intensive scenarios is one of

its key drawbacks. Despite its overall consistent CPU performance, the substantial memory

overhead indicates that BCC’s higher-level abstractions come at a cost. This higher memory

consumption reduces its suitability for high-throughput environments, particularly in resource-

constrained systems where memory efficiency is critical. Similarly, bpftrace suffers from high

CPU usage, particularly in the system space. In both scenarios, it demonstrated the highest

system CPU usage, which, combined with significant variability across runs, highlights its in-

efficiency in managing CPU resources. This high CPU overhead is particularly problematic in

performance-sensitive environments where minimal system interference is required.

The last unexpected result was that some frameworks exhibited lower latency than the base-

line. However, this behavior can be explained by operation batching. The overhead introduced

by eBPF leads to batches being flushed with fewer operations compared to the baseline. As a

result, the mean latency appears lower because each batch is processed more quickly due to its

smaller size. However, this comes at the cost of reduced throughput, as fewer operations are

completed in each batch cycle, thus lowering the overall system efficiency despite the improved

latency. This trade-off between latency and throughput highlights another impact of eBPFs on

system performance.

Regarding the expected results, given that Rust’s performance is generally on par with C

in terms of system-level programming, it was expected that Aya, by being written entirely in

Rust, would be one of the most performant eBPF frameworks. This expectation is confirmed

across read and write-intensive scenarios, where Aya consistently performs near the top. In

both workloads, Aya demonstrated minimal overhead, maintaining high throughput and low

latency, reinforcing its position as a high-performance framework. This shows that Aya’s Rust-

based implementation does not introduce significant performance penalties, and it benefits from

Rust’s safety features without compromising on speed, making it a strong choice for performance-

critical environments.

Another expected result was Cilium’s strong performance across both read and write-intensive

scenarios, it was anticipated to handle workloads efficiently. This expectation was confirmed, as

Cilium consistently performed well, demonstrating low overhead, latency, and high throughput

62

in both scenarios. Its design, which leverages eBPF for optimized networking tasks, proved

effective, further validating Cilium as a reliable choice for environments where networking per-

formance and scalability are critical. The performance of libbpf in the write-intensive scenario

also met expectations, demonstrating its efficiency and low overhead in handling high-volume

operations. Due to its close integration with the kernel and minimal abstraction layers, libbpf

managed the write-heavy workload with minimal performance degradation.

The resource consumption metrics also highlight Aya’s and Cilium’s strong performance.

Despite slightly higher memory usage compared to other frameworks, Aya shows minimal CPU

usage increases. This demonstrates Aya’s efficiency, balancing higher memory consumption

with minimal CPU overhead, thus maintaining stable performance across different workloads.

Similarly, Cilium continues to demonstrate strong efficiency, confirming its ability to handle

complex networking tasks without heavily burdening system resources. The same happens for

libbpf, confirming its strong overall performance. With moderate user CPU usage, low system

CPU usage, minimal I/O wait times, and stable memory usage, libbpf demonstrates an efficient

balance of resource consumption. These metrics reinforce its suitability for performance-critical

environments, as it consistently handles both read and write-intensive workloads with minimal

overhead and variability.

Despite bpftrace’s surprising improvement in the write-intensive scenario, it still exhibited

significant inconsistency across both scenarios, with high variability in performance. On top

of that, bpftrace also shows other drawbacks such as its high CPU usage and its limitation to

attach to the TC hook. Eunomia also showed substantial overhead and variability like bpftrace,

these frameworks were, as expected, the worst performers overall. Both frameworks prioritize

ease of use and deployment over raw performance, which aligns with their lower throughput and

higher time overhead compared to more optimized frameworks like libbpf, Aya, and Cilium.

In both write and read-intensive scenarios, libbpf, Aya, and Cilium stand out for their

efficiency and consistency, while BCC, Eunomia, and bpftrace exhibit higher overhead and

variability, making them less suitable for performance-critical tasks.

On one side, in the write-intensive scenario, libbpf leads with minimal overhead and high

throughput, making it ideal for demanding, write-heavy workloads. Cilium is close behind,

with strong performance and moderate variability, especially in network-heavy environments.

Aya performs well but introduces slightly more overhead. BCC shows more overhead, reducing

its suitability for high-throughput tasks, though it remains consistent. Eunomia and bpftrace

struggle the most, with high overhead and variability, making them inefficient for write-intensive

tasks.

