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Prof. Miguel Ângelo Marques de Matos

Examination Committee

Chairperson: Prof. João António Madeiras Pereira
Members of the Committee: Prof. Miguel Ângelo Marques de Matos
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Abstract

The use of dissemination and aggregation trees allows Byzantine Fault Tolerance (BFT) consensus

protocols to increase both their efficiency and scalability, which are key requirements in blockchain ap-

plications. The dynamic reconfiguration of a dissemination tree can be a complex task. As a result, most

protocols that use dissemination and aggregation trees avoid frequent reconfigurations by using a stable

leader policy. Unfortunately, the use of a stable leader is undesirable in blockchain applications, due to

equity and censorship concerns. In this work, we propose efficient techniques to support leader rotation

and dynamic reconfiguration of dissemination and aggregation trees in BFT consensus protocols. We

have applied our techniques to Kauri, a state-of-the-art tree-based consensus BFT algorithm. Through

the experimental evaluation, conducted on a real implementation of our solution, we analyse the perfor-

mance of our proposed mechanisms and show that dynamic reconfiguration can be supported without

incurring a significant penalty on the throughput of the system.
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Resumo

O uso de árvores de disseminação e agregação permite aumentar a escalabilidade e desempenho de

protocolos de consenso tolerantes a faltas Bizantinas. Infelizmente, a reconfiguração destas árvores

pode ser complexa, o que leva a que muitos protocolos baseados em árvores usem um lı́der estável,

o que nem sempre é desejável, por exemplo, por questões de equidade ou censura de transações.

Neste trabalho propomos técnicas eficientes para executar a mudança de lı́der e reconfigurar dinami-

camente as árvores utilizadas pelo algoritmo de consenso. Integrámos estas técnicas no Kauri, um

protocolo de consenso baseado em árvores. Através de uma avaliação experimental do protótipo resul-

tante, mostramos que a reconfiguração dinâmica pode ser concretizada sem incorrer numa penalização

significativa do desempenho.

Palavras Chave

Sistemas Distribuı́dos; Blockchain; Tolerância a Falhas Bizantinas; Consenso
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Research History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Outline of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

Byzantine Fault Tolerance (BFT) consensus protocols allow correct processes to reach agreement even

in the presence of a fraction of malicious processes. BFT protocols have been first introduced for

synchronous systems [1] but have been subsequently extended to execute in eventually synchronous

settings [2–4]. BFT protocols require multiple rounds of message exchange among participants and are,

therefore, costly, both in terms of communication and processing. For this reason, early implementa-

tions considered a relatively small number of participants (in the order of dozens) [5]. However, with the
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emergence of blockchains and the increasing relevance of large-scale systems based on blockchains,

the need to design Byzantine consensus protocols that can scale to hundreds of participants has be-

come a relevant topic. [6]

Practical Byzantine Fault Tolerance (PBFT) [2], one of the first BFT consensus protocols designed

for eventually synchronous systems, is a leader-based protocol that uses an All-to-All communication

pattern, i.e., the algorithm proceeds in rounds where participants send (and receive) messages to (from)

every other participant. Due to the use of this communication pattern, PBFT is inherently non-scalable.

Several approaches have emerged to circumvent the scalability limitations of PBFT-like protocols. One

approach consists of using a star-based communication pattern, such as HotStuff [3], where nodes only

communicate directly with the leader: this reduces the message complexity from quadratic to linear,

but the leader remains a bottleneck. Another approach is to use hierarchical strategies, such as in

Fireplug [7], where consensus is achieved by the hierarchical combination of several sub-consensus

instances that are executed among smaller sub-groups. A limitation to approaches of this nature is how

they reduce the system’s resilience, given that the fraction of Byzantine nodes required to take control of

a sub-group is smaller than the fraction of nodes required to prevent consensus in the super-group. Once

a sub-group is compromised, the consensus in the super-group is compromised as well. Finally, the

use of dissemination and aggregation trees has been proposed to circumvent the scalability limitations

of the star-based communication pattern, while retaining the resilience properties of non-hierarchical

approaches. In our work, we focus on protocols that use this strategy. [4,8–10]

Kauri [4] is a BFT consensus protocol that extensively uses dissemination and aggregation trees to

achieve scalability. Since the use of trees introduces extra latency in protocol communication, Kauri

uses an aggressive pipelining strategy that expands on the pipelining already used in protocols such

as HotStuff, allowing the leader to start multiple consensus instances before previous instances have

terminated. Kauri has two main limitations: first, it is designed for homogeneous settings and its trees are

constructed using randomization, which does not take into account the different computational capacity

of nodes or the latency present in the communication links. Secondly, when a reconfiguration is required,

a tree is replaced by a completely different tree that typically does not share any inner node with the

previous tree. While this reconfiguration strategy permits Kauri to find a robust tree in a timely manner,

it is disruptive to the pipelining process and hence to performance. Additionally, in the case that a robust

tree is not found in a predetermined amount of steps, Kauri falls back into a star-topology. As evidenced

by these cases, the process of reconfiguring a tree is a complex task, meaning that a vast majority of

tree-based consensus algorithms rely on a stable leader strategy [4,8,9], where the same tree is used

for various consecutive consensus instances, only changing when the system fails to make progress

(such as the cases where a leader is deemed to be faulty). However, in the context of blockchains, there

are various advantages derived from frequently changing the leader node (which, in the case of Kauri,

2



means changing the tree as well), such as preventing non-apparent malicious nodes from censoring

transactions from certain clients.

1.2 Goals

In this work, we address the two main limitations of Kauri identified above. First, we aim to enhance

Kauri with a mechanism that would allow the system to diverge from its randomized tree generation and

instead opt to use a schedule of different trees throughout execution. This means that the schedule can

be adapted towards using trees optimised for heterogeneous networks by leveraging information about

the network latencies and the CPU capacity of the nodes. Secondly, we aim to enable Kauri to utilize a

rotating leader policy by designing a reconfiguration strategy that can reduce the costs of reconfiguration

between two different consecutive trees.

1.3 Contributions

Our thesis proposes novel techniques to dynamically reconfigure dissemination/aggregation trees in

BFT protocols, namely, we propose a technique that avoids a significant throughput degradation during

the reconfiguration of the dissemination/aggregation tree.

1.4 Results

This work has produced the following results:

i) The implementation of an algorithm that enables Kauri to dynamically change the dissemina-

tion/aggregation tree used to reach consensus, according to a predefined schedule that stipulates

the topology of each tree and for how long (in blocks) each tree should be used.

ii) An evaluation and analysis of our solution in emulated networks, both in homogeneous and het-

erogeneous settings.

1.5 Research History

This work has been performed in the context of the DPSS group at INESC-ID. Our work leverages

previous results in the design of scalable BFT protocols. Namely, we build on Kauri [4], a BFT consensus

protocol for blockchains that has been designed and implemented by Ray Neiheiser, a former PhD

student of the DPSS group. Kauri uses a stable leader approach and aimed to design techniques to

3



support the construction of robust trees. To perform the experimental evaluation of our work, we have

used Kollaps [11], a tool that has also been designed and implemented by DPSS researchers. This work

has benefited from the help of several members of the Kauri and Kollaps projects.

A preliminary version of this work has been published as:

• T. Pereira, L. Rodrigues and M. Matos. Reconfiguração Dinâmica de Protocolos Tolerantes a

Faltas Bizantinas Baseados em Árvores. In INForum24, Lisboa, September 2024.

This work has been supported by Fundação para a Ciência e Tecnologia (FCT), using national funds as

part of the projects INESC-ID UIDB/50021/2020, DACOMICO (financed by the OE with ref. PTDC/CCI-

COM/2156/2021), Ainur (financed by the OE with ref. PTDC/CCI-COM/4485/2021) and ScalableCos-

mosConsensus.

1.6 Outline of the Document

The rest of the document is structured as follows: In Chapter 2, we provide the background on relevant

blockchain BFT consensus concepts. In Chapter 3, we survey relevant BFT consensus protocols with

an emphasis on efficiency and performance. In Chapter 4, we describe our solution’s design and imple-

mentation. In Chapter 5, we define our evaluation metrics, experimental setup, methodology and goals

and discuss our experimental results. Finally, in Chapter 6, we conclude this work.

4



2
Background

Contents

2.1 Blockchain Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Byzantine Fault Tolerant Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Wide-Area Network (WAN) Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The objective of this chapter is to introduce the required background to understand our work. Sec-

tion 2.1 introduces the blockchain abstraction, Section 2.2 defines Byzantine Fault Tolerant Consensus

and Section 2.3 discusses the operation of consensus protocols in Wide-Area Network (WAN) deploy-

ments.

2.1 Blockchain Systems

The term blockchain refers to an abstraction that offers a persistent, append-only, totally ordered ledger

of records. Records are grouped into blocks, that can be added to the head of the ledger. Once a new

block is committed, it can no longer be deleted or tampered with. Thus, the sequence of committed

blocks is immutable, and the ledger can only be updated by adding additional blocks to the ledger itself.

This ledger is typically implemented as a linked list of blocks, where each block has a reference to its
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predecessor block in the ledger, thus creating a chain of blocks. Although it is possible to materialize

this abstraction using a centralized server, blockchain implementations are generally distributed and

decentralized. In this case, the ledger is cooperatively maintained by a possibly large and open set of

nodes that coordinate to commit new blocks to the chain and to prevent committed blocks from being

tampered with. Using the appropriate protocol, it is possible to derive a reliable and trusted decentralized

implementation of the blockchain in settings where a fraction of the participants may not be trusted.

When considering which nodes can participate in a decentralized algorithm to maintain the blockchain,

it is possible to classify existing systems into two main categories:

A – Permissionless blockchains: In a permissionless blockchain, any node in the system can par-

ticipate in the coordination protocol used to maintain the chain. Decentralized ledgers were originally

popularized with a permissionless setting, as used in Bitcoin [12]. In this setting, a node can join or

leave the protocol at any moment, and the number of nodes participating in the protocol is not limited.

Additionally, individual nodes cannot be trusted but it is assumed that a majority of nodes are correct and

do not behave maliciously. Malicious nodes can aim to overthrow the system, by discarding blocks pro-

posed by correct nodes and by attempting to prevent correct nodes from proposing new blocks. For this

purpose, malicious nodes may also adopt multiple identities to appear as multiple nodes, a behaviour

that is often referred to as a Sybil attack [13]. To limit the power of malicious nodes, and in particular, to

limit their ability to propose new blocks, a participant must commit a substantial number of resources to

the protocol using techniques such as Proof-of-Work (PoW) [12] or Proof-of-Capacity (PoC) [14]. Unfor-

tunately, the use of techniques such as PoW limits the throughput of the system and induces substantial

energy consumption, making these protocols ecologically unfriendly. Another limitation of techniques

such as PoW is that parties may benefit if they collude to solve the algorithm’s crypto-puzzle, which

creates an incentive to reduce decentralization.

B – Permissioned blockchains: Permissioned blockchains have gained traction due to their poten-

tial to create more efficient and secure systems when compared to permissionless designs [15]. In a

permissioned blockchain, participants are known and limited, creating a scenario where the system has

controlled decentralization but that also performs better, as mechanisms for Sybil attack resistance are

no longer required. Additionally, permissioned blockchains allow for the implementation of BFT consen-

sus protocols, which, combined with the fact that participants have to be authorized, creates a much

more controlled environment for system execution. BFT consensus alternatives found in permissioned

blockchains are also known to be much more energy efficient when compared to protocols found in

permissionless settings, due to the fact that in the latter security is often assured through the use of

computationally heavy techniques and algorithms.
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2.2 Byzantine Fault Tolerant Consensus

As mentioned above, BFT consensus protocols are a popular solution in permissioned blockchain con-

texts. The goal of BFT consensus is to allow correct nodes to agree on a singular valid output for an

instance of consensus, under the assumption that there may be f nodes exhibiting arbitrary behaviour.

While arbitrary behaviour may refer to any type of failure where any error may occur, in the Byzantine

Fault Tolerant model we assume the worst-case scenario where faulty nodes may collude with malicious

intent to overthrow the system [16].

In a BFT system with N nodes, we define N = 3f +1 to tolerate f Byzantine nodes. This is done by

leveraging quorums of size Q = 2f +1 for coordination, which guarantees that at least one correct node

belongs to any pair of quorums, enabling them to relay protocol messages from one quorum to another.

Byzantine Fault Tolerant Consensus is characterized by the following properties [16]:

Definition 1 (Termination). Every correct process eventually decides some value.

This is a liveness property. It guarantees that, in every instance of consensus, all correct processes

will eventually output a value and thus the system will progress.

Definition 2 (Validity). If a process decides v, then v was proposed by some process.

The notion of validity is further extended into two variants in the context of Byzantine Fault Tolerance:

Definition 2.1 (Weak Validity). If all processes are correct and propose the same value v, then no

correct process decides a value different from v; furthermore, if all processes are correct and some

process decides v, then v was proposed by some process.

Definition 2.2 (Strong Validity). If all correct processes propose the same value v, then no correct

process decides a value different from v; otherwise, a correct process may only decide a value that was

proposed by some correct process or the special value □.

It is of note that Strong Validity does not imply Weak Validity ; While in Def. 2.1 correct processes can

only decide on a value if all processes are correct, in Def. 2.2 correct processes can decide on a value

proposed by a correct process or the special value ’□’ in execution scenarios that may have Byzantine

participants. Both variants of Validity can be useful in different contexts, and the task of selecting which

one is desired for application execution is up to the protocol designers themselves.