63

On the other, aya excels in read-heavy tasks, providing high throughput and low latency.

Cilium performs well but with slightly more variability. libbpf and BCC offer moderate per-

formance, with BCC suffering from high memory usage, and libbpf showing better consistency.

Eunomia balances simplicity and performance but suffers from variability, while bpftrace is the

least efficient, with high latency and poor throughput.

4.3 Conclusion

This practical analysis allows us to evaluate eBPF frameworks in a key aspect, performance.

It focuses on real-world performance, measuring the overhead in actual scenarios like read and

write-intensive operations. By benchmarking the frameworks, we can validate the theoreti-

cal expectations and understand how they perform in practice, revealing potential deployment

complexities or limitations.

It provides a comprehensive evaluation, ensuring that our conclusions help achieve the thesis’s

objective of determining the most effective eBPF framework for specific use cases. Through this

rigorous testing, we can draw reliable insights that guide both the theoretical understanding and

practical application of eBPF technologies, ensuring optimal performance in diverse real-world

environments.

64

Chapter 5

Conclusions

In distributed systems, the challenge of achieving comprehensive observability is paramount. The

axiom ”You can’t improve what you can’t measure” encapsulates the essence of this challenge.

The state of the art still falls short in two key areas: full system observability and the lack of

a clear, structured guide on how to effectively work with eBPF to achieve specific system goals,

current research does not sufficiently address how to best leverage these tools.

Our work is focused on this second gap, providing a detailed, theoretical, and practical guide

on how to utilize eBPF to meet various system requirements. By examining both theoretical

and practical aspects of it, we aim to offer insights into optimizing its use in real-world scenarios.

5.1 Achievements

In this work, we have successfully addressed the gap in the state of the art by providing a

comprehensive theoretical and practical analysis of eBPF frameworks. Our research covers

various key areas such as tracing, networking, security, storage, and scheduling, offering insights

into the strengths and limitations of popular frameworks like libbpf, BCC, Cilium, and others.

Through this analysis, we have created a clear guide that helps understand how to select and

utilize eBPF frameworks effectively based on their system goals. By balancing theoretical knowl-

edge with real-world testing and use cases, our work offers practical solutions for implementing

eBPF in performance-critical environments, cloud-native applications, and security-sensitive sys-

tems. This guide serves as a valuable resource for anyone looking to harness the full potential

of eBPF in achieving optimized system observability, performance, and security.

65

5.2 Future Work

As future work, several aspects of eBPF implementation remain to be explored in greater detail.

One key area is the implementation of user and kernel space counters to reliably trace lost

events, which would improve the accuracy of system monitoring and help identify performance

bottlenecks. We could also explore analyzing each eBPF program independently rather than

running all programs simultaneously. This approach would allow for a more granular evaluation

of the performance impact and overhead of each specific eBPF program. By isolating their

effects, we could gain insights into the individual contributions and potential bottlenecks that

each program introduces. This more detailed analysis would enhance our understanding of how

each program performs under different workloads, helping to fine-tune deployment strategies for

specific scenarios.

Additionally, a more thorough analysis of certain performance costs is needed. This includes

studying the cost of in-kernel computation and the cost of communication with user space, such

as the overhead involved with using ring buffers, maps, and other mechanisms for data transfer

between kernel and user-space programs.

Finally, there is the potential to build a kernel profiling tool that can assess the in-kernel

execution paths of applications. Such a tool would provide deeper insights into the performance

and behavior of applications within the kernel, helping to optimize their efficiency and resource

usage. These future directions will further enhance the understanding and utilization of eBPF

in system optimization.

66

Bibliography

[1] Systemtap. https://sourceware.org/systemtap/.

[2] Daniel Borkmann Alexei Starovoitov. Extended berkeley packet filter. https://ebpf.io/.

[3] Ashish Bijlani and Umakishore Ramachandran. Extension framework for file systems in user

space. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 121–134,

Renton, WA, July 2019. USENIX Association.

[4] Adam Leventhal Bryan Cantrill, Mike Shapiro. Dtrace. https://dtrace.org/.

[5] Inspektor Gadget Contributors. Inspektor gadget. https://www.inspektor-gadget.

io/. Contributors: https://github.com/inspektor-gadget/inspektor-gadget/

graphs/contributors. Accessed: 2023-12-31.

[6] Jörg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, and Daniel Seybold. Using

ebpf for database workload tracing: An explorative study. In Companion of the 2023

ACM/SPEC International Conference on Performance Engineering, ICPE ’23 Companion,

page 311–317, New York, NY, USA, 2023. Association for Computing Machinery.

[7] Tânia Esteves, Francisco Neves, Rui Oliveira, and João Paulo. Cat: Content-aware tracing

and analysis for distributed systems. In Proceedings of the 22nd International Middleware

Conference, Middleware ’21, page 223–235, New York, NY, USA, 2021. Association for

Computing Machinery.

[8] Tânia Esteves, Ricardo Macedo, Rui Oliveira, and João Paulo. Toward a practical and

timely diagnosis of application’s i/o behavior. IEEE Access, 11:110184–110207, 2023.

[9] William Findlay, Anil Somayaji, and David Barrera. bpfbox: Simple precise process confine-

ment with ebpf. In Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing

Security Workshop, CCSW’20, page 91–103, New York, NY, USA, 2020. Association for

Computing Machinery.

67

https://sourceware.org/systemtap/
https://ebpf.io/
https://dtrace.org/
https://www.inspektor-gadget.io/
https://www.inspektor-gadget.io/
https://github.com/inspektor-gadget/inspektor-gadget/graphs/contributors
https://github.com/inspektor-gadget/inspektor-gadget/graphs/contributors

[10] Niclas Hedam, Morten Tychsen Clausen, Philippe Bonnet, Sangjin Lee, and Ken

Friis Larsen. Delilah: ebpf-offload on computational storage. In Proceedings of the 19th

International Workshop on Data Management on New Hardware, DaMoN ’23, page 70–76,

New York, NY, USA, 2023. Association for Computing Machinery.

[11] Yasukata Kenichi, Tazaki Hajime, and Aublin Pierre-Louis. zpoline: a system call

hook mechanism based on binary rewriting. 2023 USENIX Annual Technical Conference

(USENIX ATC 23), July 2023.

[12] Chunghan Lee, Reina Yoshitani, and Toshio Hirotsu. Enhancing packet tracing of microser-

vices in container overlay networks using ebpf. In Proceedings of the 17th Asian Internet

Engineering Conference, AINTEC ’22, page 53–61, New York, NY, USA, 2022. Association

for Computing Machinery.

[13] Chang Liu, Zhengong Cai, Bingshen Wang, Zhimin Tang, and Jiaxu Liu. A protocol-

independent container network observability analysis system based on ebpf. In 2020 IEEE

26th International Conference on Parallel and Distributed Systems (ICPADS), pages 697–

702, 2020.

[14] Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore

Pontarelli. ehdl: Turning ebpf/xdp programs into hardware designs for the nic. In Proceed-

ings of the 28th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 3, ASPLOS 2023, page 208–223, New York, NY,

USA, 2023. Association for Computing Machinery.

[15] Mohsen Salehi and Karthik Pattabiraman. Poster autopatch: Automatic hotpatching of

real-time embedded devices. In Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’22, page 3451–3453, New York, NY, USA,

2022. Association for Computing Machinery.

[16] Wanqi Yang, Pengfei Chen, Kai Liu, and Huxing Zhang. Nahida: In-band distributed

tracing with ebpf, 2023.

[17] Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and Jiwu Shu. u-

IO: A unified IO stack for computational storage. In 21st USENIX Conference on File and

Storage Technologies (FAST 23), pages 347–362, Santa Clara, CA, February 2023. USENIX

Association.

[18] Jesson Yo and Achmad Imam Kistijantoro. Analyzing fair share fairness of tasks in the linux

68

completely fair scheduler using ebpf. In 2023 10th International Conference on Advanced

Informatics: Concept, Theory and Application (ICAICTA), pages 1–6, 2023.

[19] Sepehr Abbasi Zadeh, Ali Munir, Mahmoud Mohamed Bahnasy, Shiva Ketabi, and Yashar

Ganjali. On augmenting tcp/ip stack via ebpf. In Proceedings of the 1st Workshop on EBPF

and Kernel Extensions, eBPF ’23, page 15–20, New York, NY, USA, 2023. Association for

Computing Machinery.