Definition 3 (Integrity). No correct process decides twice.

Definition 4 (Agreement). No two correct processes decide differently.

Integrity and Agreement, alongside a Validity variant, are the properties that uphold safety throughout

consensus execution. When combined with State Machine Replication (SMR), this allows consensus
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instances to have a deterministic effect on the system state, ensuring that the agreed-upon changes and

commands are propagated consistently to all correct participants.

2.3 Wide-Area Network (WAN) Deployment

Permissioned blockchains are frequently deployed within wide-area networks. As the name implies,

WANs are a type of network that connects different devices over a large geographic area, sometimes

even globally. WANs may be unreliable and create difficult conditions to guarantee system liveness and

achieve good performance, due to the common occurrence of network partitions and due to the usually

high latency and low bandwidth that systems must face. These traits accentuate the fact that in most

real-world scenarios, network links in a WAN are inherently asymmetric and create a heterogeneous

topology, which consequently increases the asynchrony between pairs of nodes. When deployed in

these conditions, it is standard for systems to take into account mechanisms that can compensate for

and mitigate the downsides of the geographic distance between devices. Blockchains are no exception

to this, existing several works that tackle the scalability and reliability of consensus in this setting, such as

Steward [17], Mencius [18], and the recently proposed notion of Planetary Scale Byzantine Consensus

by Voron et al. [19].

For this reason, leader-based protocols when deployed on WAN must have a careful selection of

the nodes that will be tasked with leader activities. There is a risk of saturating the leader’s network

links and additionally, leaders who are outliers in terms of latency might become a bottleneck for sys-

tem performance. This also applies to Kauri’s tree structure, albeit at a more general level since the

bottleneck on the leader is alleviated by its topology. Still, as Kauri was originally designed with homo-

geneous networks in mind, its tree topology ends up being an even greater advantage when adapted to

heterogeneous environments, as proven in a recent work [20].

This study of Kauri’s performance in heterogeneous environments [20] stems from the fact that, while

it may seem that heterogeneous networks may be completely decentralized, permissioned blockchains

are often deployed in a few ”data center networks”. What this means is that a majority of participants can

be allocated and pinpointed to a different cluster in the network, which is the structural design basis for

cluster-based (or group-based) algorithms, which will be discussed in further detail in the next chapter.

Multiple systems tackle the issue of geolocating nodes in order to predict latencies to promote faster

communications, such as Vivaldi [21] and AWARE [22]. In the case of Kauri, as a tree topology protocol,

different sub-trees may be perceived as different clusters from where the root node branches to. This

means that, in theory, tree construction can be enhanced to be informed in regards to the network,

when combined with systems like these to create heuristics to promote faster local communication for

consensus.
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Given the background provided by Chapter 2, we can now discuss the relevant features frequently

utilized in the design and implementation of state-of-the-art permissioned blockchain BFT protocols. We

will first enumerate important traits that help distinguish protocols apart and then look into several ex-

amples of BFT protocols that leverage these traits to improve the efficiency and reliability of protocol

execution, namely, scalability, reduced communication complexity, reduced latency, and increased sys-

tem throughput. Finally, we will provide an overarching discussion that will help highlight which beneficial

features our solution aims to take advantage of.
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3.1 Towards Coordinated Agreement in Blockchain

With the formal definition for BFT consensus defined in Section 2.2, it is important to differentiate and de-

tail some of the more common approaches to achieve agreement between nodes in a distributed system.

It is of note that, in a blockchain environment, consensus is run to agree on which transactions will be

appended to the distributed ledger and in which order they will be committed and executed. This means

that at the heart of consensus applied to blockchain, protocol designs need to take into account mech-

anisms that ensure coordination between correct nodes for consecutive consensus instances. Through

proper coordination, distributed consensus systems are able to commit and execute client requests,

avoid conflicts and achieve agreement with reduced message and time complexities [23]. We define the

following approaches for coordinated agreement:

A – Leader-based [2–4]. In leader-based BFT consensus algorithms, the role of the coordinator,

or as it is usually called, the leader, is to help all correct processes converge towards a decision in a

relatively fast manner [24]. In the context of blockchain, it is the leader’s role to propose which transac-

tions will be appended to the ledger. Consequently, this means that system progress is directly linked

with leader performance. Leaders in consensus are usually defined through the use of view synchrony

algorithms [16], where the transition from one view to the next dictates a leader change. Due to the

importance of the leader role, systems must provide mechanisms to define the leader election policy

and to efficiently recover from consensus executions where the leader is found to be faulty. Addition-

ally, in the context of blockchains, the existence of a system-wide leader creates concerns regarding

censorship and leader fairness, which has led to the creation of more sophisticated algorithms that

aim to mitigate these issues [25, 26]. Leader-based algorithms typically fall under two categories: effi-

cient leader-based, where the leader’s role is correlated with achieving a target performance with high

throughput and low latency in fault-free executions; and robust leader-based, where the leader’s role is

providing high fault-tolerance to the system instead of achieving maximum performance [23].

B – Leaderless [27, 28] Leaderless coordination aims to mitigate leader-based system issues such

as censorship and leader-related bottlenecks through the use of higher decentralization [23, 24]. Ad-

ditionally, by providing equity in regard to the task of transaction proposal, these systems often aim

at utilizing this parallelization to obtain gains in the system’s transaction throughput. The main disad-

vantage of leaderless coordination ends up being the complexity of the mechanisms required to reach

proper agreement and ordering, especially in the context of blockchains, where blocks need to know

the previous block’s hash. The lack of a primary node acting as a coordinator in the system creates

conflicts related to proposal order. Consequently, solutions end up having increased message and time

complexities due to the mechanisms which are usually applied to either avoid or correct such ordering
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conflicts.

C – Multi-leader [29, 30]. Multi-leader coordination can be defined as a specification of leaderless

design, where instead of giving the ability to propose simultaneously to all system participants, there

is a defined set of leaders assigned to a portion of system execution. The multi-leader coordination

approach aims at bridging both the advantages of leader-based and leaderless protocols: it utilizes

the additional concurrency to achieve a better throughput and avoid bottlenecks while simultaneously

limiting the number of leaders in the system to reduce the higher communication overheads and conflict

rates seen in leaderless designs. However, unlike leaderless systems, multi-leader protocols must take

into account election mechanisms and leader selection policies, which come with additional challenges

in terms of algorithm complexity [31].

D – Group-based [7,32]. In group-based coordination, the system is divided into different groups that

align with either different responsibilities or different node characteristics, such as geographic location

or latency. Afterwards, these groups are used to allow correct nodes to reach agreement through the

use of known coordination mechanisms. A common design example of group-based coordination is

the definition of a global group whose nodes are delegated with the management of a dedicated local

group. Each of the global group’s nodes may perform tasks such as the collection and dissemination of

their local group’s votes. Consensus is reached through the global group’s communication channels and

the results are later propagated to the lower hierarchy local groups. Although group-based systems can

offer better scalability and performance, these qualities can only be achieved under efficient grouping

assumptions, which is a highly complex task when taken into account in a real-world context [31].

3.2 Communication in Blockchain Consensus

Another fundamental aspect of the Byzantine consensus paradigm applied to blockchain is how the

participants communicate between themselves throughout protocol execution. We can underline two

critical components which can influence both protocol scalability and efficiency:

3.2.1 Timing Assumptions

As expected of most real-world scenarios, distributed systems must be defined within the parameters of

real-world network systems, and blockchains are no exceptions. BFT consensus systems usually make

one of the three following assumptions regarding the time bounds on communication delays [16]:
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A – Asynchronous Systems. The basis for asynchronous systems can be summarized as not mak-

ing any timing assumptions about processes and links. The passage of time is usually based on the

transmission and delivery of messages, opposite to what happens in synchronous systems where par-

ticipants can accurately time their assumptions by relying on physical clocks. It is still possible to capture

some notion of the passage of time by encoding cause-effect relations between events using logical

clocks [33]. Asynchronous systems must also take into account the Fischer-Lynch-Paterson (FLP) im-

possibility result [34], which states that there is no deterministic algorithm that reaches consensus in

an asynchronous network when in the presence of at least one faulty node. Several mechanisms have

been studied to circumvent this impossibility while retaining an asynchronous system, some of the more

popular ones being the use of randomization algorithms for the convergence of consensus values and

the termination of consensus instances [15].

B – Synchronous Systems. In the synchronous model, there is a known upper bound for both pro-

cessing delays (synchronous computation) and for message transmission delays (synchronous commu-

nication). Additionally, synchronous systems are able to coordinate themselves based on time, through

the use of a synchronous physical clock in each participant. This local clock has an upper bound on the

rate at which it deviates from a global system-wide real-time clock. Due to how difficult it is to implement

and assure these timing assumptions, synchronous systems are not common case in the study of BFT

consensus in permissioned blockchains.

C – Partially Synchronous Systems. Partial synchrony is derived from the fact that while real-world

systems may observe some time bounds (most of the time), these timing assumptions are not guaran-

teed, creating periods of time where the network is asynchronous. The partial synchrony approach is

designed around the fact that the network will correctly hold the proper timing assumptions eventually,

just that it is not known when. This makes it so execution is dictated in an eventually synchronous ap-

proach, where once it reaches a long enough synchronous period of time, the system will be able to hold

timing assumptions, allowing for the remainder of the execution to terminate or do something useful to-

wards system progress. This approach was first introduced by Dwork, Lynch, and Stockmeyer (DLS) [35]

to circumvent the FLP impossibility, as a protocol that maintains safety during asynchronous periods will

be able to guarantee termination once it reaches a period of synchronous behaviour. These systems

are usually complemented with an eventually perfect failure detector, which can adjust and leverage the

timing assumptions in eventually synchronous systems in order to correctly suspect faulty participants

after an unknown amount of time.
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3.2.2 Communication Patterns

The adoption of certain communication patterns in protocol execution dictates the message complexity

of the different phases of consensus. Such patterns balance the number of communication steps in each

phase, which is a source of latency during consensus, with the communication complexity of message

propagation itself, which is correlated to bandwidth performance. Some of the more relevant patterns

we analyse are as follows:

A – All-to-All. This pattern consists of every process sending protocol messages directly to all other

processes during consensus rounds. By avoiding intermediary processes in message delivery, adver-

saries cannot interfere with the communication of two correct parties, offering robustness. However,

this communication pattern often leads to a higher probability of network saturation proportional to the

number of participants, as the resulting communication complexity ends up being O(n2).

B – One-to-All-to-One. In a One-to-All-to-One pattern, a designated coordinator is charged with per-

forming the aggregation of consensus round votes and the dissemination of the results. The aggregation

and dissemination of data are two different steps that must be executed at each relevant phase of con-

sensus, resulting in a higher overall latency for each phase when compared to All-to-All patterns. This

pattern creates a network topology that is often referred to as a ”logical star”, where the coordinator alle-

viates the network load at the cost of being a single point of failure with a heavier processing workload.

This communication pattern’s main advantage is how it reduces the communication to O(n) complexity

when compared to standard All-to-All patterns.

C – Tree-based. Tree-based patterns are an extension of One-to-All patterns, where to reduce the

load of a singular aggregation and dissemination coordinator, the system instead divides itself into mul-

tiple layers of aggregation and dissemination. The root of the tree still executes the functions of a leader,

but instead of relaying messages to all other processes, it only does so to its children nodes. Afterwards,

each child can be the parent of another set of nodes, performing first the dissemination of information

to its children and later the aggregation of the gathered responses to send to its own parent. Thus, this

structure spanning a tree spreads the load and responsibility of One-to-All communication amongst all

participants charged with the role of parent node, at the cost of further increasing the number of com-

munication steps in each consensus phase. The added latency can be accounted and compensated for

by a variety of mechanisms, such as pipelining techniques, which we describe in more detail in Section

3.3.
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D – Hierarchical Groups. Hierarchical group patterns, just like tree-based patterns, offer a better

distribution of load by assigning the responsibility of information dissemination and aggregation to sets

of nodes belonging to specific groups. As previously mentioned in group-based coordination, the usual

scenario is the definition of a global group (also called super-group), where each node is delegated

the task of information propagation and vote gathering for their respective local group (also called sub-

group). Nodes belonging to the super-group all belong to a sub-group, but not all nodes in a sub-group

belong to the super-group. The system is then able to achieve consensus on the higher super-group

level through the execution of different steps at the sub-group level. The efficiency of this pattern is

highly dependent on the quality of the grouping procedure applied to the system, commonly referred to

as clustering, as system performance depends not only on the latency between the nodes belonging to

the global group but also requires overall low latencies within the local group scope.

3.3 Pipelining

To compensate for the throughput losses experienced by systems with several communication steps

in their consensus execution, protocols can leverage the added latency to their advantage through a

concept known as pipelining. Pipelining is based on the idea of optimistically initializing future consen-

sus instances while the current one still has not terminated. This can be done due to the fact that each

instance of consensus can be divided into several phases (or rounds) of communication that have idle

time between them, as nodes have to wait for the propagation and processing of messages in order to

receive the replies necessary to advance to the next round. To exemplify, in systems such as Chained

HotStuff [3], the leader can optimistically initiate consensus for block (n+1) after it receives the proposal

from the previous leader for block n, meaning that it simultaneously executes round 1 of communication

for block (n+ 1) as it executes round 2 of communication for block n. Meanwhile, in Kauri [4], pipelining

is further extended by defining the notion of pipeline stretch, which exploits the piggybacking functional-

ity of network packets introduced in Chained HotStuff to allow multiple new instances of consensus to

be started simultaneously in a singular round of communication of a given consensus instance. Kauri

presents a higher pipelining potential when compared to Chained HotStuff due to its nature as a topolog-

ical tree, where the latency between the root and the leaf nodes creates a considerable amount of idle

time for optimistic consensus instantiation. Consequently, pipeline stretch is directly linked with factors

related to the tree’s configuration: it is dependent on the tree’s fanout m (i.e., how many children a parent

node has) and on the tree’s height h (i.e., the number of layers in the tree).

The application of pipelining is dependent on how often a system may face reconfiguration. In pro-

tocols based on a stable leader policy, a designated leader will carry out pipelining tasks throughout

multiple instances until it is suspected faulty. The execution of a view-change breaks the pipeline, re-
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quiring the following leader to resume it once elected. In the case of rotating leader-based protocols

such as Chained HotStuff [3], as each instance is assigned to a different leader, pipelining is performed

by making it so each leader executes and certifies only one phase of the protocol and then passes

the pipelined information to the following leader. This method of ensuring leader fairness in rotating

leader pipelined protocols is often referred to as Leader-Speaks-Once (LSO) [36]. This is facilitated

by the fact that HotStuff leverages a concept known as Quorum Certificate (QC), which is used as a

collection of votes from a quorum concerning a phase of consensus. That said, QCs can be used to ag-

gregate and disseminate information, and, in the case of Chained HotStuff, generic QCs can be utilized

to aggregate information related to concurrent rounds of different consensus instances, simplifying the

transfer process of all the necessary information to the subsequent leaders in the pipeline. However, the

LSO pipeline approach brings forth liveness concerns due to the existence of the Consecutive Honest

Leader (CHL) property [36], which can be summarized as the fact that to reach the successful commit of

a single proposal, then there needs to be enough consecutive correct leaders in the pipeline to execute

the consensus instance from start to finish. In the case of Chained HotStuff, liveness is hindered by the

fact it needs 4 consecutive correct leaders to successfully decide on consensus instances, but pipelining

is still proven to be beneficial to the system’s overall throughput.

3.4 Reconfiguration

Now that we have established how a system may arrange itself for coordination and communication,

it is important to establish the method through which the protocol maintains its desired design choices.

Specifically, when dealing with mechanisms such as consensus, it is important to keep track of all the

participating members and, in case there is one, keep track of which node may be exercising the role of

leader (similarly, in the case of multi-leader systems, we need to keep track of all leader nodes for a given

instance). To that effect, we define that consensus is run in a system configuration (usually referred to

as view) that is updated incrementally when the system deems it necessary to. There are three major

reasons why a blockchain consensus system may want to reconfigure: i) to remove a faulty leader from

its position; ii) to frequently switch the leader position to ensure transaction fairness and load balancing

in the blockchain; iii) for general purpose membership and topology management reasons, such as

performance optimisations.

3.4.1 Leader-based Reconfiguration

From the reconfiguration scenarios mentioned above, we can outline two previously mentioned com-

monplace behaviours found in leader-based BFT protocols that dictate how frequently a system may

need to reconfigure itself:
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A – Stable Leader Policy. In a Stable Leader Policy setting, the actuating leader is only switched

when enough nodes in the system suspect that it is faulty. Once a quorum of nodes deems that the

leader is showing arbitrary behaviour, they trigger the reconfiguration mechanism through the exchange

of messages to guarantee that the next instance of consensus is run with a new leader. An example of

this would be in PBFT [2], where nodes broadcast to all other nodes a VIEW-CHANGE message if the

current leader is not making enough progress within a given time bound. Stable leader-based systems

can leverage this reconfiguration policy to drive higher transaction throughputs in the system as, once a

correct leader is picked, it means that the system can avoid the need for reconfiguration for long periods

of time in most scenarios. However, in the context of blockchains, this type of behaviour is undesirable

as maintaining the same leader for long periods of time raises questions about leader fairness and

transaction censorship, as a biased leader can select client requests to be excluded from block proposals

for indefinite periods of time. Lastly, Byzantine leaders can greatly diminish the throughput gains of stable

leader systems by acting correctly within the bounds of the reconfiguration trigger, at an intentionally

slower pace [15]. Such cases require that protocols adopt more fine-tuned and inquisitive fault detection

mechanisms.

B – Rotating Leader Policy. Systems based on a Rotating Leader approach usually switch the

leader role every consecutive consensus instance, regardless of the perceived leader correctness. Con-

trasting with the stable leader approach, the Rotating Leader Policy favours a proactive reconfiguration

strategy over a reactive one. The chosen leader node is picked according to the protocol’s discre-

tion, although as a baseline protocols usually follow a looping pattern that traverses all nodes in the

system, such as the one seen in HotStuff [3]. By frequently changing leaders, the system avoids the

aforementioned censorship and slow correct leader issues of stable leader based configurations, while

simultaneously ensuring better load balancing in regards to the additional workload tied to leader ac-

tivities. Conversely, this approach incurs an additional time overhead due to how the reconfiguration

procedure becomes part of the normal case operation. Additionally, Byzantine leaders will periodically

be put in charge of system coordination, hindering system progress.

3.4.2 Reconfiguration Complexity

Given the previous context, it is clear that reconfiguration efficiency is crucial not only when the system is

subject to faults but also for normal case operations. To that end, it is important to take into consideration

factors that may impact the execution of view change procedures, most notably, the communication

complexity behind them. Just as a protocol’s execution may follow certain communication patterns, a

view change procedure may be designed to follow a similar strategy to enable the system to reach

agreement on a new configuration.

16



We can first mention protocols that utilize an All-to-All broadcast method in order to reconfigure,

such as PBFT. When a node suspects that the current leader is faulty, it begins broadcasting a VIEW-

CHANGE message to all nodes. Once a quorum of nodes has broadcast this message, if the subsequent

view’s leader is correct it will eventually prepare and broadcast a NEW-VIEW message within the timeout

bound. This message shares the needed system state and legitimizes the success of the view change

so all nodes may enter the new view. In case of failure, this process is repeated incrementally until a

view with a correct leader is found. As expected, albeit robust, this type of reconfiguration pattern is

highly limited by its quadratic message complexity, which quickly saturates the bandwidth of the network

and offers poor performance in large-scale systems.

For systems based on One-to-All communication such as HotStuff, processes that deem a view

change necessary send a NEW-VIEW message directly to the next view’s leader. Once this node has

aggregated a quorum of NEW-VIEW messages, it can effectively broadcast the collected votes and

the necessary system state so that the protocol’s next consensus instance runs in the new view. In

HotStuff’s case, all nodes send a NEW-VIEW message between consensus instances to the next leader

as dictated by its rotating leader policy. Overall, this approach has a linear communication complexity,

proving to be a more scalable alternative in systems that already leverage a coordinator mechanism.

This is the subject of study by solutions such as Cogsworth [37], which aim to make the optimal time of

leader-based reconfiguration more common through the use of speedup mechanisms.

3.4.3 Reconfiguration Goal

Another factor which should be taken into consideration is the goal of the reconfiguration. In systems

that aren’t based on All-to-All communication, where the topology is more complex, the reconfiguration

mechanism may need to be run several times in order to reach the desired system state. In the case of

Kauri, the system aims at deriving a robust tree, which can be defined as [4]:

Definition 5 (Robust Tree). An edge is said to be safe if the corresponding vertices are both correct

processes. A tree is robust iff the leader process is correct and, for every pair of correct processes pi

and pj , the path in the tree connecting these processes is composed exclusively of safe edges.

In short, a robust tree can be seen as a logical tree where neither the root nor any internal node is

faulty. This is a strict assumption that excludes cases where a tree may lead to consensus even if not

robust: for example, trees whose faulty internal nodes have all their children faulty as well. Inherently,

the amount of possible tree configurations is considerable in size, while only a small portion of said con-

figurations are robust in nature. As a solution, Kauri leverages this definition to design a reconfiguration

mechanism that attempts to find a robust tree configuration in under t attempts, falling back to a star

topology in case of failure. This is done by framing the reconfiguration problem as follows: by modelling
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a tree configuration as a static graph and the sequence of trees as an evolving graph, we can guarantee

that there will be a robust static graph under the definition of recurringly robust evolving graph [4]:

Definition 6 (Recurringly Robust Evolving Graph). An evolving graph G is said to be recurringly robust

iff robust static graphs appear infinitely often in its sequence.

Afterwards, Kauri introduces the notion of t-Bounded Conformity to define an upper bound on the

number of consecutive reconfigurations we might face until we find a robust static graph [4]:

Definition 7 (t-Bounded Conformity). A recurringly robust evolving graph G exhibits t-Bounded Confor-

mity if a robust static graph appears in G at least once every t consecutive static graphs.

To reconfigure in t-Bounded Conformity, Kauri shuffles all its nodes into t disjoint bins, each of size

equal to or greater than the total number of internal nodes in the system, I. Theoretically, if the number

of faulty nodes in the system verifies the condition of f < t, then we can guarantee that one of the bins is

constituted entirely by correct nodes, meaning that we can draw correct root and internal nodes from a

singular bin and assign the leaves utilizing the remaining bins to establish a robust tree. However, in the

scenario of a balanced tree with fanout m, there will be at most m bins with size equal to or greater than

I. This limits Kauri’s reconfiguration to (m−1)-Bounded Conformity, where f < (m−1) or more explicitly

f ≥ m faulty nodes may force the system to instead opt for a star-based reconfiguration with a non-faulty

leader. In this worst-case scenario, reconfiguration may take up to m + f + 1 attempts and the system

loses its tree topology benefits. As this process is randomized, it is of note that Kauri does not aim to

preserve its pipeline structure between configurations, opening up optimisation concerns regarding this

tree construction algorithm, as is displayed in our work.

3.5 Relevant Systems

To effectively support our solution design on previous BFT protocol contributions, we will first analyse

the background and motivation of our declared relevant systems and afterwards describe the key design

specifications and mechanisms that bring forth both strong contributions towards our goals and potential

pitfalls that warrant careful navigation.

3.5.1 PBFT

Being one of the more well-known BFT algorithms, PBFT was the first protocol to enable systems to

tolerate Byzantine faults in a non-synchronous environment [2]. More specifically, while PBFT’s safety

guarantee is upheld in an asynchronous environment, PBFT still requires at least a partially synchronous
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network to guarantee liveness [23]. Based on an All-to-All communication pattern alongside a leader-

based design, PBFT reaches consensus in three communication steps. While this design may provide

little scalability and high network saturation, PBFT is still one of the most robust BFT protocol definitions

and is often used as a building block towards the different solution requirements of a variety of blockchain

consensus problems. Protocol execution is as follows (Figure 3.1):

Clients first broadcast their request to all processes in the system. The currently assigned leader

process, upon receiving a client request, communicates it by broadcasting a PRE-PREPARE message

to all processes. This proposal message effectively orders the client’s request by assigning it a sequence

number. Additionally, it contains the view it is being sent in and the digest of the request. PRE-PREPARE

messages are kept small in size as they are used as proof that the request was assigned a sequence

number in the specified view during the execution of a view-change procedure. All nodes upon receiving

the PRE-PREPARE message acknowledge it by replying with a PREPARE message bearing similar

contents, which is broadcast to all nodes. When any node receives a Byzantine quorum of 2f + 1

matching PREPARE messages, it will then proceed with the broadcast of a COMMIT message to all

nodes once again. Now, when a process receives a Byzantine quorum of COMMIT messages, it will

know that consensus was reached as there is a sufficient amount of correct replicas that have also

reached the same conclusion. Thus, it can be declared that the client request has been collectively

decided on and ordered with the sequence number it was assigned in the PRE-PREPARE phase by the

leader.

P1

P2

P3

P4

P Leader Process

Client

Request Pre-Prepare Prepare Commit      Reply

Message

Figure 3.1: PBFT Normal Case Execution

To guarantee liveness, PBFT implements a view-change mechanism to enable progress when the
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leader process displays faulty behaviour. In PBFT, views are incrementally numbered, and no two con-

secutive views have the same leader. The leader-to-view assignment follows a looping pattern, given

by p = v mod N , where p is the id of the leader node, v is the number of the view and N is the number

of nodes in the system. View changes are typically initiated through the use of a timeout mechanism,

where a timer is initialized when processes receive a new request. If the system does not make enough

progress within the defined timeout interval, the system first attempts to stay within the same view by

doubling the timeout value. If it fails to make progress once more afterwards, then each of the partici-

pant’s timer is triggered, signalling each process to execute the view change protocol. Just like normal

case operations, the view change protocol presents a communication complexity of O(n2), alongside the

added latency invoked by the timeout system, making view changes very costly. Additionally, it has been

noted that attackers can collude to arbitrarily delay the system’s performance once the timeout reaches

a big enough value, making it so only certain client requests are processed as late as possible [15].

To reduce the impact of view changes in system performance, certain algorithms have been proposed

to enable broadcast All-to-All systems like PBFT to more commonly reach a theoretical O(n) optimal

reconfiguration time, such as the leader-based view change protocol proposed by Naor et al. [37].

3.5.2 HotStuff

To promote efficiency and scalability, HotStuff builds on top of PBFT by utilizing the leader to aggre-

gate protocol votes and disseminate results, having a One-to-All communication pattern combined with

threshold signatures to guarantee linear communication [3]. HotStuff’s goal is to create a protocol based

on optimistic responsiveness [38] combined with linear communication to reduce the message complex-

ity of not only normal case operations but also view change sequences. For a protocol to be responsive,

it means that it can reach consensus in time that is dependant only on the actual message delays in-

stead of being dependent on any known upper bound on message transmission delays [39], the latter

being a frequent case in systems based on eventually synchronous models.