[20] Long Zhang, Brice Morin, Benoit Baudry, and Martin Monperrus. Maximizing error in-

jection realism for chaos engineering with system calls. IEEE Transactions on Dependable

and Secure Computing, 19(4):2695–2708, 2022.

[21] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan Mesterhazy,

Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. XRP: In-

Kernel storage functions with eBPF. In 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22), pages 375–393, Carlsbad, CA, July 2022. USENIX

Association.

[22] Hao Zhou, Shuohan Wu, Xiapu Luo, Ting Wang, Yajin Zhou, Chao Zhang, and Haipeng

Cai. Ncscope: hardware-assisted analyzer for native code in android apps. In Proceedings

of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2022, page 629–641, New York, NY, USA, 2022. Association for Computing Ma-

chinery.

[23] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Electrode: Acceler-

ating distributed protocols with eBPF. In 20th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 23), pages 1391–1407, Boston, MA, April 2023. USENIX

Association.

[24] Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya Dharanipragada, and Minlan Yu.

DINT: Fast In-Kernel distributed transactions with eBPF. In 21st USENIX Symposium on

Networked Systems Design and Implementation (NSDI 24), pages 401–417, Santa Clara,

CA, April 2024. USENIX Association.

69

70

Appendix A

eBPF programs

In this appendix, we present each eBPF program implemented, using the examples from libbpf,

the first program is the eBPF program that attaches to the open system call.

#include "../../.github/actions/build-selftests/vmlinux.h"

#include <bpf/bpf_helpers.h>

struct pid_open_info {

u32 pid;

u64 open_count;

u64 call_count;

} __attribute__((packed));

struct {

__uint(type, BPF_MAP_TYPE_HASH);

__type(key, u32);

__type(value, struct pid_open_info);

__uint(max_entries, 64);

} open_calls SEC(".maps");

struct {

__uint(type, BPF_MAP_TYPE_ARRAY);

__type(key, u32);

__type(value, u32);

__uint(max_entries, 1);

} target_pid SEC(".maps");

71

SEC("tracepoint/syscalls/sys_enter_openat")

int trace_open(const struct pt_regs *ctx)

{

u32 pid = bpf_get_current_pid_tgid() >> 32;

u32 key = 0;

u32 *target_pid_val = bpf_map_lookup_elem(&target_pid, &key);

// Return if no target PID is set or current PID does not match targeta PID

if (!target_pid_val || *target_pid_val != pid) {

return 0;

}

struct pid_open_info *value, zero = {0};

value = bpf_map_lookup_elem(&open_calls, &pid);

if (value) {

value->call_count++;

if (value->call_count % 5 == 0) {

value->pid = pid;

value->open_count++;

value->call_count = 0;

}

} else {

struct pid_open_info new_value = {.pid = pid, .open_count = 1, .call_count = 1};

bpf_map_update_elem(&open_calls, &pid, &new_value, BPF_ANY);

}

return 0;

}

char LICENSE[] SEC("license") = "GPL";

The second program is the eBPF program that attaches to the system call that creates

processes.

72

#include "../../.github/actions/build-selftests/vmlinux.h"

#include <bpf/bpf_helpers.h>

#include <bpf/bpf_core_read.h>

#define TASK_COMM_LEN 16

struct event {

int pid;

int ppid;

int uid;

int retval;

bool is_exit;

char comm[TASK_COMM_LEN];

};

struct {

__uint(type, BPF_MAP_TYPE_ARRAY);

__type(key, u32);

__type(value, u32);

__uint(max_entries, 1);

} target_pid SEC(".maps");

struct {

__uint(type, BPF_MAP_TYPE_LRU_HASH);

__type(key, u32);

__type(value, struct event);

__uint(max_entries, 256);

} events SEC(".maps");

SEC("tracepoint/syscalls/sys_enter_execve")

int tracepoint_syscalls_sys_enter_execve(struct trace_event_raw_sys_enter* ctx) {

struct event event = {0};

u64 id;

pid_t tgid;

73

char comm[TASK_COMM_LEN];

struct task_struct *task = (struct task_struct *)bpf_get_current_task();

id = bpf_get_current_pid_tgid();

tgid = id >> 32;

u32 *target_pid_val = bpf_map_lookup_elem(&target_pid, 0);

if (!target_pid_val || *target_pid_val != tgid) {

return 0;

}

event.pid = tgid;

event.uid = bpf_get_current_uid_gid();

struct task_struct *parent_task;

bpf_probe_read(&parent_task, sizeof(parent_task), &task->real_parent);

bpf_probe_read(&event.ppid, sizeof(event.ppid), &parent_task->tgid);

if (bpf_probe_read_str(&event.comm, sizeof(event.comm), (void *)ctx->args[0]) == 0) {

// Store the event data into a BPF map

bpf_map_update_elem(&events, &tgid, &event, BPF_ANY);

}

return 0;

}

char LICENSE[] SEC("license") = "GPL";

The third program is the eBPF program which counts cache hits and misses.

#include <linux/types.h>

#include <linux/bpf.h>

#include <bpf/bpf_helpers.h>

typedef unsigned int u32;

74

struct {

__uint(type, BPF_MAP_TYPE_ARRAY);

__type(key, u32);

__type(value, u32);

__uint(max_entries, 4);

} counters SEC(".maps");

struct {

__uint(type, BPF_MAP_TYPE_ARRAY);

__type(key, u32);

__type(value, u32);

__uint(max_entries, 1);

} target_pid SEC(".maps");

#define CACHE_HIT 0

#define CACHE_MISS 1

#define CACHE_DIRTY 2

SEC("kprobe/mark_page_accessed")

int count_hit(struct pt_regs *ctx) {

u32 pid = bpf_get_current_pid_tgid() >> 32;

u32 key_map = 0;

u32 *target_pid_val = bpf_map_lookup_elem(&target_pid, &key_map);

if (!target_pid_val || *target_pid_val != pid) {

return 0;

}

u32 key = CACHE_HIT;

u32 init_val = 1;

u32 *value;

value = bpf_map_lookup_elem(&counters, &key);

75

if (value)

*value += 1;

else

bpf_map_update_elem(&counters, &key, &init_val, BPF_ANY);

return 0;

}

SEC("kprobe/add_to_page_cache_lru")

int count_miss(struct pt_regs *ctx) {

u32 pid = bpf_get_current_pid_tgid() >> 32;

u32 key_map = 0;

u32 *target_pid_val = bpf_map_lookup_elem(&target_pid, &key_map);

if (!target_pid_val || *target_pid_val != pid) {

return 0;

}

u32 key = CACHE_MISS;

u32 init_val = 1;

u32 *value;

value = bpf_map_lookup_elem(&counters, &key);

if (value)

*value += 1;

else

bpf_map_update_elem(&counters, &key, &init_val, BPF_ANY);

return 0;

}

char LICENSE[] SEC("license") = "Dual BSD/GPL";

The fourth program is the eBPF program which filters network traffic at the TC level.

#include <linux/types.h>

76

#include <bpf/bpf_helpers.h>

#include <linux/ip.h>

#include <linux/bpf.h>

#include <linux/pkt_cls.h>

#include <linux/if_ether.h>

#include <linux/tcp.h>

#include <bpf/bpf_endian.h>

#ifndef IPPROTO_TCP

#define IPPROTO_TCP 6

#endif

typedef unsigned int u32;

struct packet_data {

u32 src_ip;

u32 dst_ip;

char payload[64];

};

struct pid_data {

struct packet_data data[1024];

u32 counter;

};

struct {

__uint(type, BPF_MAP_TYPE_ARRAY);

__type(key, u32);

__type(value, struct pid_data);

__uint(max_entries, 1);

} last_packet SEC(".maps");

SEC("classifier")

int http_filter(struct __sk_buff *skb) {

77

u32 key = 0;

u32 proto;

bpf_skb_load_bytes(skb, offsetof(struct ethhdr, h_proto), &proto, sizeof(proto));

if (proto != bpf_htons(ETH_P_IP))

return TC_ACT_OK;

struct iphdr iph;

bpf_skb_load_bytes(skb, ETH_HLEN, &iph, sizeof(iph));

bpf_printk("packet, Proto: %u, %u", iph.protocol, IPPROTO_TCP);

if (iph.protocol != IPPROTO_TCP) // Ensure it’s TCP

return TC_ACT_OK;

struct tcphdr tcph;

int tcp_header_size = ETH_HLEN + (iph.ihl * 4);

bpf_skb_load_bytes(skb, tcp_header_size, &tcph, sizeof(tcph));

struct packet_data pkt_data = {};

pkt_data.src_ip = iph.saddr;

pkt_data.dst_ip = iph.daddr;

int payload_offset = tcp_header_size + (tcph.doff * 4);

struct pid_data *pid_entry;

pid_entry = bpf_map_lookup_elem(&last_packet, &key);

if (!pid_entry)

return TC_ACT_OK;

if (pid_entry->counter == 1024) {

pid_entry->counter = 0;