To compensate for the heavy workload the leader node faces and to also promote what is often

referred to as chain quality [40], HotStuff makes it so each consecutive instance of consensus initiates

a new view with a new leader from its node rotation, diverging from PBFT’s stable leader policy. While

this rotating leader approach improves fairness and load balancing, it also creates a time overhead on

protocol execution due to the weight and frequency of leader node election [31]. Additionally, on the

worst-case of f cascading faulty leaders during leader rotation, the system may be forced to terminate a

consensus instance on the magnitude of O(n2) complexity [23]. Other than the rotating leader behaviour,

protocol execution follows PBFT’s design, with the additional detail of each phase requiring both the

aggregation and dissemination of messages through the leader, as previously described for One-to-All

systems in Section 3.2.2. Thus, basic HotStuff execution can be expressed by Figure 3.2.

20



P1

P2

P3

P4

P Leader Process

Client

Request Prepare     Decide

Message

Pre-Commit Commit       New-View

Figure 3.2: HotStuff Normal Case Execution. At the end of the consensus instance, processes send a NEW-VIEW
message to the leader of the following consensus instance.

An important concept for HotStuff efficiency is the notion of Chained HotStuff, which utilizes pipelin-

ing to mitigate the throughput losses induced by the higher latency of its aggregation and dissemination

communication steps. It follows a Leader-Speaks-Once (LSO) paradigm, and, by piggybacking mes-

sages related to different consensus instances on the same network packet, Chained HotStuff enables

the parallelization of up to four different consensus instances simultaneously. This means that the first

round of communication of instance n can be run in parallel with the second round of communication of

instance (n− 1), the third round of communication of instance (n− 2) and the fourth round of communi-

cation of instance (n− 3).

3.5.3 Kauri

To address the leader bottleneck found in One-to-All systems like HotStuff, Kauri shapes the system’s

communication pattern into a tree topology with multiple layers of aggregation and dissemination [4].

This way, the workload assigned to the leader node is spread across all nodes that belong to the inner

processes of the tree, which execute similar functions to the root except at a sub-tree level. When we

say that a node has a fanout of m, it means that it has m children nodes to which it is assigned to

disseminate messages to and aggregate the votes of. In the end, this tree structure incentivizes load

balancing and improves system scalability, with the trade-off of creating additional communication steps

for each layer of depth that the tree has. The protocol’s execution can be seen in Figure 3.3. Kauri

divides the execution time of a node during a round of consensus into three categories:
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Figure 3.3: Kauri Normal Case Execution with a balanced tree of N=7 nodes.

A – Sending Time. Sending Time is the time a node takes to send (disseminate) a block to all its

children. It is dependent on three major factors: node fanout (m), block size (B), and link bandwidth (b).

With this, we can say that the time spent on the dissemination process is given by the formula mB
b .

B – Processing Time. Processing Time is the time a node takes to validate and aggregate the votes

it receives from its children. It is dependent on the fanout m of the aggregating node but it is also heavily

dependent on the cryptographic algorithm utilized for signatures. It is given by the formula mP , where

P represents the processing time per signature.

C – Remaining Time. Remaining Time is the time that elapses from when the node finishes sending

the block to its children until it receives and processes the last reply. To that effect, it depends on the

maximum height sub-tree belonging to its children, the Round-Trip Time (RTT) for each layer of said sub-

tree, and lastly the processing time of each inner node in the sub-tree. For simplicity, we can consider

the case of the root node, which has to take into account the full height of the system tree h. In this case,

we have that the remaining time of the root is given by the following formula: h·(RTT+Processing T ime).

Inherently, a tree topology-based system like Kauri will have plenty of remaining time in which the
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leader is idle. It is through this remaining time that Kauri can effectively calculate its pipeline stretch:

by analysing to find out which is bigger, sending or processing time, the system can infer which is the

most likely candidate for a bottleneck, the network speed or the CPU, respectively. Afterwards, Kauri

calculates the number of consensus instances that can be started during its remaining time through the

formula Remaining Time
Bottleneck Time . Note that to reach optimal throughput, Kauri still needs to carefully leverage

both the height of the tree and the fanout of the root node, even if it leads to smaller pipeline stretches.

It is important to refer to the fact that the issue of implementing topological awareness in Kauri

has been previously discussed [20]. The aforementioned solution proposed an optimistic clustering

mechanism based on latencies, with the aim of exploiting the local communication benefits of a balanced

tree with C balanced clusters branching from the root. It then leverages this topology-aware clustering

approach to implement a rotating leader scenario to provide the necessary chain quality features to

Kauri in a WAN deployment.

We however find that this solution has several limitations: the described heuristic is highly optimistic

and would gain little to no benefits in an imbalanced cluster scenario. Not only that, the reconfiguration

and tree construction approach presented fails to leverage past information in order to provide better

support for the future of the system, which is a topic often found in state-of-the-art rotating leader algo-

rithms [25,36,41]. It is also important to note that, as the heuristic is solely based on latency, this could

lead to repetitive leader node assignments. This is due to how low latency clusters will always have

priority during reconfiguration in this scenario, limiting the leader fairness of this solution.

3.5.4 GeoBFT

GeoBFT is a partially synchronous BFT protocol designed to handle geo-scale deployments alongside

the ResilientDB permissioned blockchain [32, 42]. The aim is to provide both high scalability and high

decentralization benefits to blockchain systems without compromising the throughput of the system.

This is achieved through the topologically aware grouping of nodes into local clusters, which lets the

protocol distinguish between local and global communication towards a more efficient consensus design.

GeoBFT optimistically allows each cluster to make decisions independently and only afterwards relays

their decisions through a global channel, thereby globally sharing and ordering all of the locally decided-

upon client requests. Effectively, this means that an instance of consensus is separated into three

stages: local replication, global sharing and ordering and execution. All of these stages rely on the fact

that each cluster has a coordinator named the primary replica. This primary performs the role of leader

for local PBFT replication but also performs the role of intermediary with the other primary replicas of

the remaining clusters during the global sharing phase.

The notion of independent clusters being able to locally decide on transactions in a decentralized

manner harms the robustness of the system as a whole: instead of being able to tolerate the classical
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BFT notion of f = ⌊N−1
3 ⌋ faulty nodes in its entirety, the system must verify that condition at a local

level for every cluster. As a consequence, for a cluster with Nc total nodes, it can only handle at most

fc = ⌊Nc−1
3 ⌋ local faulty nodes. If this condition is breached, the global sharing phase would compromise

blockchain integrity, as other clusters are completely absent from another cluster’s local replication pro-

cess and Byzantine nodes would be able to collude towards proposing their desired block to the global

group.

As a partial reconfiguration mechanism, GeoBFT designs a completely decentralized view-change

procedure aptly named remote view-change. The intuition is that in situations where a Byzantine primary

node is correct to every replica except another specific primary replica (where it either does not send

messages to or drops all the messages from), it is impossible to know which of the two is Byzantine. To

resolve this, we rely on the fact that a cluster Ci may assess the activity of a cluster Cj by communicating

not only with Cj ’s primary node but also with some of its other nodes during the global sharing phase.

Likewise, the replies from global sharing are forwarded to a subset of Ci’s local cluster nodes. If enough

suspicion arises or if communication is deemed unreliable, Ci can reach agreement and request the

nodes of Cj to initiate a local view-change to change leader. However, due to the fact that the decision to

execute this procedure is external to the cluster, it brings forth a lot of optimisation issues and execution

edge cases that make it difficult to be a reliable approach in a real-world implementation, where the

multitude of clusters and the complexity of communication may heavily hinder the performance and

purpose of the remote view-change, leading to system congestion.

As a last note, it is important to state that GeoBFT does not specify a strategy or metric towards the

efficient clustering of replicas at a geographic scale.

3.5.5 Fireplug

Fireplug presents a flexible architecture model for building SMR for geo-replicated databases [7,43]. Al-

though not initially presented in the context of blockchains, Fireplug proves to be of interest as it tackles

both the requisites for scalable BFT consensus and how systems may leverage different kinds of het-

erogeneity towards their overall robustness to compromises. Fireplug implements geo-scale distribution

by defining the existence of data centers and leveraging what it defines as a hierarchical composition

of multiple instances of BFT-SMART [44]. This way, each data center communicates locally with a dif-

ferent instance of BFT-SMART and multiple data centers may communicate with each other through

a global instance of BFT-SMART. Furthermore, Fireplug abstracts away the interface to interact with

each database by implementing both a proxy for multi-versioned data and a replication middleware at

a node-based level. This heterogeneity abstraction, coupled with the software diversity provided by its

N-Version Programming support, enables Fireplug to leverage diversification at an inter and intra-data

center scope. This helps reduce the probability of multiple replicas being compromised simultaneously
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through the same vulnerability, whether at a technology or software level.

To coordinate the high amount of possible system configurations, it was later proposed the notion of

a replicated adaptation manager that maintained the state of each data center through the use of both

replicated sensors and actuators, alongside a replica factory. This external manager would enable the

system to use global information to deterministically reconfigure single data centers at runtime. However,

the kind of centralization that is added by a component such as an adaptation manager would be hard

to favour in the context of blockchain, as it would be a critical component for system safety and would

need to be assured by a trusted party.

3.5.6 Mir-BFT

Mir-BFT was designed with the idea that the reduction of message complexity is not enough to make

a system more scalable and that instead, protocol design should aim to increase throughput to be

able to support a higher number of participants [29,30]. In Mir-BFT, this is achieved by allowing a set of

leaders to propose independently and in parallel in an eventually synchronous environment. Additionally,

the design choices behind Mir-BFT were adapted into a modular framework named Insanely Scalable

SMR (ISS), which can act as a wrapper to enable leader-driven total order broadcast-based protocols

to scale and present the same concurrency characteristics as Mir-BFT. However, it is of note that the

adaptation of already existing protocols to the ISS framework is not straightforward and often requires

compromises that may jeopardize the added concurrency benefits.

To enable the correct ordering of client requests even when there are simultaneous proposals oc-

curring, Mir-BFT multiplexes multiple instances of its broadcast primitive over a partitioned domain of

client requests, which can guarantee liveness and safety properties but also implement data duplication

prevention mechanisms. The assignment of leaders to the partitioned client hash space is rotated over

the course of consecutive epochs, meaning that the transition between them can be seen as a view-

change in the system. Some of the limitations of Mir-BFT include the high communication costs of the

broadcast-based behaviour of the system and the high complexity of the design [31]. An example of the

latter is how the batching of client requests depends on concurrent request handling data structures,

which is a complex component with a lot of discussion regarding reliable implementation.

3.5.7 Democratic Byzantine Fault Tolerance (DBFT)

DBFT is a leaderless protocol that runs on a partially synchronous network model [27]. In this case,

the scalability, load distribution and throughput gains all come from the fact that all nodes play the same

role in the execution of consensus, while the offered decentralization avoids bottlenecks. To avoid the

FLP impossibility, DBFT utilizes the notion of a weak coordinator, whose goal is to help the algorithm
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terminate when non-faulty nodes know that their proposals might be decided. This goes against the

habitual coordinator behaviour of leader-based systems, where the leader imposes their value on other

nodes and forces the system to wait for their decision. It is through this weak coordinator that the system

is able to resolve conflicts related to its concurrent proposals. However, for this conflict resolver to work, it

requires the existence of partial synchronicity, which is a drawback to the leaderless design of DBFT, as

other state-of-the-art leaderless protocols such as HoneyBadgerBFT [45] are able to execute consensus

in asynchronous environments.

It was recently argued that this type of leaderless design can drive high throughput and ensure good

scalability in WAN settings [19]. This was alleged as DBFT’s parallel distinct proposals implement the

notion of cumulative All-to-All broadcasts. Through this, the system is able to drive a high payload trans-

fer rate (goodput) and exploit larger proposal batch sizes to avoid the waiting time between broadcasts

(hiccup).

3.5.8 MyTumbler

MyTumbler is a recent timestamp-based leaderless BFT protocol that is able to execute in an asyn-

chronous network model [28]. It aims to create a system that is able to move at the speed of the network

delay, where commits are either proposed or aborted, instead of being dependent on the speed of co-

ordinators and the difficulties of tuning the maximum network delay in eventually synchronous systems,

where an improperly set timeout bound may lead to excessive consecutive leader changes or too big of

a delay to recover from faults. MyTumbler additionally implements the notion of Super Multi-value Agree-

ment, referred to as SuperMA, to leverage an optimal fast path in the randomization process often found

in asynchronous protocols. By utilizing a promise mechanism, the non-deterministic common coin [16]

component of randomized consensus may be sped up if a quorum of correct processes has submitted

the same value for consensus initially. Overall, MyTumbler imposes a trade-off of high communication

complexity for the possibility of quick termination, alongside the possibility of transactions having to abort

due to conflicts in the asynchronous network.

3.5.9 Other Systems.

We would like to underline the following additional systems, as they might provide supplementary in-

sights to our solution discussion in Chapter 4:

PrestigeBFT [25] is an algorithm which leverages the concept of node reputation (i.e., a metric for

the perceived correctness of a participant) to build a system that keeps track of the past faultiness of its

nodes. In our context, node reputation is a metric that could be used alongside heterogeneous network

performance metrics to better optimise configurations in real-world environments.
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ByzCoin [9] is a tree-based algorithm designed for PoW permissionless blockchains, where the par-

ticipants with higher computational power are able to select which trees to use for consensus. In Byz-

Coin, the trees are relatively non-robust, due to the use of binary trees, and in the presence of faults,

they rapidly degenerate into a clique topology, where communication is more costly. Motor [10] improves

on ByzCoin by providing an improved tree definition and by designing a rotating leader mechanism to

avoid censorship, however, it still suffers from the high latency costs of trees as it does not rely on

pipelining techniques as Kauri does. Additionally, Motor’s tree construction algorithm is non-optimal as

it does not provide a solid definition for tree creation, such as Kauri’s robust trees (Definition 5), and its

reconfiguration algorithm may incur unnecessary rotations of a tree’s sub-trees.

Lastly, we will be referring to Teixeira et al.’s attempt at a topologically aware Kauri [20], whose

solution was analysed more in-depth in our discussion of Kauri above, as Kauri Enhanced, simplified to

Kauri+.

3.6 Discussion

BFT Consensus
Algorithm

Coordination
Approach

Communication
Pattern

Topologically
Aware

Leverages
Pipelining

Offers N = 3f + 1
Resilience

PBFT [2] Leader-based All-to-All ✗ ✗ ✓
HotStuff [3] Leader-based One-to-All ✗ ✓ ✓

Kauri [4] Leader-based Tree-based ✗ ✓ ✓
Kauri+ [20] Leader-based Tree-based !! ✓ ✓

GeoBFT [32,42] Group-based Hierarchical Groups ✓ ✗ ✗
Fireplug [7,43] Group-based Hierarchical Groups ✓ ✗ ✗
Mir-BFT [29,30] Multi-leader All-to-All ✗ ✗ ✓

DBFT [27] Leaderless All-to-All ✗ ✗ ✓
MyTumbler [28] Leaderless All-to-All ✗ ✗ ✓

Our Approach Leader-based Tree-based ✓ ✓ ✓

Table 3.1: Proposed approach when compared to other existing BFT consensus algorithms. Topological awareness
in Kauri+ is highlighted by a !! as it is limited.

Table 3.1 summarizes the main characteristics of the state-of-the-art algorithms mentioned above.

The features that our comparison aims to highlight are as follows:

A – Coordination Approach. The coordination approach is one of the most integral factors for dic-

tating how a system handles the load distribution between its nodes and if a system may even need

to reconfigure at runtime in the first place. The role of coordinator implicitly comes with additional pro-

cessing costs and responsibilities, meaning that the system may quickly rise in complexity when it is

performed by a multitude of nodes. Systems that spread the responsibility of coordination (GeoBFT,
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Fireplug, Mir-BFT) or remove the role of dedicated coordinators altogether (DBFT, MyTumbler) often ob-

tain throughput gains from the added concurrency when the communication is non-redundant (distinct

proposals). As a drawback, however, the system must implement more complex mechanisms that both

deterministically order all concurrent transactions in the system and avoid conflicting simultaneous pro-

posals, which can lead to unsatisfactory design solutions. It is important to note that leaderless systems

such as DBFT and MyTumbler do not require the same notion of reconfiguration as the other protocols,

since every node has equal capabilities and blockchain membership reconfiguration is out of the scope

of their design. Our solution, in order to properly benefit from the load distribution benefits of its tree

topology and maintain an easily scalable design, utilizes a leader-based design, now with the additional

benefits of a rotating leader policy, which was not the case in the original Kauri.

B – Communication Pattern. A protocol’s communication pattern influences the protocol’s commu-

nication complexity and consequently the system’s network saturation and latency as well. We can first

note that the All-to-All broadcast behaviour of PBFT, Mir-BFT, DBFT, and MyTumbler can be taxing on

the network and processing power of nodes. Other protocols that do not rely on All-to-All communication

may have increased node idle times, such as HotStuff and Kauri, as the communication is segmented

into several communication steps. In these cases, the use of pipelining techniques compensates for

the added latency by optimistically increasing the throughput of the system. Another example of a

throughput compensating technique is in GeoBFT, where its highly decentralized hierarchical group pat-

tern allows for its local groups to propose client requests independently and concurrently. Our solution

aims to keep the benefits from a tree communication pattern while also keeping the throughput gained

from Kauri’s extensive pipelining mechanism by optimising reconfiguration so that its disruption on the

pipeline is mitigated.

C – Topologically Aware. To be topologically aware is to utilize information regarding how the net-

work or nodes are structured to the system’s advantage. The most common example of this is to attempt

to use geographic localization to promote communication in faster node links. This usually relies on an

external system which enables the clustering or grouping of nodes. Such cases lead to highly decen-

tralized designs, as seen in GeoBFT and Fireplug. Another example of topological conditions that can

be leveraged for system efficiency is how computationally strong nodes are. This information allows

leader-based, group-based and multi-leader protocols to move coordination responsibilities to nodes

which can deliver better performance to the system and mitigate some of the consequences of design

bottlenecks. We can state that none of the protocols studied, with the exception of Fireplug, have this

capability. While in Kauri+ the topology awareness component ended up being a heuristic applied di-

rectly to Kauri’s construction algorithm, in our solution we focus on enabling Kauri to reap the benefits of

topology awareness through any external system and therefore any desired heuristic. We define a dy-
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namic and well-performing reconfiguration algorithm that encapsulates the different configurations Kauri

will use throughout execution, enabling Kauri to follow and efficiently rotate through any set of defined

trees.

D – Leverages Pipelining. Pipelining is an important factor for increasing consensus performance

when in the presence of protocols with ample idle time such as Kauri. Without it, the drawbacks of the

additional communication steps of their aggregation and dissemination behaviour would be too costly

when compared to the performance of broadcast-based systems such as DBFT. On the other hand,

pipelining is a complex mechanism which may need fine-tuning to be able to be fully taken advantage

of. An example of this is with the ISS [30] version of HotStuff, where the presence of the modular

multi-leader framework alongside pipelining made it so the protocol could not take full advantage of the

parallelization, as part of the partitioned proposal space was wasted on dummy batches needed for

the extra rounds to avoid breaking the pipeline. Our solution defines a reconfiguration mechanism in

a way that it has a reduced impact on pipelining while also allowing protocol designers to choose the

best order for consecutive trees, in order to promote an effective transition between two different pipeline

structures.

E – Offers N = 3f +1 Resilience. This is a critical aspect of Byzantine consensus, as mentioned in

Section 2.2. It is important to highlight this design choice because it is the central weakness of the highly

decentralized and highly scalable protocols of GeoBFT and Fireplug. Optimistically, our solution should

still maintain the optimal expected resilience while attempting to benefit from the decentralization tactics

applied by these two designs. It is important to also highlight that in the case of Kauri, we consider

that it has N = 3f + 1 resilience due to the fact it exclusively utilizes robust trees for configurations.

Internal node faults in Kauri create faulty underlying sub-trees due to the aggregation and dissemination

behaviour displayed by its topological tree. However, by utilizing exclusively robust trees, these scenarios

are dismissed, therefore allowing Kauri to withstand up to f Byzantine nodes.
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4
Dynamic Reconfiguration
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In this chapter, we propose techniques to support dynamic reconfiguration in systems such as Kauri,

following the criteria that we have established in Chapter 3 towards the goals defined in Section 1.2.

We aim to complement Kauri with a rotating leader policy such that the cost of reconfiguration (more

specifically, the impact on the throughput of the pipelining execution) is reduced. As will be verified later

in Chapter 5, the performance of our reconfiguration mechanism can be dependent on various factors

such as tree height and fanout, the displacement of the nodes between two different consecutive trees

(switching two nodes in the leaf layer might have a different effect compared to switching the root node

for a leaf node), the frequency of reconfiguration, and so forth. It is also important to emphasize that

the overall performance of the system can be influenced by a smart rotation of trees in heterogeneous

system contexts, and for that reason, we also provide an analysis of the benefits of our solution in such

31



environments.

4.1 Model and Assumptions

First and foremost, we recognize that a reconfiguration algorithm must tackle the following challenges:

• a reconfiguration mechanism must have the ability to handle planned reconfigurations (i.e., recon-

figurations in a rotating leader schedule) and forced reconfigurations (i.e., reconfigurations that are

triggered by faults) in an integrated manner.

• reconfiguration must induce the minimum interference possible in the throughput of the system. In

particular, the algorithm must avoid disrupting the pipelining mechanism utilized by systems like

Kauri.

• a reconfiguration mechanism must have the ability to handle reconfigurations that can generate

situations where participants receive messages that may violate the order of causality.

Given that, we define our model and assumptions as such:

We consider a protocol that implements blockchain services in a permissioned setting, meaning

that the group of participants is known amongst themselves. Given this environment, we assume that

a tree schedule is provided to all the participants (i.e., a schedule containing the order of the various

configurations the system will rotate through), where each tree has its pipeline stretch associated with it

(i.e., the number of consensus instances that can be initialized optimistically whilst the current one has

not been decided).

We also consider that the system is tolerant to Byzantine faults, where we can support up to f <

⌊N−1
3 ⌋ nodes with arbitrary behaviour from a total of N nodes. The only restriction imposed on the

Byzantine nodes is that they do not have the capacity to compromise the cryptographic primitives. The

system operates in an eventually synchronous network, where it is possible to guarantee periods of

synchronicity between the participants (only it isn’t known when), such that it is possible for the system

to make progress. During periods of asynchrony, the safety of the system is not compromised.

In this context, we are focusing on deterministic leader-based BFT protocols. The leader communi-

cates with the remaining nodes by utilizing a dissemination and aggregation tree in which the leader is

the root node. The protocol executes various instances of consensus, in sequence. We assume that

the protocol pipelines these instances optimistically, meaning that it can initialize an instance of con-

sensus before the previous one is terminated. Each instance of consensus requires various rounds of

communication to be terminated.

When a consensus instance is initialized by a leader, it uses a given tree to disseminate a block

containing client transactions. We denote the tree associated with the said instance as the initial con-

32



figuration. We assume that, in the absence of faults, the initial configuration for all consensus instances

is pre-defined. This means that we assume a pre-defined and globally known schedule from which par-

ticipants obtain the different trees that will be used to execute the first round of communication for each

consensus instance.

If, in the absence of faults, all instances use the same configuration, then we consider that the pro-

tocol is using a stable leader policy. If not all instances use the same configuration, then we say that

the protocol supports dynamic reconfiguration. Dynamic reconfiguration can occur whenever a new in-

stance is initialized or periodically. Additionally, the various rounds of communication of a given instance

can all use the same configuration for the dissemination and aggregation of values, or, alternatively, use

different configurations. In the case of Kauri, in the absence of faults, a consensus instance uses the

same tree configuration for all rounds.
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Configuration
2

Configuration
3

Configuration
4

Reconfiguration on
block B100

Reconfiguration on
block B200

Reconfiguration on
block B300

Normal Case:

Configuration
1

Configuration
2

Configuration
3

Configuration
4

Reconfiguration on
block B100

Fault while waiting
for block B178

Reconfiguration on
block B277

With faults:

Figure 4.1: Rotations in the case of normal case operations and operations with a fault. We assume all
configurations have a duration of 100 blocks.

Lastly, the protocol assumes the same behaviour as Kauri when handling Byzantine faults. This

means that dynamic reconfiguration does not affect the original protocol’s recovery mechanisms, even

during periods of asynchrony or when malicious nodes try to delay the transition between configurations.

In the normal case, reconfiguration is triggered in a participant when the last block of a configuration is

33



delivered. In the case of a Byzantine fault during operations, participants will fail to make progress

before delivering the current configuration’s last block. In this scenario, participants will move on to

the next configuration in the rotation and attempt to make progress under the new tree. The duration

of configurations is always fixed, meaning that planned rotations will adapt in the case of recovery so

that configurations do the expected amount of blocks. This process takes into account an exponential

backoff for its timeout values, in the case of network asynchrony. An example can be seen in Figure 4.1,

where on the execution with faults the system must transition to Configuration 3 early due to the fault

while waiting for block B178. Future planned reconfigurations are adapted in accordance with this early

reconfiguration.

4.2 Schedules

To begin detailing our approach, we first define the input that determines the rotation of configurations

utilized in our protocol, specifically tree schedules, which dictate the sequence of trees used during

execution. Trees belonging to a schedule are identified from 0 to n, with n being an arbitrary number.

Every participant in the protocol can infer from any tree in the schedule the following configuration

details: the root of the tree (i.e., the leader), its own parent (if it has one) and its own children (if they

exist). Additionally, each tree in the schedule can have a distinct value for its fanout (i.e., the number of

children each internal node has) and for its pipeline stretch, making these values dynamic throughout

protocol execution. Lastly, each tree has a target duration, defined by the number of blocks k during

which the tree will remain in effect before the system reconfigures again, assuming the absence of

faults. This value can be distinct for every tree in the schedule, although unless stated otherwise we

simplistically assume that it is the same.
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0 1

6 4 3 5

1
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0 3 6 5

Schedule of 3 Trees

k=50 k=50 k=50k=50 k=50

T0 T1 T2

Figure 4.2: Tree Schedule for a system with N = 7 nodes. Each tree has a duration of k = 50 blocks. Once tree 2
reaches its target, the system reconfigures into tree 0.

When the system reaches the target block of Tn, the system will reconfigure and resume execution
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with T0, making it so that schedules are cyclical. In the current version, in the case of faults, the trees in

the schedule are not recomputed. An example of a schedule with 3 trees, each with a duration of k = 50

blocks, can be seen in Figure 4.2.