}

struct packet_data *pkt_data = &pid_entry->data[pid_entry->counter];

if (bpf_skb_load_bytes(skb, payload_offset, &pkt_data->payload, 64) == 0) {

78

pkt_data->src_ip = iph.saddr;

pkt_data->dst_ip = iph.daddr;

// Increment the counter for the next packet

pid_entry->counter += 1;

bpf_map_update_elem(&last_packet, &key, pid_entry, BPF_ANY);

}

return TC_ACT_OK;

}

char _license[] SEC("license") = "GPL";

The fifth and last program is the eBPF program that attaches to the read-and-write system

calls.

#include <linux/bpf.h>

#include <bpf/bpf_helpers.h>

#include <linux/if_ether.h>

#include <linux/ip.h>

#include <linux/tcp.h>

#include <linux/udp.h>

typedef unsigned int u32;

struct data_t {

u32 pid;

u32 tid;

char comm[16];

char type;

};

struct {

__uint(type, BPF_MAP_TYPE_ARRAY);

__type(key, u32);

__type(value, u32);

__uint(max_entries, 1);

79

} target_pid SEC(".maps");

struct {

__uint(type, BPF_MAP_TYPE_RINGBUF);

__uint(max_entries, 1 << 24);

} events SEC(".maps");

int trace_rw(char type) {

u32 pid = bpf_get_current_pid_tgid() >> 32;

u32 key = 0;

u32 *target_pid_val = bpf_map_lookup_elem(&target_pid, &key);

if (!target_pid_val || *target_pid_val != pid) {

return 0;

}

struct data_t *data = bpf_ringbuf_reserve(&events, sizeof(struct data_t), 0);

if (!data)

return 0;

data->pid = bpf_get_current_pid_tgid() >> 32;

data->tid = bpf_get_current_pid_tgid() & 0xFFFFFFFF;

bpf_get_current_comm(&data->comm, sizeof(data->comm));

data->type = type;

bpf_ringbuf_submit(data, 0);

return 0;

}

SEC("tracepoint/syscalls/sys_enter_write")

int trace_write(struct pt_regs *ctx) {

return trace_rw(’W’);

}

80

SEC("tracepoint/syscalls/sys_enter_read")

int trace_read(struct pt_regs *ctx) {

return trace_rw(’R’);

}

char _license[] SEC("license") = "GPL";

81

82

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	2 Background
	2.1 Concepts
	2.2 eBPF
	2.2.1 Several Scopes

	2.3 Types Of Attaching To System Calls
	2.4 eBPF Frameworks
	2.4.1 BPF Compiler Collection
	2.4.2 Cillium
	2.4.3 Libbpf
	2.4.4 Eunomia-bpf
	2.4.5 Aya
	2.4.6 Bpftrace

	2.5 Related Work
	2.5.1 State-of-the-art Descriptions
	2.5.2 Tracing System Property Analysis

	2.6 Discussion

	3 Theorical analysis
	3.1 Theorical Methodology
	3.1.1 Framework Architecture and Implementation Details
	3.1.2 Use Cases
	3.1.3 Deployment Requirements
	3.1.4 Code Complexity

	3.2 State Of The Art Usage
	3.2.1 System Application
	3.2.2 eBPF Framework Usage

	3.3 Industry Usage
	3.4 Framework Analysis
	3.4.1 Usage Analysis

	3.5 Conclusion

	4 Experimental evaluation
	4.1 Methodology
	4.1.1 Distribution Of eBPF Programs
	4.1.2 Practical Tests Performed

	4.2 Results Discussion
	4.2.1 Read Intensive Scenario
	4.2.2 Write Intensive Scenario
	4.2.3 Discussion

	4.3 Conclusion

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography
	A eBPF programs