To guarantee equity in the protocol, it is desirable to utilize a schedule of at least N different trees,

where each of them has a different participant at the root. Of course, it is possible to consider more com-

plex algorithms for the construction of (sequences of) trees, which take into account the computational

resources and the geographic location of nodes, as well as the properties of the network connections

like latency, throughout, etc. These types of algorithms are complementary to the contributions of our

work, with some preliminary work being done in Kauri+ [20]. Our solution ends up providing the opti-

mised framework to accommodate any schedule of desired trees, whether these are based on informed

decisions or randomly allocated.

4.2.1 Advantages of Using Schedules

Given the context of the problem, a rotating leader policy offers additional flexibility in systems that

rely on tree topologies, since by allowing the system to choose the structure of the tree, it is selecting

which pairs of nodes will establish an edge for communication. Compared to a star topology, where

every node is forced to communicate directly with the node that is the leader, in a tree topology we

can more easily select the structure that will lead to the usage of communication channels with a better

performance in order to drive a higher throughput in the system. However, as the number of possible

trees is exponential, exercising a judicious choice of which trees to use is a complex and difficult task,

albeit crucial.

Considering that the protocol is to be applied in a permissioned blockchain context, we can assume

that nodes can obtain an estimate of the quality of the connections between themselves. Thus, a tree

schedule can utilize this information to define trees that can obtain an expected better performance,

when compared to randomly chosen trees in a geo-distributed WAN. Additionally, we can further improve

the throughput of the system by adapting the pipeline stretch of each tree accordingly and by ordering

the trees in the schedule in a way that reduces the impact of the reconfiguration on the execution of the

pipelining techniques.

4.2.2 A Simple Schedule

As a base for our rotating leader policy, in order to guarantee that a schedule lets every node perform

the role of leader (that is, be the root of a tree), we assume that, unless explicitly stated otherwise,

executions will utilize a schedule based on the rotation of the tree’s participant array. What this means

is that each tree in the schedule is obtained by rotating the nodes in the previous tree. This also means
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Figure 4.3: A simple rotation-based schedule.

that the schedule will have N trees, with N being the total amount of participants in the system. An

example of this type of schedule can be seen in Figure 4.3 for a system with N = 7 nodes.

This type of schedule makes it so that each node has an equal opportunity to become and act as

the leader of consensus. Each participant is the leader of the tree with an ID that matches its replica ID.

In terms of node displacement, this schedule makes it so that consecutive reconfigurations keep part of

the links utilized in the previous configuration. Additionally, when reconfiguring, for a tree with h layers,

only h nodes will dislocate into a different layer, independently of the fanout. When reconfiguring with

this schedule, the previous leader goes to the right-most leaf position, meaning that their workload is

alleviated. Meanwhile, the next leader is a direct child of the previous leader, thus it is one of the nodes

with the least expected latency to start proposing in the new configuration. All other nodes that are

displaced into higher layers of the tree during the reconfiguration process only shift by one layer. This

limits the displacement of nodes and therefore the disruption of the throughput of the system throughout

the process of reconfiguration, making this schedule a good baseline for our approach.

4.3 Transitioning Between Configurations

One of the biggest challenges in our work is reducing reconfiguration costs. These costs come from

various sources, such as the latency caused by the tree’s height, the overhead from switching connec-

tions and updating the internal state, and the cost of processing blocks that are still in transit through the

consensus pipeline during reconfiguration. Additionally, as nodes in higher-up levels receive data earlier
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compared to the lower levels of the tree, it means that the time it takes for the system to begin proposing

new blocks could be dependent on the level where the next configuration’s leader is located. This logic

can be applied to the tree as a whole: the more nodes that are displaced from lower levels to higher

ones in a reconfiguration, the higher the likelihood that the system will have to wait for them to complete

the procedure.

With that said, we know that for any configuration i ≥ 0 there are k proposed blocks such that Bik+j ,

where 1 ≤ j ≤ k, identifies a block in said configuration. To compensate for the wait mentioned above,

we parallelize the transition between two consecutive trees as follows: knowing that block Bik+k is the

last block of tree Ti, the leader of the said tree will transition to the new configuration as soon as it finishes

proposing Bik+k. Every node that receives block Bik+k will also transition to the new configuration as

soon as it verifies if the proposed block is valid and votes for it. Even with nodes transitioning to a new

configuration, messages related to the consensus of block Bik+k will be shared by using the same tree

that was used for its proposal, meaning that it is decided on the same tree that was used for its proposal.

Amongst the nodes that voted for block Bik+k and transitioned to the next tree, if one of them is the leader

of the tree Ti+1, it starts proposing blocks in the new configuration as soon as it finishes reconfiguration.

That being said, the system will finish the pipeline of the previous configuration concurrently with the

initialization of the pipeline of the new configuration. This entire process is facilitated by the fact that

the protocol messages come with an identifier of the tree that was used for their transmission, allowing

nodes to differentiate recipients in communication whenever the system utilizes two trees simultaneously

for consensus.

A node that receives block Bik+k but still has not received the blocks in the causal past of Bik+k

(i.e., proposals from any consensus instance j, where ik < j < ik + k) can only transition to the new

configuration once these have been received and processed. Only at that moment can the node process

Bik+k and subsequently reconfigure to participate in consensus on tree Ti+1. This is because, for a node

to reconfigure, it must witness and vote in the proposal that concretizes the target of the configuration in

which it is inserted, and for that, it needs to witness and vote in all the blocks in the causal past of said

proposal. With that said, although it must witness the last block of the current tree to reconfigure, a node

does not need to wait for this block to be decided, meaning that concurrency is increased.

This also applies to proposals from future configurations: in the case that, by reconfiguring, the next

configuration’s leader proposes a block to a node that has still not reconfigured, this node will wait for

the causal past necessary to enter the reconfiguration and only then will it process the pending received

proposals (in order). Nodes preemptively partially validate future proposals by confirming if the height

of the proposed block is possible (it has to be a height bigger than the target of the current tree) and if

the proposing node is indeed the leader of the tree it was proposed in. If these conditions are cleared,

the node keeps the proposal pending till reconfiguration. After reconfiguration, a node processes the
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pending proposals in order and sends them to their children within the new configuration.

Both these aforementioned edge-cases are exemplified in Figure 4.4: for a system where we recon-

figure from T0 to T1 on block B50, a node may receive T0’s target block early during the dissemination

of the pipeline-stretch (edge-case 1) but it is also possible for a node to receive a proposal from T1

before witnessing B50 (edge-case 2). In this second case, participant P2 is the leader of T1 and starts

proposing as soon as it witnesses and votes for B50. As P6 is a direct child of P2 in T1 and it still has

not received B50, it receives B51 before B50 and must keep it for later.

Lastly, we provide a formalization of the normal case operation of this algorithm in Algorithm 4.1.

Lines 7 − 15 provide the leader’s propose functionality, assuming that the Propose function receives an

already validated block of client transactions. Lines 16 − 28 provide the remaining replicas’ proposal

handler logic and its steps for ensuring safety. Note that we must preemptively check pending pro-

posals in line 18 for proposals that fall under edge-case 1 of Figure 4.4, but we can also proactively

check them after reconfiguration on line 35 for proposals that fall under edge-case 2. The function

ProcessPendingProposals follows a similar logic to what is seen in lines 25 − 34, however for all the

proposals belonging to the pending proposals queue and in-order. This function is formalized later in

Algorithm 4.3. Lastly, we can note that this formalization simplifies reconfiguration by decoupling the

process from the Pacemaker [46], which is an encapsulated fault detector mechanism that ensures live-

ness in our system implementation-wise. It is through the Pacemaker that reconfiguration is triggered

and it is through the Pacemaker that the protocol keeps track of the system’s current view, proposer and

timeout timers, amongst other things.

Given the intricacies of maintaining a stable pipeline throughput over the course of reconfiguration, it

is expected that it is favourable for the system to schedule trees in a way that pairs of consecutive trees

differentiate little in their edges. By maintaining similar pipeline structures, the system can reduce wait

times for nodes that were previously part of lower layers in the previous configuration. However, this

comes with the trade-off of increasing contention for bandwidth on the links that are maintained through

reconfiguration.

4.4 Implementation

In this section, we detail the different challenges and mechanisms that our dynamic reconfiguration takes

into account to both leverage tree schedules and complement Kauri with a rotating leader policy. The

implementation was done in C++, over Kauri’s public codebase [4, 47], which itself is an adaptation of

HotStuff’s public codebase [46,48].
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Figure 4.4: Some edge-cases to take into consideration: 1) Nodes that can receive the proposal that concretizes
the tree’s target out-of-order within the configuration. 2) Nodes that can receive proposals from a future
configuration before they reconfigure.
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Algorithm 4.1: Commutation to Next Configuration
// Local state for a replica at the start of the protocol

1 system trees← {T0, T1, ..., Tn}
2 current tree← T0

3 proposer← GetRoot(current tree)
4 child peers← GetChildren(current tree)
5 lastCheckedBlockHeight← 0
6 pending proposals← ∅

// Proposal function for leader

7 function Propose(block ) :
8 if proposer == GetReplicaId() then
9 Broadcast(child peers, PROPOSE(block))

10 Vote(block)
11 lastCheckedBlockHeight← block.height
12 if block.height == current tree.target then
13 Reconfigure()

14 end
15 end

// Proposal handler

16 function ReceivePropose(peer, proposal) :
17 prop tree← system trees[proposal.tid]
18 ProcessPendingProposals()

// Validate if correct proposer and correct parent

19 if (GetRoot(prop tree) ! = proposal.proposer ) ∨ (GetParent(prop tree) ! = peer ) then
20 return
21 end

// Verify block height

22 if proposal.block.height ≤ lastCheckedBlockHeight then
23 return
24 end

// Check if we have block’s causal history

25 if (prop tree ! = current tree) ∨ (proposal.block.parent.height ! = lastCheckedBlockHeight)
then

26 pending proposals← pending proposals ∪{proposal}
27 return
28 end

// Update internal state

29 Validate(proposal.block)
30 Broadcast(child peers, proposal)
31 Vote(proposal.block)
32 lastCheckedBlockHeight← proposal.block.height
33 if lastCheckedBlockHeight == current tree.target then
34 Reconfigure()

35 ProcessPendingProposals()

36 end
// Transitions to next configuration in the schedule

37 function Reconfigure() :
38 current tree← NextTree(current tree)
39 proposer← GetRoot(current tree)
40 current tree.target← lastCheckedBlockHeight + current tree.duration
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4.4.1 Challenges

To adjust Kauri to our approach, we must address the following challenges:

• Defining an encapsulated and standardized solution for both schedules and topology trees to fa-

cilitate intuitive schedule definition and fast extraction of relevant data.

• Adapting the protocol’s messages and message handlers to enable the algorithm to concurrently

use connections related to different configurations.

• Modifying Kauri’s original Pacemaker in order to distinguish planned reconfigurations from forced

reconfigurations. Additionally, we need to define the instant where planned reconfigurations are

triggered such that protocol safety is ensured throughout and after the reconfiguration process.

• Enhancing Kauri’s out-of-order message handling so that it takes into account messages that may

originate from future configurations.

Each of these challenges will be addressed in the following sections, respectively.

4.4.2 Standardized Trees and Schedules

Every replica in the system keeps a data structure in which it will store the currently in-use schedule.

This structure is instantiated on system startup, as currently, the protocol utilizes a pre-defined schedule.

However, implementation-wise, when reconfiguration is triggered, the system is able to edit the schedule

safely throughout reconfiguration, thus allowing for the possibility of the protocol interacting with external

components to recompute the schedule at runtime.

Upon startup, the system can either use a default simple rotation schedule with N trees or extract the

schedule from a dedicated file. In the file, each line specifies the fanout, pipeline stretch, and participant

order for a tree topology in the schedule. Each tree is assigned a Tree ID (TID), either based on the root

of the tree (for the default simple rotation schedule) or the order in which the trees appear in the file (if

the schedule is extracted from a file).

We define a Tree structure (Algorithm 4.2, lines 1 − 6), which represents a tree topology objectively

for each replica, tracking properties such as the TID, fanout, pipeline stretch, and the tree array (the

order of replicas within the tree). This structure is serializable to allow sharing of trees through the

replica’s communication network library. Additionally, we define a TreeNetwork structure (Algorithm 4.2,

lines 7 − 12), which acts as a wrapper for the Tree structure and calculates relative replica data for the

corresponding topology upon instantiation, such as parent and child peers, the number of children in the

replica’s sub-tree (for aggregation purposes), and more. This abstraction ensures that all relevant data

for a given tree is easily accessible and calculated only once.
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Algorithm 4.2: Tree Structures for Schedules
1 Struct Tree(tid, fanout, pipeline stretch, duration, tree array ) contains
2 tid
3 fanout
4 pipeline stretch
5 duration // Used to calculate tree switch target

6 tree array

7 Struct TreeNetwork(ReplicaID, tree) contains
8 tree
9 parent peer

10 child peers
11 number of children
12 tree switch target // Block height for planned reconfiguration. Calculated every

time a tree network comes into effect

4.4.3 Enabling Concurrent Configurations

To enable Kauri to concurrently handle protocol messages from multiple configurations at once, we need

to adapt two key components:

• First, protocol messages must now include the TID of the sender’s current configuration (for pro-

posals) or the TID of the message it is replying to. Recipients can use this to quickly identify

causality and verify whether the sender is the expected source of the message. For example,

in the algorithm, proposals are only relayed by parents to their children. Therefore, if a replica

receives a proposal, it can validate the message by checking both: i) whether the proposal origi-

nates from the proposer of the tree with the matching proposal TID, and ii) whether the sender is

the parent of the replica in the tree with the corresponding message TID (Algorithm 4.1 line 19).

• All message handlers now extract the context of the configuration used to communicate the cor-

responding message. This is to ensure proper validation and routing of protocol message replies.

The process is facilitated by the TreeNetwork abstraction, defined in Algorithm 4.2, and can be

exemplified in Algorithm 4.1 line 17, where the message’s context can be extracted from the sys-

tem trees map by utilizing the TID contained in the proposal message.

4.4.4 Triggering Reconfigurations

As previously mentioned, both our prototype and Kauri utilize what is known as a Pacemaker to handle

liveness and fault detection in the protocol. Implementation-wise, it is the Pacemaker that keeps track of

the current configuration and who the current proposer is, and it is also through the Pacemaker that we

trigger a reconfiguration in the system.
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In normal case operations, planned configurations can be executed by comparing either i) if the

proposed block’s height reaches the target of the current configuration, in the case of a proposer (Algo-

rithm 4.1, lines 12 − 13); or ii) if the received proposal block’s height reaches the target of the current

configuration, in the case of a non-proposer replica (Algorithm 4.1, lines 33− 34). This is done after the

block is validated and voted for in both cases, maintaining safety, but before the block has been decided,

increasing concurrency.

Faults are detected within the Pacemaker component if the system fails to make progress for a deter-

minate amount of time. In these cases, replicas locally advance to the next configuration of the schedule

and increase the timeout period. The target of the new configuration can be determined utilizing the

tree’s known duration and the last block height the Pacemaker recorded. Originally, Kauri’s fault han-

dling mechanism considered that once a fault was deemed in a tree, the faulty replica would cease to

participate in consensus indefinitely. For our approach, we adapted the Pacemaker to maintain the nec-

essary state for all replicas to continue participating in consensus whether the reconfiguration is forced

or planned. The task of removing replicas from the schedule is now encompassed by external sched-

ule computation, meaning that previously faulty nodes stay in the rotation of trees until the schedule is

explicitly altered. This task is out of the scope of this work, being further described in our future work

section.

Algorithm 4.3: Process Pending Proposals
// We assume that pending proposals is a queue sorted by the proposals’ block

height

1 function ProposePendingProposals() :
2 for prop in pending proposals do
3 prop tree← system trees[prop.tid]
4 prop peers← getChildren(prop tree)

// Check if we have block’s causal history

5 if (prop tree ! = current tree) ∨ (prop.block.parent.height ! = lastCheckedBlockHeight)
then

6 break
7 end

// Update internal state

8 Validate(proposal.block)
9 Broadcast(prop peers, proposal)

10 Vote(proposal.block)
11 lastCheckedBlockHeight← proposal.block.height
12 if lastCheckedBlockHeight == current tree.target then
13 Reconfigure()

14 end
15 pending proposals← pending proposals \ {prop}
16 end
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4.4.5 Out-of-Order Message Handling

While Kauri’s original implementation includes detection and handling mechanisms for pipelined blocks

that might arrive out-of-order, it must be adapted to take into account that i) an out-of-order block might

be the one to reach the target of the current configuration (edge-case 1 in Figure 4.4) and ii) that blocks

can be out-of-order due to being from a future configuration (edge-case 2 in Figure 4.4).

By defining a queue for the pending out-of-order blocks at the proposal handling step, we can process

them in order using Algorithm 4.3. This function can be safely executed at any time in the protocol,

although the key moments where it needs to be called are right before we process a new proposal

(Algorithm 4.1 line 18) and right after a reconfiguration (Algorithm 4.1 line 34). In a worst-case scenario,

we may have an entire pipeline stretch of proposals from the next configuration pending, which can all

be processed in order in a single execution of Algorithm 4.3.

4.4.6 Execution Example

To visualize our prototype’s optimized reconfiguration, we provide the following example. In Figure 4.5,

we visualize Kauri’s pipeline in motion when deployed as a tree of 3 layers (N = 7,m = 2). In this

scenario, the execution is a stable leader approach and the pipeline is set to have a pipeline stretch of

4, meaning that for each pipeline batch, a block is disseminated alongside 4 optimistically disseminated

blocks. This diagram simplifies communication by merging the interactions of nodes within the same

layer into one. Realistically, nodes in the same layer diverge in terms of message arrival and relaying

times, further extending the time it takes to decide a pipeline batch.
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Figure 4.5: An example of Kauri’s stable leader pipelined execution.
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To exemplify a rotation with our optimised approach, we provide Figure 4.6. We instantiate this exe-

cution with our simple rotation schedule (Figure 4.3), and additionally, reconfiguration happens every 50

blocks, meaning that T0 is reconfigured on block B50. In this case, once nodes receive the disseminated

block B50 from the root, they can start participating in tree T1’s consensus while simultaneously deciding

the previous configuration’s remaining blocks. This way, the pipeline is finished in the previous recon-

figuration while the pipeline in the new configuration is filled, adding concurrency to our reconfiguration

process. We highlight the reconfiguration of the node that is T1’s leader with the purple arrow. The

gained concurrency is increased the earlier the next configuration’s leader receives the last block of the

current configuration. It is important to keep in mind that in larger systems, nodes within the same layer

experience greater divergence in message communication times (which is not represented in these di-

agrams). This accentuates the need for a more thoughtful approach to the placement of the nodes in

consecutive tree rotations to better exploit concurrent configurations.
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Figure 4.6: An example of dynamic reconfiguration.
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4.5 Discussion

While our solution’s base rotation schedule may seem promising in terms of equity and efficiency at

first, as it gives every node the opportunity to be the leader of a tree in the schedule and keeps the

displacement of nodes between configurations reduced, it is important to keep in mind that this kind of

schedule may not be desirable for real-world applications. There may be benefits to having schedules

that:

1. Have more than N trees, so that certain high-performance trees are included or repeated through-

out execution;

2. Have less than N trees, to skip certain configurations with a high risk of either being non-robust or

low performance;

3. Have more than N trees, where some consecutive configurations do not change the leader node

but instead reconfigure partial sub-trees of the previous configuration;

4. Take into account the equity of consecutive leaders regarding their geographical position;

5. Take into account the geographical location of nodes and reduce the impact of the displacement

between two consecutive trees.

With that said, we can state that there are a variety of different heuristics that schedules can fol-

low, and our solution provides the footing that enables Kauri to make use of these to achieve a good

performance in WAN networks with leader rotation in mind.

We can say that Kauri’s original tree construction algorithm provides what we can call a randomized

schedule, assuming that we encapsulate the algorithm’s generated trees into a limited and cyclical

schedule. The rotating leader base proposed for our approach, exemplified in Figure 4.3, is what we call

a rotation schedule. Lastly, any schedule that orders the nodes in accordance with an external metric or

heuristic is what we call an informed schedule.
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5.1 Evaluation Goals

In this chapter, we present various cases of interest that enable us to analyse the impact of our dynamic

reconfiguration in Kauri. To do this, we measure the throughput of the system during the reconfiguration

process and compare it to the usual throughput of a stable leader execution with the same parameters

(albeit, of course, with no planned reconfiguration in its schedule). This way, we can establish Kauri’s

original performance as the baseline and analyse whether or not our reconfiguration mechanism exhibits

detrimental costs that would justify picking a stable leader over our rotating leader solution.
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5.2 Experimental Setup

This experimental evaluation was conducted through the use of Kollaps [11], which permits us to emulate

the different characteristics of a distributed network, such as the latency and the bandwidth of the links

between the nodes. Every experiment was conducted with two physical machines connected in a way

that communication costs between them are insignificant when compared to the emulated topology. The

workload we provided puts computational resources close to saturation, meaning that processing time

is the bottleneck of the system.

Every network utilized defines its network properties at the link level. Each participant has a link to

every other participant. Implementation-wise, network communication leverages concurrency to improve

message dissemination, meaning that multiple links can be used throughout the process to reduce the

sending time of blocks for consensus. It is possible to saturate node communication links by defining a

topology where all of a participant’s traffic is routed locally through a switch, making it so that a node’s

link to its switch is a point of contention and the bottleneck for communication. Since resources are

already near saturation at the computational level, we choose networks where each participant has a

dedicated link to every other participant, avoiding the interference and contention that would occur on

both resources when using a bottlenecked switch-based topology.

We plot our figures through the use of a full execution log of every experiment. Every figure uses

the following notation: the throughput of the system is measured using the average number of blocks

decided per second over a given period of time. When a reconfiguration occurs, the moment where it is

launched is highlighted with a diamond on the figure. To simplify our experimental evaluation, we assume

that all the trees in the schedule have an equal target duration of k blocks. Since all reconfigurations will

occur every k blocks, systems with higher throughputs will be reconfiguring more frequently.

5.3 Homogeneous Networks

The goal of running experiments in a homogeneous network environment is to limit the number of factors

that can influence the throughput of the system throughout the process of reconfiguration. This way, we

can more easily isolate the variations in the throughput that originate from the factors that we want to

control in our testing. In particular, we study the impact of the following three factors in the performance

of our dynamic reconfiguration: i) the height of the trees the system uses; ii) the displacement of the

nodes between consecutive configurations and iii) the frequency at which the system reconfigures.

For all the experiments run, with the exception of Figure 5.3, we attributed a latency of 50 ms and a

bandwidth of 750 Kbp/s to all the connections used between the participants. This way, with Kollaps, we

emulate a homogeneous network overlay for all the replicas deployed on our physical machines. The

selected bandwidth makes it so that the sending time is still a significant factor for the execution of our
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algorithm, even if dissemination is parallelized and optimized.

5.3.1 Tree Height

In this section, we evaluate how the height of the trees being used can affect our reconfiguration proce-

dure. In all the executions presented, our trees have a target duration of k = 300 blocks and we utilize

a simple rotation schedule, as described in Section 4.2.1. To accurately represent the expected load of

a Kauri execution, the pipeline stretch of each scenario was adjusted taking into account the height of

the trees used for consensus. This is because, in a tree with more layers, the Remaining Time in the

system is bigger, which means that the pipeline stretch must increase to compensate for the additional

latency. We analyse the following scenarios:

(a) Height of h = 2: using N = 31 nodes structured into a star topology of fanout m = 30. This

scenario corresponds to HotStuff’s [3] topology.

(b) Height of h = 3: using N = 31 nodes structured into trees of fanout m = 5.

(c) Height of h = 5: using N = 31 nodes structured into trees of fanout m = 2.

Note that we always opted to use trees that are perfectly balanced. This is because unbalanced

trees have extra sources of variation in the results that we want to diminish in this study.

Figure 5.1: Throughput (in blocks per second) over time of the three different scenarios where the tree heights are
varied.

In these scenarios, the processing power available for each node is the bottleneck of the execution,

further accentuated when the fanout is increased. That said, a star topology execution is the scenario
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with the worst performance, even when considering the fact that the implementation can make use of

the concurrency offered by our topology to reduce HotStuff’s heavy sending time. Meanwhile, both tree

topology executions are expected to have a similar throughput, when taking into account that the size of

the pipeline for trees with bigger heights is adjusted to compensate for the added latency.

The results of this experiment are represented in Figure 5.1. In the graph, the different scenario

executions are aligned so that their first reconfiguration occurs at the same point in time. Additionally,

each different scenario has its overall average throughput represented by a horizontal line.

With this experiment, we can deduce the following:

• The overall throughput of the different scenarios follows what was expected regarding the fanout

utilized in each of the executions: the scenario that used a HotStuff-like star-based topology for

its trees (h = 2) has the lowest throughput, as the resources available for a single node are the

bottleneck in this experimental setup, being close to saturation. Meanwhile, both executions with

higher-depth trees present similar throughputs which are better than HotStuff, as the tree topology

balances consensus’ workload. Additionally, as the pipelining techniques used were adjusted

according to the tree’s height, these compensate for the added latency of the trees. The slight

difference in performance between trees with h = 3 layers and h = 5 layers can be justified due

to the differences originating from the workload distribution: the trees with fanout m = 2 were

able to more evenly distribute consensus workload. Although this is a valid strategy for distributing

workload in this experiment, it is not applicable to every context as real-world scenarios have to

take into account the drawback of more nodes being assigned to internal nodes in the tree, which

increases the difficulty of finding a robust tree.

• For this experimental setup and the combination of the selected homogeneous network with the

selected tree schedule, the impact of reconfiguration was negligible in all executions. This shows

that even when the system is close to saturation and the pipeline is in full use, our reconfiguration

mechanism can effectively parallelize the work of two consecutive configurations in a way that

the throughput does not drop. In the execution with more layers (h = 5), as the pipeline is also

increased, the expected additional latency from the layers is compensated during our parallelized

reconfiguration process.

5.3.2 Node Displacement

In this section, we evaluate the impact that the displacement of nodes between two consecutive configu-

rations has on the dynamic reconfiguration’s performance. For our executions, we use trees with N = 31

nodes and a fanout of m = 5, meaning that they have a height of h = 3. Each tree now utilizes a target

duration of k = 100 blocks to reconfigure more frequently. To measure the impact of node displacement
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in our reconfiguration process, we compare the performance of the reconfiguration mechanism between

two different schedule strategies, namely:

(a) Root-Child Switch Schedule. This schedule oscillates between two trees, where the root of the

next tree is a child of the root of the current tree. It is expected that this schedule has a reduced

impact on the reconfiguration process because, by only switching the root with a direct child, the

latency of the switch is reduced (as nodes only jump one layer in the tree) and the disruption on

the pipeline will be kept to a minimum.

(b) Internal-Leaf Switch Schedule. This schedule oscillates between two trees, where the internal

nodes of a tree become the leaf nodes of the following tree, and vice-versa (taking into considera-

tion that #Leaf Nodes > #Internal Nodes, a sub-group of leaf nodes is picked to swap with the

internal nodes). In this schedule, the root of the tree will always be swapped with a leaf node. It is

expected that this schedule has a bigger impact on the reconfiguration process, as a high amount

of nodes jump various layers in the tree.

Additionally, we include an execution without reconfiguration (i.e., a stable leader execution) to act

as the baseline of the expected stable performance. The results are displayed in Figure 5.2.

Figure 5.2: Throughput (in blocks/s) over time between two systems with different schedules, when compared to a
system that has no reconfiguration.

First and foremost, we can note that the difference in overall average throughput between all execu-

tions is minimal, with the biggest one being between the stable leader execution and the Internal-Leaf

Switch schedule. The Internal-Leaf Switch schedule execution has roughly 6% less average throughput

than the stable leader.
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Secondly, as expected, the Internal-Leaf Switch schedule applies more strain to the throughput of

the system due to the higher displacement of nodes. This can be seen by the fluctuations of the through-

put throughout the execution when compared to Root-Child Switch schedule’s more stable throughput.

Even then, for such a high displacement of the pipeline structure, the reconfiguration costs are relatively

low. This aligns with what was witnessed in the rotating schedule used in Figure 5.1, where the recon-

figuration costs were kept at a minimum even when a moderate amount of nodes had to switch their

respective parent and children nodes during reconfiguration.

Thus, for schedules that follow Internal-Leaf Switch’s behaviour, where most of the nodes change

roles upon reconfiguration and the pipeline suffers a bigger disruption, reconfiguration is still feasible

without heavy costs. However, we would like to note that the throughput pattern witnessed here is

noisier than expected and did not manage to reach the other executions’ stable throughput. It is easy to

suspect that, if the system reconfigures faster than the throughput stabilizes after the reconfiguration’s

disruption, then inherently the system will never be able to reach stable performance.

This can be further accentuated by the fact that the system’s resources are near saturation. In our

experimental setup, nodes are randomly distributed amongst the two physical machines so that each

machine has the same amount of nodes. If a tree from the schedule happens to apply more pressure to

a single machine by having a majority of its inner nodes located within it, then trees may inherently have

a more inconsistent throughput during the recovery process, and thus show a noisier pattern as seen in

Internal-Leaf Switch schedule’s execution.

For this reason, we provide a follow-up test to this schedule type in Figure 5.3, where the computa-

tional load is alleviated and where we give more time between reconfigurations to confirm reconfiguration

recovery time.

We once again use an Internal-Leaf Switch schedule, but this time the system only has N = 21

nodes laid out in trees of h = 3 height where fanout is equal to m = 4. For further insight into the high

displacement of nodes in this scenario, we vary the latency of the network between the values of 50 ms,

150 ms and 250 ms, with the pipeline stretch adjusted accordingly. There’s no change to the bandwidth

of the network, and reconfiguration happens every k = 400 blocks.

As seen in Figure 5.3, recovery time for reconfiguration is consistent across all networks, with higher

latency networks having a stronger throughput impact. Even then, the overall average throughput of all

executions is largely unaffected, maintaining similar values. We also note that certain reconfigurations

present in this schedule end up having less impact than others, which highlights how important it is for

schedules to not only have in mind network properties but also node workload and computational power.
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Figure 5.3: Throughput (in blocks/s) over time in Internal-Leaf Switch schedule executions where we vary the
latency. This setup utilizes fewer nodes (N = 21) to alleviate computational load.

5.3.3 Reconfiguration Frequency

Finally, we study the impact that the frequency of reconfiguration can bring to the performance of the

system. We once again use a simple rotation schedule and a system with trees of N = 31 nodes with

a fanout of m = 5. This time, however, we evaluate the performance of our system for four distinct k

values, namely:

(a) k = 1: A system that rotates leader every block, emulating LSO algorithms like HotStuff [3]

(b) k = 25: A system that rotates every 25 blocks.

(c) k = 50: A system that rotates every 50 blocks.

(d) k =∞: A system where the configuration is not changed. (Stable Leader)

The results are shown in Figure 5.4. We include the execution that uses HotStuff’s topology from

Figure 5.1 for comparison purposes.

Once again, for the homogeneous network selected, reconfiguration following the rotation schedule

does not seem to provide any noticeable costs for values where k does not interrupt the pipeline. In

these cases, there are negligible throughput losses when the reconfiguration rate is higher. Meanwhile,

when k = 1, Kauri suffers a loss of throughput as, by reconfiguring every block, the system can not

make use of its pipelining techniques to compensate for the latency derived from its tree topology. Even

then, Kauri still gains throughput in this context over the HotStuff topology seen in Figure 5.1, as it more
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Figure 5.4: Throughput (in blocks/s) over time between four different systems with different reconfiguration
frequencies.

evenly distributes the load across various participants. This means that a LSO approach to Kauri can in

fact outperform HotStuff when combined with our dynamic reconfiguration.

5.4 Heterogeneous Networks

We can infer the utility of our solution in a WAN by once again utilizing Kollaps, however this time with

a careful definition of various network links that could represent a real-world deployment of a permis-

sioned blockchain application. A variety of works take into account that many permissioned blockchains

are usually deployed as a data center network, meaning that most participants can be grouped and

approximated to different clusters. [32, 49, 50]. Given this, for our heterogeneous experimental evalua-

tion, we define a simplified version of a cluster-based environment for the definition of our network links,

represented in Table 5.1:

Clusters A B C

A 50 ms
750 Kbp/s

150 ms
750 Kbp/s

250 ms
750 Kbp/s

B 50 ms
750 Kbp/s

150 ms
750 Kbp/s

C 50 ms
750 Kbp/s

Table 5.1: Table with the network properties between the clusters A, B and C.
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We maintain the bandwidth utilized in our homogeneous evaluation meaning that all links in this setup

have a bandwidth of 750 Kbp/s. This is due to how computational resources are already near saturation,

meaning that for our emulated environment, maintaining the previously used bandwidth provides clearer

results for interpretation. The most significant aspect of this heterogeneous network definition is not the

absolute values chosen for the network properties (which are influenced by and adjusted to our experi-

mental infrastructure), but the relative values between the cluster communication links. The asymmetry

brought forth by the latency discrepancies between the clusters is enough to showcase the impact that

a heterogeneous network may have on system execution. With this, we can say that network properties

for the connections between the three different clusters A, B and C are set so that:

1. Intra-cluster latency is reduced for all clusters, meaning that trees should use same cluster links

as much as possible;

2. Latency between A and B is moderate, same with latency between B and C;

3. Latency between A and C is relatively bad, meaning that trees should avoid using links between

these two clusters.

We once again use a system with N = 31 nodes structured into balanced trees of m = 5. Nodes are

distributed along the clusters so that NA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, NB = {10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20} and NC = {21, 22, 23, 24, 25, 26, 27, 28, 29, 30} are the groups of nodes for clusters A, B and C

respectively. To evaluate the impact of a smart tree schedule in this heterogeneous network setting, we

establish the following three schedule executions:

(a) Rotation Schedule: the same rotation schedule utilized in the evaluations of Section 5.3.1 and

Section 5.3.3;

(b) Randomized Schedule: a schedule of N trees where trees are completely randomized, akin to

what Kauri originally used for its bucket-based construction;

(c) Informed Schedule: a schedule of N trees that avoid weak links and prioritize intra-cluster com-

munication.

It is important to note that our dynamic reconfiguration allows different trees in the schedule to have

different pipeline stretch values. However, here we simplistically assume that all trees have the same

ideal pipeline stretch, equivalent to the one used in the homogeneous network evaluation. This is to

compare efficiency between the three different schedules more strictly, and because pipeline stretch

adjustments would reveal partial knowledge of the system’s network, thus belonging only to an informed

schedule context. Reconfiguration for these experiments happens every k = 300 blocks.

From Figure 5.5, we can infer that:
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Figure 5.5: Throughput (in blocks/s) over time of three different schedules in a heterogeneous network.

• A random schedule has the worst performance in the heterogeneous network provided. This

is because with already 3 different kinds of clusters, the network already has enough variety to

increase the probability of inner nodes having high latency links. These network asymmetries can

heavily increase the wait experienced to aggregate votes and therefore in consensus.

• A rotation schedule provides a performance that can be compared to a random schedule, however

it brings forth more consistency. This is because throughout execution tree performance will often

only slightly diverge, as this type of schedule maintains a moderate portion of past links between

configurations.

• An informed schedule ends up having better performance than the other two schedules throughout

the entire execution. The trees can be set up to avoid weaker links while still shifting around the

leadership role between configurations. In theory, informed schedules can be further adjusted in

different heterogeneous contexts, such as increasing the pipeline stretch according to the current

tree’s expected remaining time from its links’ latency.

5.5 Discussion

The results of our experiments in a homogeneous network allowed us to infer that dynamic reconfigura-

tion is feasible in consensus protocols based on trees. Figure 5.1 shows that, even with reconfiguration,

a tree topology system remains much more efficient than a star topology system, in the case of an envi-

ronment that bottlenecks the resources of the leader. This means that, when coupled with our solution,

56



protocols based on aggregation and dissemination trees such as Kauri can offer improvements in sys-

tem performance in cases where a stable leader is not desirable. Our solution provides high flexibility

regarding system requirements and offers good throughput in various scenarios, whether it be frequent

rotations, harsher reconfigurations or systems with higher-depth trees.

Meanwhile, the heterogeneous network experiments showcased how, by diverging from Kauri’s orig-

inal randomized tree generation and instead opting to use metrics for building informed robust trees, our

dynamic reconfiguration combined with an informed tree schedule can enable even better scalability for

WAN deployments.

57



58



6
Conclusion

Contents

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Conclusions

With this work, we described a solution that aimed to make Kauri viable with a rotating leader policy.

The implementation aims to mitigate the inherent costs of reconfiguring amidst the pipeline execution of

this tree-based protocol. Additionally, we set out to define a way to encapsulate the rotation schedule

so that system designers can accurately construct the desired tree schedule to be put into use by the

protocol. By combining our optimised reconfiguration mechanism with an informed tree schedule, we

were able to prove our solution’s efficiency in a network that can be approximated to a geo-distributed

WAN. Furthermore, by utilizing a homogeneous configuration, we were able to pinpoint how efficient our

solution is in a wide variety of scenarios that could affect the dynamic reconfiguration’s performance.

Overall, we were able to confirm that Kauri is compatible with a rotating leader policy and that with

our solution we can hope to obtain even better scalability in real-world scenarios, whilst obtaining the full
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benefits of a rotating leader consensus protocol.

6.2 Future Work

There are several research avenues that we would like to extend our work into:

• Informed schedule creation at runtime. Currently, our approach uses a pre-defined schedule

throughout the entire execution. When faults are detected within the current schedule tree, Kauri’s

recovery mechanisms kick in and the system reconfigures towards the next tree. To increase the

robustness of the system, it is in our interest to allow an exterior component to take into account

faults detected throughout execution to dynamically change the schedule at runtime, so that trees

that failed may be recomputed into robust configurations for future rotations. Several protocols

have studied how an algorithm can leverage past node correctness to improve and avoid Byzantine

leaders, such as Carousel [41], PrestigeBFT [25] and BeeGees [36]. This can be further extended

to take into account changes in the network and changes in the performance of certain nodes.

Systems like VerLoc [51] have shown promise at geolocating nodes in adversarial settings while

systems like AWARE [22,52] and StarReact [53] are able to monitor participant and quorum latency

respectively. AWARE aims to provide a prediction model that attempts to minimize consensus

latency throughout execution while StarReact is an extension that reacts to network changes that

impact quorum certificate aggregation times. These solutions are adequate for a blockchain setting

where we aim to build a tree topology that leverages lower latency links for faster communication

between participants. Using systems like these as encapsulated components to interact with our

dynamic tree schedule creation and recomputation process would enable Kauri to adequately

adapt to changes in its environment throughout protocol execution.

• Tree performance metric. To complement the monitoring process mentioned above, it is of inter-

est to define heuristics that are able to obtain the expected performance of the different trees in

a dynamic schedule. By abstracting the various node and tree performance metrics, we can syn-

thesize a value that would facilitate the selection of trees for an informed schedule. Additionally,

this performance value must also take into account the proper ordering inside a schedule in order

to minimize the different reconfiguration costs associated with reconfiguration node displacement

and waiting times.

60



Bibliography

[1] L. Lamport, R. Shostak, and M. Pease, The Byzantine generals problem. New York, NY, USA:

Association for Computing Machinery, 2019, p. 203–226.

[2] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in OSDI, vol. 99, no. 1999, 1999, pp.

173–186.

[3] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “HotStuff: BFT consensus with linear-

ity and responsiveness,” in Proceedings of the 2019 ACM Symposium on Principles of Distributed

Computing. Association for Computing Machinery, 2019, pp. 347–356.

[4] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable BFT Consensus with Pipelined Tree-

Based Dissemination and Aggregation,” in Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles. Association for Computing Machinery, 2021, pp. 35–48.
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